Provable Security Asymmetric Encryption

DEA - Algorithmique ENS 20 Février 2003

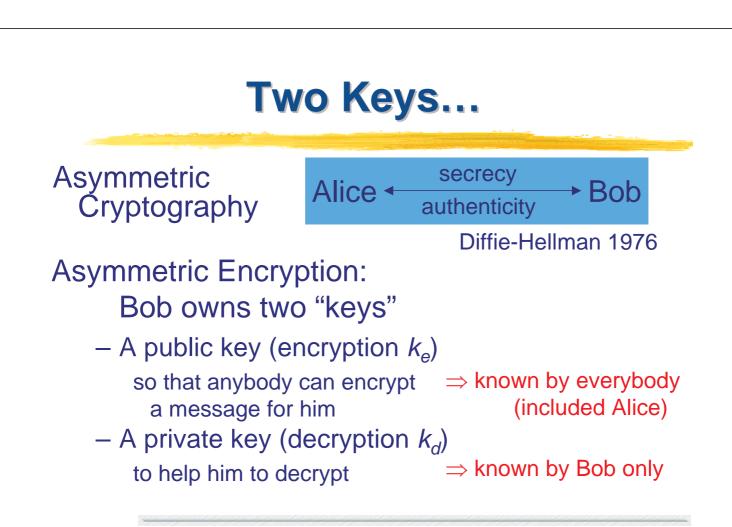
David Pointcheval LIENS-CNRS Ecole normale supérieure

Summary

- 1. Introduction
- 2. Computational Assumptions
- 3. Security Proofs
- 4. Asymmetric Encryption
- 5. New Assumptions
- 6. An Example

Summary

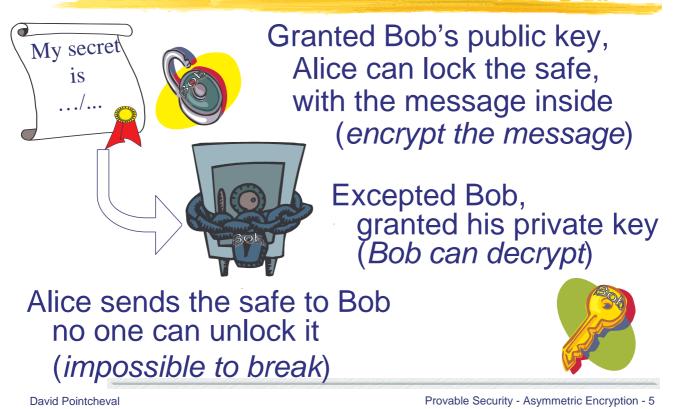
- 1. Introduction
- 2. Computational Assumptions
- 3. Security Proofs
- 4. Asymmetric Encryption
- 5. New Assumptions
- 6. An Example



David Pointcheval

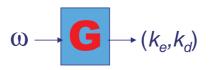
Provable Security - Asymmetric Encryption - 3

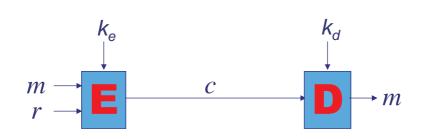
Encryption / decryption attack



Encryption Scheme

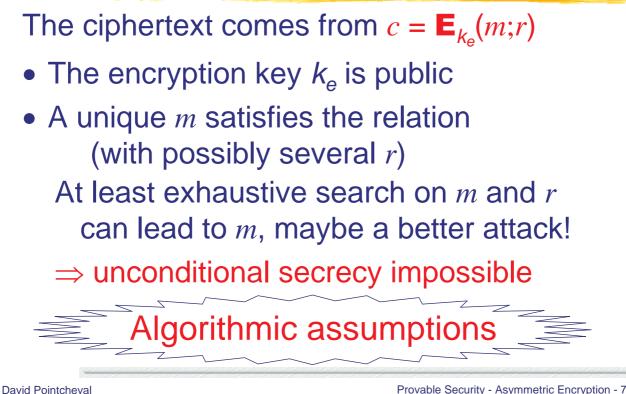
- 3 algorithms :
- G key generation
- E encryption
- D decryption





David Pointcheval

Conditional Secrecy

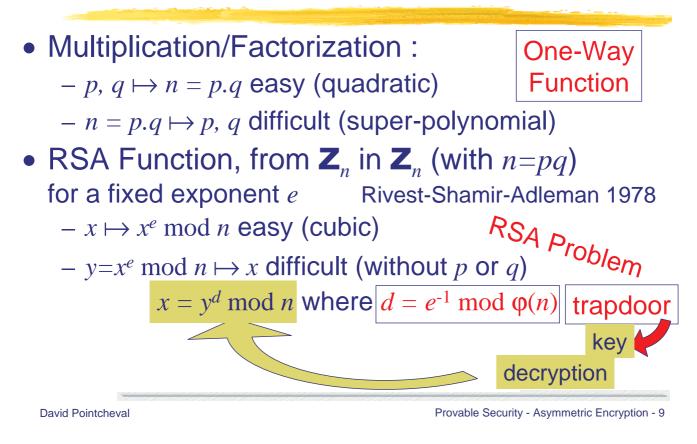


Provable Security - Asymmetric Encryption - 7

Summary

- 1. Introduction
- 2. Computational Assumptions
- 3. Security Proofs
- 4. Asymmetric Encryption
- 5. New Assumptions
- 6. An Example

Integer Factoring and RSA



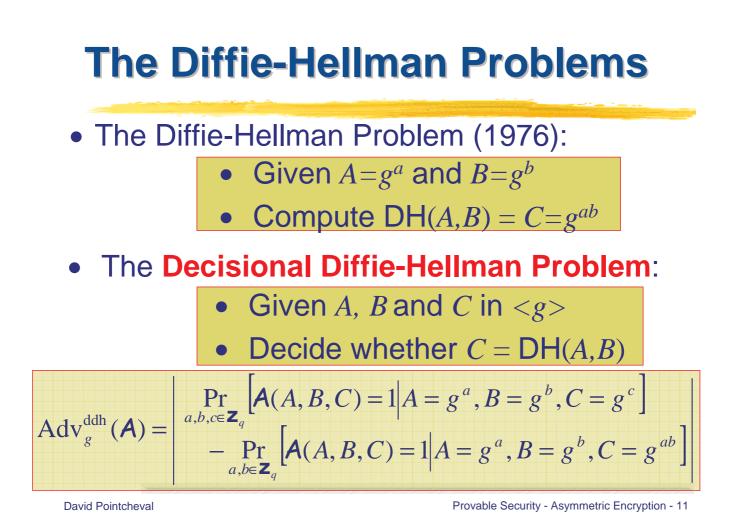
The Discrete Logarithm

- Let $G = (\langle g \rangle, \times)$ be any finite cyclic group
- For any $y \in \mathbf{G}$, one defines $\text{Log}_g(y) = \min\{x \ge 0 \mid y = g^x\}$
- One-way function

$$-x \rightarrow y = g^x$$
 easy (cubic)

$$-y = g^x \rightarrow x$$
 difficult (super-polynomial)

$$\operatorname{Succ}_{g}^{\operatorname{dl}}(\mathbf{A}) = \Pr_{x \in \mathbf{Z}_{q}} \left[\mathbf{A}(y) = x \middle| y = g^{x} \right]$$



Complexity Estimates

Estimates for integer factoring Lenstra-Verheul 2000

	Modulus (bits)	$\underset{(log_2)}{Mips-Year}$	Operations (en log ₂)
	512	13	58
Mile-stone	1024	35	80
	2048	66	111
	4096	104	149
	8192	156	201

Can be used for RSA too Lower-bounds for DL in \mathbf{Z}_{p}^{*}

Summary

- 1. Introduction
- 2. Computational Assumptions
- 3. Security Proofs
- 4. Asymmetric Encryption
- 5. New Assumptions
- 6. An Example

David Pointcheval

Provable Security - Asymmetric Encryption - 13

Algorithmic Assumptions necessary

n=pq : public modulus *e* : public exponent *d=e⁻¹* mod φ(n) : private

RSA Encryption $\mathbf{E}(m) = m^e \mod n$ $\mathbf{D}(c) = c^d \mod n$

If the RSA problem is easy, secrecy is not satisfied: anybody may recover *m* from *c*

Algorithmic Assumptions sufficient?

Security proofs give the guarantee that the assumption is *enough* for secrecy:

- if an adversary can break the secrecy
- one can break the assumption

 \Rightarrow "reductionist" proof

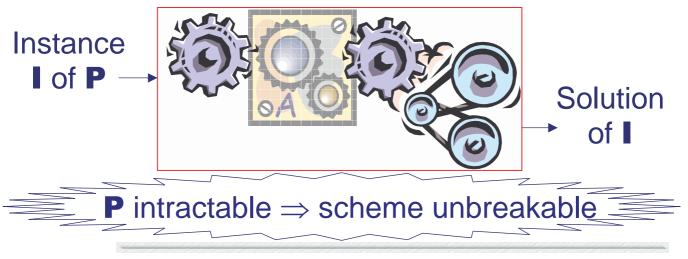
```
David Pointcheval
```

Provable Security - Asymmetric Encryption - 15

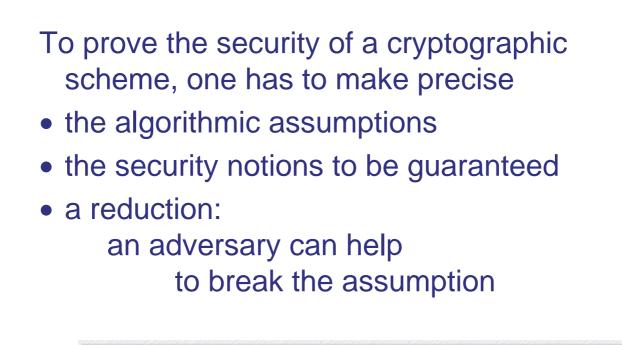
Proof by Reduction

Reduction of a problem **P** to an attack Atk:

 Let A be an adversary that breaks the scheme then A can be used to solve P



Provably Secure Scheme

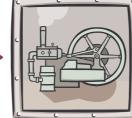


David Pointcheval

Provable Security - Asymmetric Encryption - 17

Practical Security

Adversary within t



Algorithm against **P** within t' = T(t)

- Complexity theory: T polynomial
- Exact Security: T explicit
- Practical Security: T small (linear)

Eg : t' = 4tP intractable within less than 2^{80} operations \Rightarrow scheme unbreakable within less than 2^{78} operations

Security Notions

According to the needs, one defines

• the goals of an adversary

• the means of an adversary, i.e. the available information

David Pointcheval

Provable Security - Asymmetric Encryption - 19

Summary

- 1. Introduction
- 2. Computational Assumptions
- 3. Security Proofs
- 4. Asymmetric Encryption
 - s Formal Security Model
 - s Examples
- 5. New Assumptions
- 6. An Example

Asymmetric Encryption

Formal Security Model

• Examples

David Pointcheval

Provable Security - Asymmetric Encryption - 21

Encryption Scheme

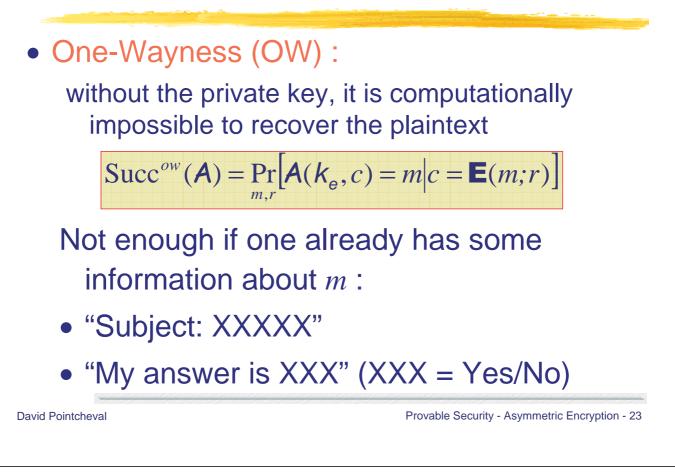
3 algorithms :

- G key generation
- E encryption

• **D** - decryption $k_e \leftarrow G \rightarrow k_d$ $m \rightarrow F \qquad c \qquad D \rightarrow m \text{ or } \perp$

OW-Security: it is impossible to get back m just from c, k_e , **E** and **D** (without k_d)

Basic Secrecy



Strong Secrecy

• Semantic Security (IND - Indistinguishability) :

GM 1984

the ciphertext reveals *no more* information about the plaintext to a **polynomial adversary**

$$\operatorname{Adv}^{ind}(\mathbf{A}) = 2\operatorname{Pr}_{r,b} \left[\mathbf{A}_{2}(m_{0}, m_{1}, c, s) = b \begin{vmatrix} (m_{0}, m_{1}, s) \leftarrow \mathbf{A}_{1}(k_{e}) \\ c \leftarrow \mathbf{E}(m_{b}, r) \end{vmatrix} \right] - 1$$

Non-Malleability

• Non-Malleability (NM):

DDN 1991

No polynomial adversary can derive, from a ciphertext $c=\mathbf{E}(m;r)$, a second one $c'=\mathbf{E}(m';r')$ so that the plaintexts m and m' are meaningfully related

David Pointcheval

Provable Security - Asymmetric Encryption - 25

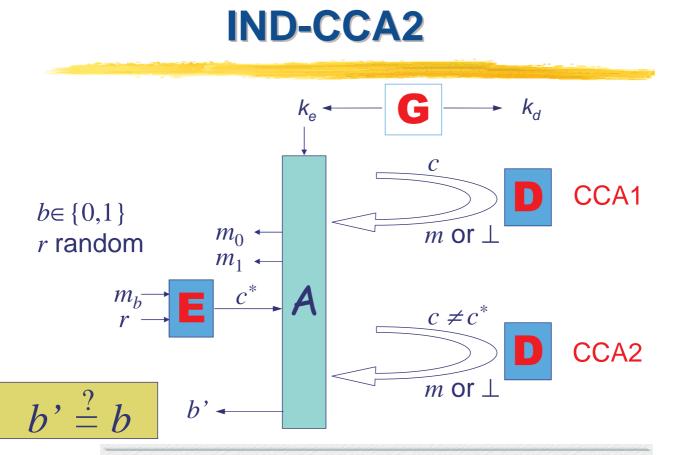
Basic Attacks

• Chosen-Plaintext Attacks (CPA)

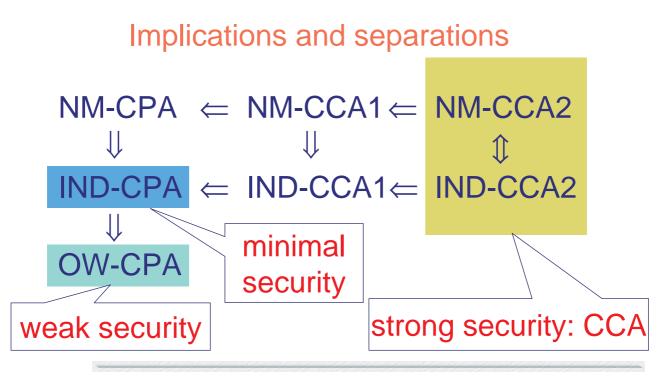
In public-key cryptography setting, the adversary can encrypt any message of his choice, granted the public key

 \Rightarrow the basic attack

Improved Attacks



David Pointcheval



David Pointcheval

Provable Security - Asymmetric Encryption - 29

Asymmetric Encryption

- Formal Security Model
- Examples

RSA Encryption

- *n* = *pq*, product of large primes
- *e*, relatively prime to $\varphi(n) = (p-1)(q-1)$
- *n*, *e* : **public** key
- *d* = *e*⁻¹ mod φ(*n*) : private key

 $\mathbf{E}(m) = m^e \mod n$ $\mathbf{D}(c) = c^d \mod n$

OW-CPA = RSA problem

Nothing to prove = definition

David Pointcheval

Provable Security - Asymmetric Encryption - 31

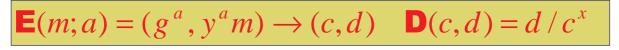
El Gamal Encryption

- $\mathbf{G} = (\langle g \rangle, \times)$ group of order q
- x : private key
- $y=g^x$: public key

$\mathbf{E}(m;a) = (g^{a}, y^{a}m) \rightarrow (c,d) \qquad \mathbf{D}(c,d) = d/c^{x}$

OW-CPA = CDH Assumption IND-CPA = DDH Assumption To be proven to see the restrictions

El Gamal: OW-CPA



 $\operatorname{Succ}^{ow}(\mathbf{A}) = \Pr_{m,r} \left[\mathbf{A}(y,(c,d)) = m | (c,d) = \mathbf{E}(m;a) \right]$

B is given as input $\mathbf{G} = (\langle g \rangle, \times)$ and (A, B)

- $y \leftarrow A$ and $c \leftarrow B$
- choose a random value $d : A(y,(c,d)) \rightarrow m$
- output *d/m*

If *m* is correct, DH(A,B)=d/m

 $\operatorname{Succ}^{\operatorname{cdh}}(\mathsf{B}) = \operatorname{Succ}^{\operatorname{ow}}(\mathsf{A})$

David Pointcheval

Provable Security - Asymmetric Encryption - 33

El Gamal: IND-CPA

Adv^{*ind*} (**A**)=2 Pr_{*a,b*}
$$\left[A_{2}(m_{0}, m_{1}, (c, d), s) = b \middle| \begin{array}{c} (m_{0}, m_{1}, s) \leftarrow A_{1}(y) \\ (c, d) \leftarrow E(m_{b}; a) \end{array} \right] - 1$$

B is given as input **G** = ($\langle g \rangle$, ×) and (*A*, *B*, *C*)

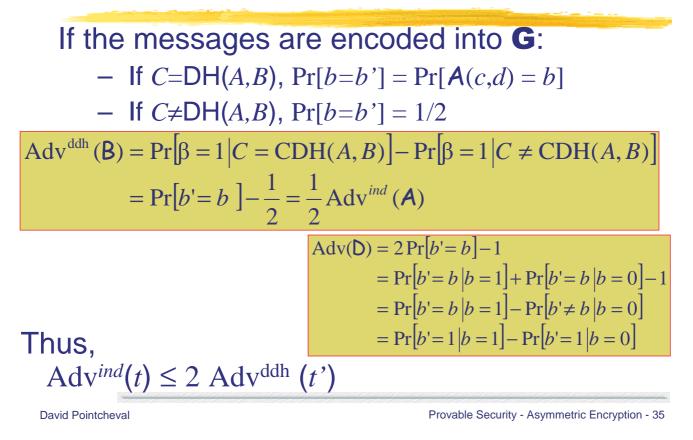
- $y \leftarrow A \text{ and } c \leftarrow B: A_1(y) \rightarrow (m_0, m_1)$
- $b \in \{0,1\}$ and $d \leftarrow C m_b$: $A_2(c,d) \rightarrow b'$

• output
$$\beta = (b=b')$$

Let us assume that $m_0, m_1 \in \mathbf{G}$:

- If C=DH(A,B), Pr[b=b'] = Pr[A(c,d) = b]
- If $C \neq DH(A,B)$, Pr[b=b'] = 1/2

El Gamal: IND-CPA (Cnt'd)



Summary

- 1. Introduction
- 2. Computational Assumptions
- 3. Security Proofs
- 4. Asymmetric Encryption
- 5. New Assumptions
- 6. An Example

Strong Security Notions

It is very difficult to reach CCA security Maybe possible, but with inefficient schemes Inefficient schemes are unuseful in practice:

> Everybody wants security, but only if it is transparent

David Pointcheval

Provable Security - Asymmetric Encryption - 37

Ideal Models

 \Rightarrow one makes some ideal assumptions:

 ideal random hash function: random oracle model

 ideal symmetric encryption: ideal cipher model

 ideal group: generic model (generic adversaries)

The Random Oracle Model

- Introduced by Bellare-Rogaway ACM-CCS '93
- The most admitted model
- It consists in considering some functions as perfectly random functions, or replacing them by random oracles:
 - each new query is returned a random answer
 - a same query asked twice receives twice the same answer

David Pointcheval

Provable Security - Asymmetric Encryption - 39

Modeling a Random Oracle

- A usual way to model a random oracle *H* is to maintain a list Λ_H which contains all the query-answers (*x*, ρ):
- Λ_H is initially set to an empty list
- A query *x* to *H* is answered the following way
 - if for some ρ , $(x,\rho) \in \Lambda_H$, ρ is returned
 - otherwise,

s a random ρ is drawn from the appropriate range $s(x,\rho)$ is appended to Λ_H s ρ is returned

Summary

- 1. Introduction
- 2. Asymmetric Cryptography
- **3.** Computational Assumptions
- 4. Security Proofs
- 5. Encryption and Signature
- 6. New Assumptions
- 7. An Example

David Pointcheval

Provable Security - Asymmetric Encryption - 41

Generic Construction Bellare-Rogaway '93

Let f be a trapdoor one-way permutation then (with $G \rightarrow \{0,1\}^{\ell}$ and $H \rightarrow \{0,1\}^{k}$) $\mathbb{E}(m;r) = f(r) \parallel m \oplus G(r) \parallel H(m,r)$ $\mathbb{D}(a,b,c): r = f^{-1}(a)$ $m = b \oplus G(r)$ c = H(m,r)?

IND-CCA2: Security Proof

Adversary $A = (A_1, A_2)$

- $\mathbf{A}_1(f) \rightarrow (m_0, m_1)$
- One randomly chooses $\beta \in \{0,1\}$ and r, and computes $C = \mathbf{E}(m_{\beta},r) = (a,b,c)$:

$$a = f(r), b = m_{\beta} \oplus G(r), c = H(m_{\beta}, r)$$

• $\mathbf{A}_2(C) \to \beta'$

with permanent access to

- the decryption oracle \mathbf{D}

- the random oracles G and H

 $q_{\mathbf{D}}$ queries

 q_G, q_H queries

David Pointcheval

Provable Security - Asymmetric Encryption - 43

IND-CCA2: Security Proof (2)

Adversary $A = (A_1, A_2)$ - Simulator B

- B(f, y=f(x)): runs $A_1(f) \rightarrow (m_0, m_1)$
- randomly chooses $b \in \{0,1\}^{\ell}$ and $c \in \{0,1\}^{k}$ and outputs $C = \mathbf{E}(m_{\beta},r) = (y,b,c)$

this implicitly defines:

 $r = f^{-1}(y) = x$, $G(r) = m_{\beta} \oplus b$, $H(m_{\beta}, r) = c$

• $A_2(C) \rightarrow \beta'$

IND-CCA2: Simulation (3)

B has to answer oracle queries:
Random oracles *G* and *H*a new query is answered by
a new random value in the proper range

Problem if *G*(*r*) (AskG) or *H*(*m*_β,*r*) (AskH)

Decryption oracle on *C*' = (*a*',*b*',*c*')

one looks up for *c*' = *H*(*m*',*r*')
and checks whether *C*' = **E**(*m*',*r*')

Problem if *H*(*m*',*r*') not asked: rejection of a valid ciphertext (**BadD**), but with probability 2^{-k}

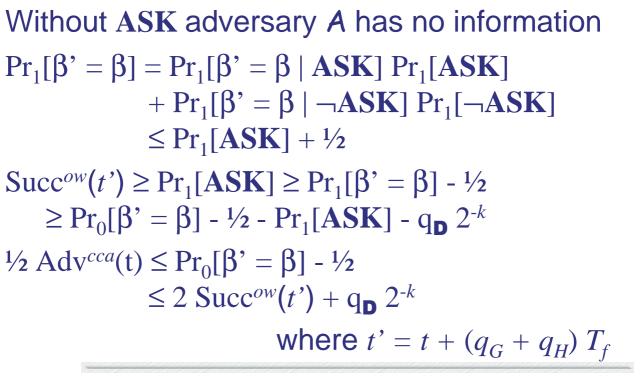
David Pointcheval

Provable Security - Asymmetric Encryption - 45

IND-CCA2: Simulation (4)

Without AskG, AskH or BadD: perfect simulation New event ASK: G(r) or H(*,r) $Pr_0[\beta' = \beta] \le Pr_1[\beta' = \beta]$ $+ Pr_1[AskG \lor AskH] + Pr_1[BadD]$ $\le Pr_1[\beta' = \beta] + Pr_1[ASK] + q_D 2^{-k}$

IND-CCA2: Extraction (5)



Provable Security - Asymmetric Encryption - 47

IND-CCA2: Result (6)

$$\operatorname{Adv}^{cca}(t) \le 4\operatorname{Succ}_{f}^{ow}(t + (q_G + q_H)T_f) + \frac{2q_{\mathbf{D}}}{2^k}$$

If the parameters are properly chosen so that *f* is indeed hard to invert, the encryption scheme is semantically secure against any CCA-adversary, in the random oracle model

David Pointcheval