Dynamic Threshold Public-Key Encryption

	Cécile Delerablée	David Pointcheval			
	Orange Labs	Ecole normale supérieure			
	CRYPTO 2008 August 20th, 2008				
		< 급 > < 클 > < 클 ><			
ormal Model	Our Co	nstruction	Conclusion		

Threshold Cryptography

When one cannot fully trust a unique person, but possibly a pool of individuals, the secret operation is distributed, so that authorized subsets only can perform it

- signature
- decryption

Threshold Cryptography

The access structure (authorized subsets) is defined by a threshold:

- any group of *t* players can perform the secret operation
- below this threshold, no power is provided to them

Threshold Public-Key Encryption

A ciphertext can be decrypted **only if at least** *t* **users** cooperate. Below this threshold, no additional information about the plaintext is leaked.

Many applications:

- electronic voting (decryption of the final result only)
- key-escrow
- identity-based cryptography (secret key extraction)
- etc

Formal Model

Our Construction

Conclusion

590

æ

<ロ > < 団 > < 団 > < 団 > < 団 > < 団 > <

Classical Technique: ElGamal

 $\mathbb{G}=\langle g
angle$ is a group of prime order p

Lagrange Interpolation (Shamir's Secret Sharing)

- \mathcal{GM} generates a polynomial P of degree t 1 over \mathbb{Z}_p
- each group member $i \in \{1, ..., n\}$ receives $sk_i = P(i)$
- the group public key is $PK = g^{sk}$, where sk = P(0)

t users can recover sk, less than t users have no information.

Threshold ElGamal Encryption

- one can encrypt a message $m \in \mathbb{G}$: $c_1 = g^r, c_2 = \mathsf{PK}^r \times m$
- in order to decrypt, one has to compute $a = PK^r = c_1^{sk}$:
 - each user *i* computes $a_i = c_1^{sk_i}$
 - with *t* values, *a* can be "interpolated".

Limitations

At the key generation phase:

- the target group (or set) is fixed (the public key)
- the threshold *t*, to define the authorized subsets, is fixed
- **Dynamic Threshold Encryption** • any user can dynamically join the system as a future receiver • the sender can *dynamically* choose the target set S• the sender can *dynamically* set the threshold t Related to Threshold broadcast encryption [Daza, Herranz, Morillo, Ràfols - ProvSec '07] Ciphertext linear in O(S)・ロ > ・ 日 > ・ モ > ・ モ > ・ æ SQQ **Our Construction** Formal Model Conclusion **Outline**

Formal Model

3 Conclusion

A Dynamic TPKE Scheme: Encryption/Decryption

Setup(λ). It outputs a set of parameters PARAM = (MK, EK, DK, VK, CK) MK is the master secret key: for adding new users
Join(MK, ID). With MK and the identity ID of a new user, it outputs the user's keys (usk, upk, uvk)
Encrypt (EK, S , t , M). With the target set S (the public keys upk), and the threshold t , it outputs an encryption of the message M
ShareDecrypt(DK, ID, usk, C). With his private key usk, user ID gets his decryption share σ , or \perp
Combine (CK, S, t, C, T, Σ). With an authorized subset T (subset of t targeted users), and $\Sigma = (\sigma_1, \dots, \sigma_t)$ a list of t decryption shares, it outputs a cleartext M, or \bot
◆ <u>一</u>

Formal Model

Our Construction

Conclusion

A Dynamic TPKE Scheme (Cont'd)

Robustness is achieved by **public** verification tools:

ValidateCT(EK, S, t, C). It checks whether C is a valid ciphertext with respect to EK, S and t

ShareVerify(VK, ID, uvk, C, σ). It checks whether σ is a valid decryption share with respect to uvk

KEM-DEM methodology:

- an ephemeral secret key K is first generated (KEM)
- a symmetric mechanism is used to encrypt the data (DEM)

Encrypt(EK, S, t). With the target set S (the public keys upk), and a threshold t, it outputs an ephemeral key K, and the key encapsulation material **HDR**

Security Model

Correctnes	S. Valid encryptions should be correctly checked and decrypted, legitimate decryptions should be correctly verified, and should lead to the plaintext/ephemeral key
Robustnes	 It t shares are correctly checked with ShareVerify, then the Combine algorithm outputs the correct key K
Privacy.	For any header HDR encrypted for a target set S of registered users with a threshold t , any collusion that contains less than t users from this target set cannot learn any information about the ephemeral key K

Formal Model

Our Construction

<ロト < 団ト < 団ト < 団ト

æ

Conclusion

590

Security Model: Privacy

Setup: The challenger runs $Setup(\lambda)$ and the public parameters (EK, DK, VK, CK) are given to the adversary.

Query phase 1: The adversary A adaptively issues queries:

- Join queries (on a new user ID)
- **Corrupt** queries (on an existing user ID) to learn private keys
- ShareDecrypt queries (on an ID and a header HDR) to learn the partial decryption

Challenge: \mathcal{A} outputs a set of users \mathcal{S}^* and a threshold t^* . The challenger randomly selects $b \leftarrow \{0, 1\}$, and gets $(K_0, \mathbf{HDR}^*) = \mathbf{Encrypt}(\mathsf{EK}, \mathcal{S}^*, t^*)$, and randomly chooses an ephemeral key K_1 : it returns (K_b, \mathbf{HDR}^*) to \mathcal{A} .

Query phase 2: as Query phase 1

Guess: The adversary A outputs its guess b' for b

Security Levels

With the natural restrictions on the oracle queries wrt. the target set and the threshold, the advantage of \mathcal{A} is defined as

$$\mathsf{Adv}_{\mathcal{A}}(\lambda) = \left|\mathsf{Pr}[b'=b] - \frac{1}{2}\right|.$$

As usual, $Adv(T, n, m, t, q_C, q_D)$ denotes the maximal value over the adversaries A such that

- it runs within time T
- it makes at most
 - n Join-queries
 - *q_C* Corrupt-queries
 - q_D ShareDecrypt-queries
- the size of \mathcal{S}^{\star} is upper-bounded by m
- the value of t^* is upper-bounded by t.

Formal Model

Our Construction

Conclusion

590

590

3

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト ・

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶

< □ ▶

Security Level: the Basic one

Non-Adaptive Adversary (NAA)

We restrict the adversary to decide before the setup the set S^* and the threshold t^* to be sent to the challenger

Non-Adaptive Corruption (NAC)

We restrict the adversary to decide before the setup the identities that will be corrupted

Chosen-Plaintext Adversary (CPA)

We prevent the adversary from issuing **ShareDecrypt**-queries

(n, m, t, q_C) -IND-NAA-NAC-CPA security

Non-adaptive adversary, non-adaptive corruption, and CPA

Conclusion

Aggregate Tool

Our Combine algorithm makes use of the Aggregate tool

[Delerablée, Paillier, and Pointcheval – Pairing '07]

< ロ > < 団 > < 豆 > < 豆

It allows to compute

$$L = A^{\frac{1}{(\gamma + x_1) \dots (\gamma + x_t)}} \in \mathbb{G}_T$$

given A and $\Sigma = \{(x_j, a_j = A^{\frac{1}{\gamma + x_j}})\}_{j=1}^t$, but γ private, where the x_j 's are pairwise distinct.

Formal Model		
	Formal	Model

Our Construction

Our Construction: Setup

Setup(λ). Given a bilinear setting, $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$, with • generators $g \in \mathbb{G}_1$ and $h \in \mathbb{G}_2$ • $\gamma, \alpha \stackrel{R}{\leftarrow} \mathbb{Z}_p^*$ • $\mathcal{D} = \{d_i\}_{i=1}^{m-1}$ of random values in \mathbb{Z}_p , where *m* is the maximal size of a target set (\mathcal{D} corresponds to a set of public dummy users) • $u = g^{\alpha \cdot \gamma}$ • $v = e(g, h)^{\alpha}$ • The master secret key: MK = (g, γ, α) • The encryption key: EK = $(m, u, v, h^{\alpha}, \{h^{\alpha \cdot \gamma^i}\}_{i=1}^{2m-1}, \mathcal{D})$ • The decryption key: DK = \emptyset • The combining key: CK = $(m, h, \{h^{\gamma^i}\}_{i=1}^{m-2}, \mathcal{D})$

Our Construction: Join/Encrypt

Join(MK, ID). Given MK = (g, γ, α) , and an identity ID, it randomly chooses a **new** $x \in \mathbb{Z}_p$:

upk = x usk = $g^{\frac{1}{\gamma+x}}$

Encrypt(EK, S, t). Given a set $S = \{ upk_1 = x_1, ..., upk_s = x_s \}$ and a threshold t (with $t \le s \le m$), **Encrypt** picks $k \stackrel{R}{\leftarrow} \mathbb{Z}_p^*$, and sets **HDR** = (C_1, C_2) and $K = v^k$: $C_1 = u^{-k}$ $C_2 = h^{k \cdot \alpha \cdot \prod_{x_i \in S} (\gamma + x_i) \cdot \prod_{x \in \mathcal{D}_{m+t-s-1}} (\gamma + x)}$

- a set of m + t s 1 dummy users + a set of *s* authorized users \Rightarrow a polynomial of degree m + t - 1 in the exponent of *h*:
- $m + t 1 \le 2m 1$: can be computed from EK
- the cooperation of *t* authorized users will decrease the degree of the polynomial in *v* to degree *m* − 1: too high degree for CK!

Formal Model Our Construction Conclusion

Our Construction: Decryption

ShareDecrypt(ID, usk, HDR). Given HDR = (C_1, C_2) and usk = $g^{\frac{1}{\gamma+x}}$

$$\sigma = e(\mathsf{usk}, C_2) = v^{\frac{k \cdot \prod_{x_i \in S \cup \mathcal{D}_{m+t-s-1}}(\gamma + x_i)}{\gamma + x}}$$

Combine(CK, **HDR**, T, Σ). Given a set Σ of *t* decryption shares:

$$\mathcal{K} = \left(e\left(C_{1}, h^{p(\gamma)}\right) \cdot \mathsf{Aggregate}(v, \Sigma)\right)^{\frac{1}{c}}$$

• $c = \prod_{x \in S \cup \mathcal{D}_{m+t-s-1} \setminus T} x \in \mathbb{Z}_{p}$
• $p(\gamma) = \frac{1}{\gamma} \cdot \left(\prod_{x \in S \cup \mathcal{D}_{m+t-s-1} \setminus T} (\gamma + x) - c\right),$
a polynomial of degree $m - 2$, computable from CK

Our Construction: Decryption (Cont'd)

$$\begin{split} \mathcal{K}' &= e\left(C_{1}, h^{p(\gamma)}\right) \cdot \mathsf{Aggregate}(v, \Sigma) \\ &= e\left(g^{-k \cdot \gamma}, h^{p(\gamma)}\right) \cdot v^{k \cdot \prod_{x \in \mathcal{S} \cup \mathcal{D}_{m+t-s-1} \setminus \mathcal{T}}(\gamma + x)} \\ &= v^{-k \cdot \gamma \cdot p(\gamma)} \cdot v^{k \cdot (\gamma \cdot p(\gamma) + c)} \\ &= v^{k \cdot c} = \mathcal{K}^{c}. \end{split}$$

ValidateCT(EK, S, t, HDR). Given HDR = (C_1 , C_2)

$$C_1' = u^{-1}$$
 $C_2' = h^{\alpha \cdot \prod_{x \in \mathcal{S} \cup \mathcal{D}_{m+t-s-1}}(\gamma + x)}$

HDR = (C_1 , C_2) is valid with respect to S if and only if there exists a scalar k such that $C_1 = C'_1{}^k$ and $C_2 = C'_2{}^k$:

$$e(C_1,C_2) \stackrel{?}{=} e(C_1',C_2)$$

Formal Model

Our Construction

Conclusion

590

000

э.

< ⊒ >

Our Construction: Security Result

Theorem

$$Adv(T, n, m, t, \ell, 0) \leq 2 \cdot Adv^{\mathsf{mse-ddh}}(T', \ell, m, t).$$

(ℓ, m, t) -Multi-Sequence of Exponents DDH

Let *f* and *g* be two random coprime polynomials, of respective orders ℓ and *m*, with pairwise distinct roots x_1, \ldots, x_ℓ and y_1, \ldots, y_m respectively, as well as

 $\begin{array}{ll} x_1, \dots, x_{\ell}, & y_1, \dots, y_m \\ g, g^{\gamma}, \dots, g^{\gamma^{\ell+t-2}}, & g^{k \cdot \gamma \cdot f(\gamma)}, \\ g^{\alpha}, g^{\alpha \cdot \gamma}, \dots, g^{\alpha \cdot \gamma^{\ell+t}}, \\ h, h^{\gamma}, \dots, h^{\gamma^{m-2}}, \\ h^{\alpha}, h^{\alpha \cdot \gamma}, \dots, h^{\alpha \cdot \gamma^{2m-1}}, & h^{k \cdot g(\gamma)}, \text{ and } T \in \mathbb{G}_T, \end{array}$ decide whether T is equal to $e(g, h)^{k \cdot f(\gamma)}$ or not

Our Construction: Security Result

Lemma (Generic Security

[Boneh, Boyen, Goh – Eurocrypt '05]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆

For any probabilistic algorithm A that makes at most q queries to the group oracles, with $d = 4(\ell + t) + 6m + 2$

$$\mathsf{Adv}^{\mathsf{mse}-\mathsf{ddh}}(\mathcal{A},\ell,m,t) \leq rac{(q+4(\ell+t)+6m+4)^2 \cdot d}{2p}$$

Theorem (Generic Security)

Our construction is secure

- against non-adaptive and generic adversaries
- under non-adaptive corruption and chosen-plaintext attacks

Formal Model

Our Construction

Conclusion

SQQ

æ

Our Construction: Efficiency

Ciphertext Size

Ciphertext: $C_1 = u^{-k}$, $C_2 = h^{k \cdot \alpha \cdot \prod_{x_i \in S} (\gamma + x_i) \cdot \prod_{x \in D_{m+t-s-1}} (\gamma + x)}$ The header has a constant size: two group elements

Decryption

Given **HDR** = (C_1 , C_2) and usk = $g^{\frac{1}{\gamma+x}}$, $\sigma = e$ (usk, C_2). The user decryption is quite efficient: one pairing

Non-Interactive Combination

$$K = \left(e\left(C_1, h^{p(\gamma)} \right) \cdot \mathsf{Aggregate}(v, \Sigma) \right)$$

The combination step does not need any interaction

 $\frac{1}{c}$

Extensions: Random Oracle Model

All the previous properties are achieved in the standard model (under the MSE–DDH assumption)

Robustness

Easily achieved in the random oracle model, using Schnorr-like proof of equality of discrete logarithms

Identity-Based

It is simple to get an ID-based version in the random oracle model, by simply taking upk = $x = \mathcal{H}(ID)$

		< □ > < □ > < 亘 > < 亘 > < 亘 >	画 うくぐ
Formal Model	Our Construction		Conclusion
Conclusion			
Conclusion			

- Security model for (dynamic) threshold public-key encryption (a.k.a. threshold broadcast encryption)
- Efficient and provably secure candidate the first with constant-size header

But still a lot of work on this topic:

- Use of a new non-standard assumption
- Secure against restricted adversaries only:
 - Chosen-plaintext attacks
 - Non-adaptive adversaries