Efficient Private Disjointness Testing

David Pointcheval ENS - CNRS - INRIA

CANS 2016 - Milan, Italy - November 15th, 2016

The Cloud

David Pointcheval

Introduction

2 / 30

Access from Anywhere

Available for Everything

One can

- Store documents, photos, etc
- Share them with colleagues, friends, family
- Process the data
- Ask queries on the data

With Current Solutions

But.

The Cloud provider

- knows the content
- and claims to actually
 - identify users and apply access rights
 - safely store the data
 - securely process the data
 - protect privacy

For economical reasons, by accident, or attacks

- data can get deleted
- any user can access the data
- one can log
 - all the connected users
 - all the queries

to analyze and sell/negotiate the information

David Pointcheval

Introduction

David Pointcheval

Introduction

6 / 30

Requirements

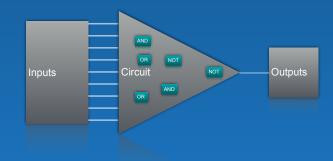
Users need more

- Storage guarantees
- Privacy guarantees
 - **confidentiality** of the data
 - **anonymity** of the users
 - obliviousness of the queries

How to process users' queries?

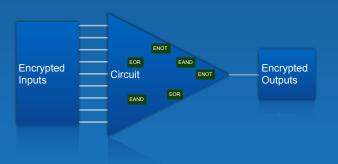
FHE: The Killer Tool

Fully Homomorphic Encryption allows to process encrypted data, and get the encrypted output

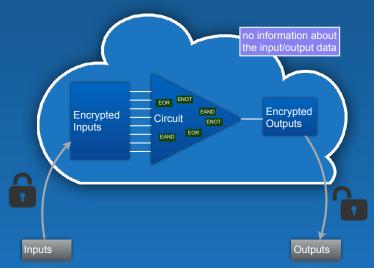


FHE: The Killer Tool

Fully Homomorphic Encryption allows to process encrypted data, and get the encrypted output



Outsourced Processing



Symmetric encryption (secret key) is enough

David Pointcheval

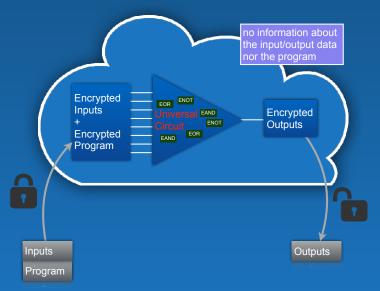
Some Approaches

David Pointcheval

Some Approaches

9 / 30

Strong Privacy



FHE: Ideal Solution?

- Allows private storage
- Allows private computations
 - Private queries in an encrypted database
 - Private « googling »
- The provider does not learn
 - the content
 - the gueries

Privacy by design...

- the answers
- ... But each gate requires huge computations...

Confidentiality & Sharing

Encryption allows to protect data

- the provider stores them without knowing them
- nobody can access them either, except the owner

How to share them with friends?

- Specific people have full access to some data: with public-key encryption for multiple recipients
- Specific people have partial access such as statistics or aggregation of the data

Broadcast Encryption

The sender can select the target group of receivers

This allows to control who will access to the data

David Pointcheval

Some Approaches

David Pointcheval

Some Approaches

13/30

Functional Encryption

The user generates sub-keys K_{ν} according to the input ν

- From $C = \mathbf{Encrypt}(x)$, $\mathbf{Decrypt}(K_{v}, C)$ outputs f(x, y)
- This allows to control the amount of shared data

Outline

- Broadcast Encryption
 - Efficient solutions for sharing data
- Functional Encryption
 - Some recent efficient solutions for inner product
- Fully Homomorphic Encryption
 - Despite recent improvements, this is still inefficient

With 2-party computation one can get an efficient alternative

Multi-Party Computation

- Secure Multi-Party Computation
 - Ideally: each party gives its input and just learns its output for any ideal functionality

Multi-Party Computation

- Secure Multi-Party Computation
 - Ideally: each party gives its input and just learns its output for any ideal functionality
 - In practice: many interactions between the parties

Latency too high over the Internet.....

David Pointcheval

MPC

David Pointcheval

MPC

17/30

Two-Party Computation

$$z = f(x, y)$$

- General construction: Yao Garbled Circuits
- For specific construction: quite inefficient

$$f(x,y) = (x+y)^e \bmod n$$

Encryption Switching Protocols

$$f(x,y) = (x+y)^e \bmod n$$

With additive encryption E⁺, multiplication encryption E^x, for which Alice and Bob share the decryption keys, and an interactive **switch** from c^+ to c^x :

- \bigcirc Alices sends c^{+}_{A} = $E^{+}(x)$, and Bob sends c^{+}_{B} = $E^{+}(y)$
- **⊚** They compute $c = c^{+}A \oplus c^{+}B = E^{+}(x+y)$
- \bigcirc They run the **interactive switch** to get $c' = E^{x}(x+y)$
- \bigcirc They compute $\mathbb{C} = \otimes^e c' = \mathbb{E}^{\mathsf{x}}((x+y)^e)$
- They run the interactive decryption to gets z

Homomorphic Encryption

Additive encryption on \mathbb{Z}_n : Paillier encryption

Public key: $n = \overline{pq}$

 $d = [\lambda^{-1} \bmod n] \times \lambda$ Secret key:

 $c = (1+n)^m \cdot r^n \bmod n^2$ Encryption:

 $\overline{m}=\overline{[c^d-1 \ \mathsf{mod} \ n^2]/n}$ Decryption:

- Additively homomorphic
- Efficient interactive decryption

Homomorphic Encryption

Multiplicative encryption on G: ElGamal encryption

Secret key: $x \in \mathbb{Z}_n$ Public key: $h = q^x$

Encryption: $c = (c_0 = g^r, c_1 = h^r \cdot m)$

Decryption: $m = c_1/c_0^x$

- Multiplicatively homomorphic
- Efficient interactive decryption

If n = pq, with safe primes p = 2p' + 1 and q = 2q' + 1Works for $\mathbb{G}=\mathsf{QR}_n$, under the DDH in $\mathbb{Z}_{p'}^*$ and $\mathbb{Z}_{q'}^*$ Works for $\mathbb{G} = \mathbb{J}_n$, under the additional QR assumption

But does not work in \mathbb{Z}_n^* ...

David Pointcheval

2-PC

David Pointcheval

2-PC

21/30

Encoding of Messages

Multiplicative encryption on \mathbb{Z}_n^* : by encoding $m \in \mathbb{Z}_n^*$ into \mathbb{J}_n

generator g of \mathbb{J}_n of order λ For n = pq,

 $\chi \in \mathbb{Z}_n^* \backslash \mathbb{J}_n$, using the CRT:

 $\overline{\chi = g^{t_p} \text{ mod } p}$, for an even $\overline{t_p}$: $\chi \in QR_p$ $\chi = g^{t_q} \mod q$, for an odd t_p : $\chi \notin QR_q$

hence $\chi \in \mathbb{Z}_n^* \backslash \mathbb{J}_n$

For $m \in \mathbb{Z}_n^*$, $a \in_R \{1, \dots, n/2\}$, so that $\chi^a \cdot m \in \mathbb{J}_n$

 $m_1 = g^a \mod n$ and $m_2 = \chi^a \cdot m$

From m_1 , one gets $\alpha = \chi^a \mod n$ using the CRT:

 $lpha=m_1^{t_p} mod p$ and $lpha=m_1^{t_q} mod q$

one gets $m = m_2/\alpha \mod n$ From m_2 ,

Homomorphic Encryption

Multiplicative encryption on \mathbb{Z}_n^* : for n = pq

Secret key: $x, t_p, t_q \in \mathbb{Z}_{\lambda}$

Public key: $\chi \in \mathbb{Z}_n^* \backslash \mathbb{J}_n$, $\mathbb{J}_n = \langle g \rangle$, $h = g^x$ (ElGamal in \mathbb{J}_n)

Encryption: encode m into $(m_1 = g^a, m_2 = \chi^a \cdot m) \in \mathbb{J}_n^2$

encrypt m_2 under h, to get (c_0, c_1)

the ciphertext is $C = (c_0, c_1, m_1)$

Decryption: decrypt (c_0, c_1) using x, to get m_2

convert $m_1 = q^a$ into $\alpha = \chi^a$ using the CRT

get $m = m_2/\alpha \mod n$

- Multiplicatively homomorphic
- Efficient interactive decryption
- Efficient encryption switching protocols with the Paillier encryption

Two-Party Computation?

The two homomorphic encryption schemes together with the encryption switching protocols:

- Efficient two-party computation
- But in the intersection of the plaintext spaces!

$$\mathbb{Z}_n \cap \mathbb{Z}_n^* = \mathbb{Z}_n^*$$

- Cannot deal with zero!
- But cannot avoid zero either during computations!

How to Handle Zero?

In order to multiplicatively encrypt $m \in \mathbb{Z}_n$:

One defines b=1 if m=0, and b=0 otherwise

One encrypts $A = m + b \mod n$

 $B=T^b \mod n$ for a random square TOne encrypts

One can note that

 $A \in \mathbb{Z}_{p}^{*}$, unless m is a non-trivial multiple of p or q $B \in QR_n$

⇒ they can both be encrypted with appropriate ElGamal-like encryption

- Multiplicatively homomorphic: 0 is absorbing in B
- **Encrypted Zero Test** protocols: $E^+(m) \to E^+(b)$

David Pointcheval

2-PC

David Pointcheval

2-PC

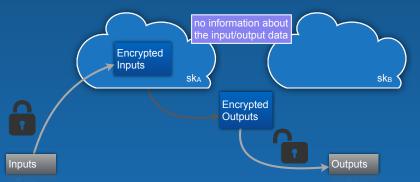
25/30

Set Disjointness Testing

Alice's friends: $\mathbf{A} = \{a_1, \dots, a_m\}$ Bob's friends: $\mathbf{B} = \{b_1, \dots, b_n\}$ $A \cap B = \emptyset$?

- \bigcirc Alice computes $P(X) = \prod_i (X a_i) = \sum_i A_i X^i$, and **sends** $C_i = E^+(A_i)$
- \bigcirc Bob computes $B_i = E^+(P(b_i)) = \sum_i b_i^i C_i$
- \bigcirc They **switch** to B'_i = E×(P(b_i))
- \bigcirc They compute $C' = E^{\times}(\prod_i P(b_i)) = \prod_i B_i'$
- \bigcirc They **decrypt** C' \rightarrow c = $\prod_i P(b_i) = \prod_i \prod_i (b_i a_i)$ $c = 0 \Leftrightarrow A \cap B \neq \emptyset$

Outsourced Computations



- \bigcirc The user possesses n=pq
- The user gives the shares to 2 independent servers **Interactive Fully Homomorphic Encryption**

Homomorphic Encryption

Additive encryption on \mathbb{Z}_n : BCP encryption

Parameters: n=pq and a square $q\in\mathbb{Z}_{n^2}^*$

Secret key: $x \in \mathbb{Z}_{n\lambda(n)}$

Public key: $h = q^x \mod n^2$

 $c_0 = g^r \mod n^2$, for $n \in [1..n^2/2]$ Encryption:

 $c_1 = h^r(1 + mn) \bmod n^2$

 $m = [c_1/c_0^x - 1 \bmod n^2]/n$ Decryption:

Alternatively: with $\lambda(n) \rightarrow x_0 = x \mod n$

(where $x = x_0 + nx_1$)

 $c_1/c_0^{x_0} = g^{(x-x_0)r} \cdot (1+mn) = (g^{rx_1})^n \cdot (1+mn)$

 $= u^n \cdot (1+n)^m \mod n^2$

Multi-User Setting

- The two independent servers share the Paillier's secret key for n=pq and setup a BCP scheme
- The servers can convert BCP ciphertexts into Paillier ciphertexts, and run the 2-party protocol
- The servers can convert a Paillier ciphertext into a BCP ciphertext for a specific user
 - ⇒ Secure efficient outsourced computations

More servers can be used: unless all the servers corrupted, privacy guaranteed

David Pointcheval

Advanced 2-PC

David Pointcheval

Advanced 2-PC

29/30

Conclusion

Threat

However strong the trustfulness of the Cloud provider may be, any system or human vulnerability can be exploited against privacy

Privacy by design

Tools to limit data access

- The provider is just trusted to
 - store the data (can be controlled)
 - process and answer any request (or DoS)

