Efficient Receipt-Freeness for e-Voting

David Pointcheval
Joint work with Olivier Blazy, Georg Fuchsbauer and Damien Vergnaud

Ecole normale supérieure, CNRS & INRIA

Bl inRiA

Chinacrypt — Beijing — China
October 17th, 2010

Introduction

Outline

@ Introduction
@ Electronic Voting
@ Homomorphic Encryption

David Dalntohausl _ 3/8%

@ ntroduction
° Cryptographic Tools
e Electronic Voting: State-of-the-Art

o Signatures on Randomizable Ciphertexts

Introduction
o

Electronic Voting

Dessert Choice

If one wants to get preferences for the desserts,
one asks people to vote for

0 Chocolate Cake
O Cheese Cake
O lce Cream

O Apple

with e.g., possibly 2 choices
After collection of the ballots, one counts the number of choices:

Chocolate Cake 243 1 Chocolate Cake
Cheese Cake 111 2 Ice Cream

Ice Cream 167 - 3 Cheese Cake
Apple 52 4 Apple

Pk Bolndahaval _ 443

Introduction
oe:

Electronic Voting

Electronic Voting: Basic Properties

Authentication
@ Only people authorized to vote should be able to vote
@ Voters should vote only once

@ Votes and voters should be unlinkable

Main Approaches
@ Blind Signatures

@ Homomorphic Encryption + the most promising

Introduction
000
Homomorphic Encryption

General Approach: Homomorphic Encryption

@ uniqueness per voter: the voter signs his vote
@ anonymity: the voter encrypts his vote

Universal Verifiability
Soundness: every step can be proven and publicly checked
@ identity of voter: proof of identity = signature

@ validity of the vote: proof of bit encryption + more

@ decryption: proof of decryption

All the steps (voting + counting) can be checked afterwards
Helios is from this family: the IACR e-voting process

David Dalntohausl — 7183

Introduction
00

Homomorphic Encryption

General Approach: Homomorphic Encryption

Homomorphic Encryption & Signature

@ The voter generates his vote v € {0, 1} (for each [J)
@ The voter encrypts v to the server
@ The voter signs his vote

— c=Ex(vir)
— 0 =Suk(C;)
Such a pair (¢, 0) is a ballot
@ unique per voter, because it is signed by the voter
@ anonymous, because the vote is encrypted
Counting: granted homomorphic encryption, anybody can compute

C=[Tc=TTemvin) =Ex(>vii Y 1) = Ea(Vi R)

The server decrypts the tally V = Dg(C), and proves it

Introduction
coe
Homomarphic Encryption

General Approach: Homomorphic Encryption

Weaknesses
@ Anonymity: the server can decrypt any individual vote
— use of distributed decryption (threshold decryption)
@ Receipt: if a voter wants to sell his vote, r; is a proof
(a coercer can also provide a modified voting client system
in order to generate a receipt or even receive it directly)
— re-randomization of the ciphertext

Distributed decryption is easy (EIGamal, Linear, etc),
while re-randomization of the ciphertext requires more work!

Receipt-Freeness

Our goal is to prevent receipts
— receipt-free electronic system

Pl Blndakhavsl _ #43

Cryptographic Tools

Outline

Cryptographic Tools
.

Computational Assumptions.

9 Cryptographic Tools
@ Computational Assumptions
@ Signature & Encryption
@ Security
@ Groth-Sahai Methodology

Cryptographic Tools.
oe:

Computational Assumptions

Assumptions: Linear Problem

Assumptions: Diffie-Hellman

G a cyclic group of prime order p.

The CDH assumption |n G states:
for any generator g <~G and any scalars a, b& z,
given (g, 92, g?), it is hard to compute g2°.

Definition (The Decisional Diffie-Hellman problem (DDH))
G a cyclic group of prime order p.
The DDH assumption |n G states:
for any generator g & G, and any scalars a, b, c&z; s
given (g, g%, g%, g°), it is hard to decide whether ¢ = ab or not.

In some pairing-friendly groups, the latter assumption is wrong.

Cryptographic Tools.
-

Signature & Encryption

Definition (Decision Linear Assumption (DLin))
G a cyclic group of prime order p.
The DLin assumption s!ales
for any generator ge G, and any scalars a, b, x, y, cé z,
given (¢.9%,9”, 9% ¢"°,¢°).

itis hard to decide whether ¢ = a+ b or not.

Equivalently, given a reference triple (u = g*,v =g9".9)
and a new triple (U = u? = g"@, V = vb = g/ T = g°),
decide whether T = g2 or not (that is ¢ = a+ b).

David Bolniahaal _ 11788

General Tools: Signature

Definition (Signature Scheme)
S = (Setup, SKeyGen, Sign, Verif):
@ Setup(1¥) — global parameters param;

@ SKeyGen(param) — pair of keys (sk, vk);

@ Sign(sk,m;s) — signature o, using the random coins s;
@ Verif(vk,m,s) — validity of o

If one signs F = F(M), for any function F, one extends the above
definitions: Sign(sk, (F, F,Muy); s) and Verif(vk, (F, F,My), o) where
F details the function that is applied to the message M yielding F,
and MMy is a proof of knowledge of a preimage of F under F.

[y

Cryptographic Tools

Signature & Encryption

Cryptographic Tools

Signature & Encryption

Signature: Example

In a group G of order p, with a generator g,
and a bilinearmap e: G x G — Gr
Waters Signature [Wa
For a message M = (M, ..., M) € {0,1}%,
we define F(M) = uo [T, uM, where i = (uo. ..., ug) & GF+1,
For an additional generator h < G.
o SKeyGen: vk= X = g¥, sk=Y = %, for x & Z;
@ Sign(sk=Y,M;s), for M € {0,1}* and S&Zp
- o= (171 =Y. F(M)s 02 :g’s);
@ Verif(vk = X, M, o = (01,02)) checks whether
(g, 1) - (F(M), 02) = (X, h).

General Tools: Encryption

& = (Setup, EKeyGen, Encrypt, Decrypt):
o Setup(1¥) — global parameters param;
@ EKeyGen(param) — pair of keys (pk, dk);
@ Encrypt(pk,m;r) — ciphertext c, using the random coins r;
@ Decrypt(dk,c) — plaintext, or L if the ciphertext is invalid.

For some group laws: & on the plaintext, @ on the ciphertext,

and © on the randomness

Encrypt(pk, my; ry)® Encrypt(pk, my; r.) = Encrypt(pk, my&my; i ©rp)
Decrypt(sk, Encrypt(pk, my; ry) @ Encrypt(pk, ma; r2)) = my & mp

Cryptographic Tools.

Signature & Encryption

Cryptographic Tools.
s

Security

Encryption: Example

In a group G of order p, with a generator g:

Linear Encryption

[Boneh, Boyen, Shacham, 2004]
@ EKeyGen: dk = (X1, x2) @Z%, pk=(Xg = g, Xo = g*);
@ Encrypt(pk = (X1, X2), m; (r1, r2)), for m € G and (ry., r2) éZ%
= c=(cr=X",co= X2, cs=9"""%-m);
= (c1,¢2,3))

@ Decrypt(dk = (1, X2), ¢ > m=ocs/c}/ My,

Homomorphism

(&M = x,®¢ = X, ®r = +)-homomorphism
Withm=g" — (®u=+,®c = x,®r = -+)-homomorphism

David Bolniohasal _ 1888

Security Notions: Signature

Signature: EF-CMA
Existential Unforgeability
under Chosen-Message
Attacks

An adversary should not be
able to generate a new valid
message-signature pair
even if it is allowed to ask
signatures on any message
of its choice

(m’, 6)=

to forge signatures
Waters signature reaches EF-CMA under the CDH assumption

Dot Bolndakhaal _ 1884

Cryptographic Tools
34

Security

Security Notions: Encryption

Encryption: IND-CCA
Indistinguishability under
Chosen-Plaintext Attacks
An adversary that chooses
two messages, and receives
the encryption of one of
them, should not be able to
decide which one has been
encrypted

be(01} ke Gk

rrandom

Groth-Sahai Methodology

Cryptographic Tools

Groth-Sahai Methodology

Groth-Sahai Commitments

Under the DLin assumption, the commitment key is:

(u1 = (t11,1,9), U2 = (1,U22,9), U3 = (Us 1, Us 2, Ua3)) € (G°)°

Initialization

—wout = Y oyt — oM
U = U3 O U = (Uzg = Ujq,Us2 = Uy, Usg =g ")

with A, p & Zj, and random elements uy 1, Uz 2 &g

It means that us is a linear tuple w.r.t. (us 1, Uz 2, 9)-

Groth-Sahai Methodology

Groth-Sahai Commitments

To commit a group element X € G,
one chooses random coins sy, Sp, 83 € Zp and sets
C(X):=(1,1.X)ouf ©ouF ou

— St Sa S2 S3 S1+8; S3
= (Urly - U3y, Up - Ugp, X - 971 - Ugy).

Scalar Commitment
To commit a scalar x € Zp,
one chooses random coins 4,72 € Zp and sets
C'(x) == (U1, U3, (Us39)") © U] © U
— +72 1
= (U7,

R T o I
Uz Ugg™ - g).

David Bolniohasal _ 10/8%

Groth-Sahai Proofs

@ If ug a linear tuple, these commitments are perfectly binding

@ With the initialization parameters, the committed values can even
be extracted — extractable commitments

@ Using pairing product equations, one can make proofs
on many relations between scalars and group elements:

1T e, %) T e(vi. B)*] e(Xi, i) = t,
i i ij
where the A;, B;, and t are constant group elements,
aj, B, and v;; are constant scalars,
and X; and Y; are either group elements in G4 and Gy,
or of the form gf’ or gzy', respectively, to be committed.
@ The proofs are perfectly sound

Dt Bolndakaal _ MY

Cryptographic Tools

Groth-Sahai Methodology

Groth-Sahai Proofs

State-of-the-Art

Outline

@ If uz a linear tuple, these commitments are perfectly binding
@ The proofs are perfectly sound

@ If ug is a random tuple, the commitments are perfectly hiding
@ The proofs are perfectly witness hiding

@ Under the DLin assumption, with a correct initialization,
proofs are witness hiding

Can be used for any Pairing Product Equation
If one re-randomizes the commitments, the proof can be adapted

State-of-the-Art

General Process.

Dessert Choice

A ballot consists of one or two crosses in

0 Chocolate Cake
0O Cheese Cake
0O Ice Cream

O Apple

Each box is thus expressed as a bit: v; € {0,1}, fori =1,2,3,4
With the additional constraint (at most 2 choices): }~; v; € {0, 1,2}

In the following, we focus on one box only:
@ V;is the i-th voter
@ v; is the value of the box for this voter: 0 or 1

David Bolniahasal _ 2%/8%

e Electronic Voting: State-of-the-Art
@ General Process
@ Receipt-Freeness

State-of-the-Art

General Process.

Voting Procedure

Cryptographic Primitives
@ Signature S = (Setup, SKeyGen, Sign, Verif)
that is EF-CMA, e.g., Waters Signature;
@ Homomorphic enc. £ = (Setup, EKeyGen, Encrypt, Decrypt)
that is IND-CPA, e.g., EIGamal or Linear Encryption

+ distributed decryption, as Linear Encryption scheme allows

@ The authority owns a signing/verification key-pair (sk, vk)

@ The ballot-box owns an encryption key pk, which decryption
capability is distributed among the board members

@ Each voter V; owns a signing/verification key-pair (usk;, uvk;)

[

‘State-of-the-Art State-of-the-Art

General Process. General Process

Voting Procedure Counting Procedure

Voting Phase
Voter V; Server S
¢; = Encrypt(pk, vi; ;)

o; = Sign(usk;, c;; s;)

Counting Phase
@ Anybody can check all the votes (cj, o7, M¢)
@ Anybody can compute

M = Proof of c o C=Tlci=TT&mxvir) = k> vii 3 1) = Ekl(Vi R)
bit encryption e
X; _ @ . @ The board members decrypt C in a distributed
«———— ;= Sign(sk, c;; sj) and verifiable way, into V
@ from (7, M): authorization and uniqueness of a voter Everything is verifiable: universal verifiability

@ from ¢;: privacy for the voter
because distributed decryption of the tally only
@ with X;: a voter can complain if his vote is not in the ballot-box

To sell his vote, the voter reveals his random coins r; as a receipt
Receipt-freeness: the voter should not know the random coins r;!

State-of-the-Art State-of-the-Art
oy ce
Receipt-Freeness Receipt-Freeness.

Re-Randomization Security

Re-Randomization

Voting Phase

Voter V; Server S @ re-randomization: the voter no longer knows the random coins
¢; = Encrypt(pk. vi; ;) @ designated-verifier proof:
MNc = Proof of o.M voter convinced and non-transferable proof
bit encryption Ry
: o & The initial proof I can be verified on ¢ by the server only
«——————— ¢} = Random(c;; r) To get universal verifiability, the proof should be adapted
Proof(c] = ¢;) Possible with Groth-Sahai methodology
i = Sign(usk;, ¢; s;) 9 Weakness: interactions

P R ¥ = Sign(sk, ci; s})

Non-transferable proof of ¢/ = ¢;: verifier-designated proof Non-lnleractie Recipt-Freness
Proof of knowledge of [r/ such that ¢; = Random(c;, r{)] or [uski] Our goal: non-interactive receipt-freeness

David Bolniahasal _ 2788 Pt Brlndakanal _ 983

Interactive proof: 2-round voting (at best!)

Signatures on Ciphertexts.

Outline

° Signatures on Randomizable Ciphertexts
@ Our Full Primitive
@ Example
@ Security Notions

Signatures on Ciphertexts
oe:

Our Full Primitive

Signatures on Randomizable Ciphertexts

Random; .
E"f”:m[© _ Randomizable
Pr .
P ———— \Encryption
P ————

Malleable
w2 : P Signature on
£18 €5 Randomizable

#|° Encryption
GCE==C)}
L/

David Boleiohasal _ 31/8%

Signatures on Ciphertexts.
o

Our Full Primitive

Signatures on Randomizable Ciphertexts

Voting Phase

Voter V;
= Encrypt(pk, v;; r;)
= Sign(usk, ci; s;)
M¢ = Proof of

Server S

. . cj, o, N
bit encryption = ——""C—— (¢l,0), 1) =
Random(c;, o, Ng; r!)
c,n., s .
e ¥ = Sign(sk. (¢}, M); s})

The server not only adapts the proof, but the signature too!
o from (o, M¢): authorization and uniqueness of a voter
e from c;: privacy for the voter
@ from Random: receipt-freeness (unknown random coins r; + r{)

Signatures on Ciphertexts
.

Example

Linear Encryption

In a group G of order p, with a generator g,
and a bilinearmap e: G x G — Gr

[Boneh, Boyen, Shacham, 2004]
(x1, %) & 72, pk = (X; = g¥1, Xp = g*2);
i (r1,12)), for me G and (1, 12) @Zf,

Linear Encryption
@ EKeyGen: dk =

o Encrypt(pk = (X1, X2), m;
S5 c= (01 :XF,E‘Q:X;,CG :g’w+rz_m).
o Decrypt(dk = (x1,%),c = (c1,C2,c3) — m=cs/c]"cy/.

Re-Randomization
@ Randomg(pk = (X1, X2),¢ = (¢4, Ca, cs) ri, r3)), for (r{, rz)
- d=(¢=c- X‘ ch=10Cp- X2,03,c3 gite).

$ 2
& Zy

[y P

Signatures on Ciphertexts.

Example

Waters Signature

In a group G of order p, with a generator g,
and a bilinearmap e: G x G — Gr

[Waters, 2005]

Waters Signature
For a message M = (M., My) € {0,1}%,
we define F = F(M) = ug 1‘[,.,g uM, where T = (up, ..., Ug)
For an additional generator h< G.

@ SKeyGen: vk= X = g%, sk=Y = h*, for X{—Zp,

@ Sign(sk=Y,F;s),for M € {0, 1}k, F = F(M), and seZ,J

— o= ((71 =Y. Fs, dzfg’s),
@ Verif(vk = X, M, o = (c1,02)) checks whether
e(g,01) - e(F,02) = e(X, h).

&Gk,

Signatures on Ciphertexts

Example

Re-Randomization of Ciphertext

G=gtF)
0= (6. X7 %))

c=(cr =X,
o=(o1=Y c3,

C = Xg2,
02 = (¢f.63),

after re-randomization by (r{,)

d=(c\=cr-X, = X7, h=c-gtte)
ey r I
o' = (0} = 0105 %, 05 = (020 031,021 0F), 05 =03)

Anybody can publicly re-randomize c into ¢’
with additional random coins (r{, r3),
and adapt the signature o of ¢ into o’ of ¢/

Bavid Bolniohasal _ 3%/8%

Signatures on Ciphertexts.

Example

Waters Signature on a Linear Ciphertext: Idea

We define F = F(M) = ug [[%; uM, and encrypt it

,(7X"\ Qfxz’zvcsfgﬁ+f2 F)
vk X =g sk Y =h, forerp
= (x1,%2) & 22, pk = (X; = g°, Xo = g°)

o Sign((Xy, Xg)‘ Y.c;s), forc = (cy, o, C3)
= o=(n=Y c.o2=(c},c5).05 = (9° X}, X3))

o Verif((Xy,X2), X, c,o) checks e(g,01) = e(X, h) - e(03,0.C3)
(020, 9) = e(¢r,03,0) e(2,1,9) = (Cz.73,0)
e(03,1,9) = (X1, 030) 8(032.9) = (X2, 030)

o KeyGen:

o3 is needed for ciphertext re-randomization

Signatures on Ciphertexts

Security Notions

Unforgeability under Chosen-Ciphertext Attacks

Chosen-Ciphertext Attacks
The adversary is allowed to ask any valid ciphertext of his choice
to the signing oracle

Because of the re-randomizability of the ciphertext-signature,
we cannot expect resistance to existential forgeries,
but we should allow a restricted malleability only:

A valid ciphertext-signature pair, so that the plaintext is different
from all the plaintexts in the ciphertexts sent to the signing oracle

Dot Bolndakaal _ S84

Signatures on Ciphertexts.

Security Notions

Unforgeability

Signatures on Ciphertexts.

Security Notions

Chosen-Message Attacks

From a valid ciphertext-signature pair:

c=(c1=X{",co= Xz, c3=9"""%F)
o= (01=Y 5,02 =(cf.c3).03 =(g° X{. X3))

and the decryption key (xi, x2), one extracts

F= ca/(c) ey ™)
= 51 = o1 /(o) o3). Yo =030)
=(—Y.FS)

Security of Waters signature is for a pair (M, x)
— needs of a proof of knowledge My of Min F = F(M)
bit-by-bit commitment of M and Groth-Sahai proof

Signatures on Ciphertexts

Security Notions

Security

Chosen-Ciphertext Attacks
A valid ciphertext C = (¢1, ¢, c3, My, M) is @
@ ciphertext ¢ = (¢4, ¢z, C3)
@ a proof of knowledge My, of the plaintext M in F = F(M)
@ a proof of knowledge [, of the random coins ry, r>
From such a ciphertext and the decryption key (x1, X2),
and a Waters signing oracle, one can generate a signature on C

From a valid ciphertext-signature pair (C.), where C encrypts M,
one can generate a Waters signature on M

David Bolniahasal _ 32/8%

From a valid ciphertext ¢ = (¢t = X{",co = X2, ¢3 = g" "2 - F),

and the additional proof of knowledge of M,

one extracts M and asks for a Waters signature:
L= (5=Y-F,5 =g

In this signature, the random coins s are unknown,

we thus need to know the coins in ¢

— needs of a proof of knowledge M, of ry, 2 in ¢
bit-by-bit commitment of ry, r, and Groth-Sahai proof
From the random coins ry, > (and the decryption key):
o= (o1 =% 5072, oo = (X5, 557), 03 = (L2, 55.52))
=Y. = (. 33), =(0°. . X5)

Signatures on Ciphertexts
Security Notions

Security

@ From the Waters signing oracle,
we answer Chosen-Ciphertext Signing queries

@ From a Forgery, we build a Waters Existential Forgery

Security Level

Since the Waters signature is EF-CMA under the CDH assumption,
our signature on randomizable ciphertext is Unforgeable

against Chosen-Ciphertext Attacks

under the CDH assumption

Dot Bolndakaal _ S0Na3

Signatures on Ciphertexts. Signatures on Ciphertexts.

Security Notions Conclusion

Properties Our New Primitive

Encrypte Randomg

pk,r
Since we use the Groth-Sahai methodology for the proofs My and M, @ e —— @ Pl
@ in case of re-randomization of ¢, one can adapt Iy and I,
@ because of the need of M, but also r; and r; in the simulation,
we need bit-by-bit commitments:

@ M can be short (¢ bit-long)

e ry and rp are random in Z,

— Cislarge!

We can improve efficiency: with a variant of Waters Signature
— shorter signatures: 9¢ + 33 group elements

Randoms

Ravid Poinichoval 4122 David Pointcheval - 42/4:
Signatures on Ciphertexts
oo

Conclusion

Conclusion

Extractable Randomizable Signature on Randomizable Ciphertexts

Various Applications
@ non-interactive receipt-free electronic voting scheme
@ (fair) blind signature
Security relies on the CDH and the DLin assumptions
For an ¢-bit message, ciphertext-signature:
9¢ + 33 group elements

A more efficient variant with asymmetric pairing
on the CDH* and the SXDH assumptions
Ciphertext-signature: 6/ + 15 group elements in G4
and 6/ + 7 group elements in Gy

David Bolniohaal _ av/8%

