IPAKE

Isomorphisms for Password-based Authenticated Key Exchange

Dario Catalano David Pointcheval

CNRS-ENS – France

Thomas Pornin

Cryptolog – France

Crypto '04 Santa Barbara – California - USA August 2004

Summary

Password-based Authenticated Key Exchange

- EKE, OKE and a generalization Trapdoor Hard-to-Invert Isomorphisms
- Examples

Summary

- Password-based Authenticated Key Exchange
- EKE, OKE and a generalization
 Trapdoor Hard-to-Invert Isomorphisms
- Examples

Authenticated Key Exchange

Two parties (Alice and Bob) agree on a *common* secret key *SK*, in order to establish a secret channel

Basic security requirement:

implicit authentication

 only the intended partners can compute the session key

Authentication

To prevent active attacks, some kind of authentication of the flows is required:

- Asymmetric: (sk_A, pk_A) and possibly (sk_B, pk_B)
- Symmetric: common (high-entropy) secret
- Password: common (low-entropy) secret
 e.g. a 20-bit password

Dictionary Attack

- Off-line exhaustive search
 - a few passive or active attacks
 - failure/transcript ⇒ erasure of MANY passwords from the list: this is called dictionary attack

To prevent them:

- a passive eavesdropping
 - no useful information about the password
- an active trial
 - cancels at most one password

Password-based Authentication

Password (low-entropy secret) e.g. 20 bits

- exhaustive search is possible
- basic attack: on-line exhaustive search
 - the adversary guesses a password
 - tries to play the protocol with this guess
 - failure \Rightarrow it erases the password from the list
 - and restarts...
- after 1,000,000 attempts, the adversary wins

cannot be avoided

We want it to be the **best attack**...

Summary

- Password-based Authenticated Key Exchange
- EKE, OKE and a generalization
 - Trapdoor Hard-to-Invert Isomorphisms
- Examples

Open Key Exchange

• The public key *pk* is sent in **clear**:

- Requirements to avoid partition attacks:
 - ES_π must be a cipher from
 the ciphertext space under pk
 - **EA**_{*pk*} must be a **surjection**

Surjection: Necessary

- If not, given c', one eliminates the π's that lead to a c which is not in the image set of EA_n: partition attack
- If yes, given c', any π is possible: sending the correct k means guessing the good π

Efficient Implementation

Using the one-time pad, and bijections

- $f_{_{pk}}$ must be a **bijection** onto a group ($G_{_{pk}}$, \otimes)
- f_{pk} must be "hard-to-invert"
- G must be a random function (**RO**) onto G_{nk}

Efficiently Samplable

• f_{nk} must be *trapdoor* "hard-to-invert",

not necessarily "one-way": but just samplable

• $(r, c) \leftarrow S(pk)$ such that r random in M_{pk} and $c = f_{pk}(r)$

- *pk* must be easy to generate
- f_{nk} must be a bijection \Rightarrow **to be checked**

Hard-to-Invert: not Enough?

When pk is chosen by Alice

sk is unknown to the adversary

- the adversary can know only one pre-image r
 (for the guessed password π)
- for other π's, the "hard-to-invert" property prevents from extracting/checking other *r* values

This is the intuition... For the formal proof

- Hard-to-invert
- Bijection
- Morphism

Alice	Password T	Bob
sk, pk $c=c' \oslash G(\mathbf{T}), r=g_{sk}(c)$ k=H'(Alice, Bob, r)	Alice, pk	$(r, c) \leftarrow S(pk)$ k correct ?
	Bob, $c' = c \otimes G(\Pi)$	
	k	
	$SK=H(Alice, Bob, pk, c', \pi, r)$	

Morphism: for the Proof

For checking a password, one uses k or SK

- \Rightarrow one must compute *r* (appears in *H*-*H*' queries)
- Either c' sent by Bob: from any correct (π,r)
- ∇ such that $c' = f_{pk}(r) \otimes G(\pi)$, one can invert f_{pk}

Trapdoor Hard-to-Invert Isomorphisms Family

- $F = (f_{pk})_{pk}$ trapdoor hard-to-invert isomorphisms
 - $(pk, sk) \leftarrow G(1^k)$: generation
 - f_{pk} is an isomorphism from \mathbf{M}_{pk} onto \mathbf{G}_{pk}
 - $(r, c) \leftarrow S(pk)$: sample
 - such that r random in M_{pk} and $c = f_{pk}(r)$ (random in G_{pk})
 - Given y and pk, check whether $y \in f_{pk}(\mathbf{M}_{pk}) = \mathbf{G}_{pk}$
 - Given y and sk, easy to invert f_{pk} on y
 - Without sk, hard to invert f_{nk}

Summary

- Password-based Authenticated Key Exchange
- EKE, OKE and a generalization Trapdoor Hard-to-Invert Isomorphisms
- Examples

Candidates (Cont'd)

Square root: sk = (p,q), pk = n

- f_{pk} is an automorphism onto QR_n,
 - but for specific moduli only (Blum moduli)
- \Rightarrow to be checked: can be done (verified) efficiently
- f_{nk} is one-way under
 - the integer factoring problem
- ⇒ the first Password-Based Authenticated Key Exchange based on factoring

Candidates

Diffie-Hellman: sk = x, $pk = g^x$

$$f_{pk}(g^a) = g^{ax} = pk^a$$
 $g_{sk}(b) = b^{1/x}$

- f_{pk} is not one-way, but hard-to-invert under the **CDH assumption**
- ⇒ classical DH-AKE variants (PAK or AuthA)

RSA:
$$sk = d, pk = (n, e)$$

- f_{pk} is one-way under the **RSA** assumption,
 - but *pk* must contain a valid RSA key: NIZK proof
- ⇒ variant of "protected OKE"