OAEP 3-Round A Generic and Secure Asymmetric Encryption Padding

Duong Hieu Phan

David Pointcheval

ENS – France

CNRS-ENS - France

Asiacrypt '04
Jeju Island - Korea
December 6th 2004

Summary

- Asymmetric Encryption
- OAEP 3-Round
 - Review
 - Limitations
- New Results
- Conclusion

David Pointcheval - CNRS - ENS

OAEP 3-Round: a Generic and Secure Asymmetric Encryption Padding - 2

Asymmetric Encryption

An asymmetric encryption scheme $\pi = (G, E, D)$ is defined by 3 algorithms:

G – key generation

E – encryption

D – decryption

Security Notion: IND-CCA2

David Pointcheval - CNRS - ENS

IND: Probabilistic

To achieve indistinguishability, a public-key encryption scheme must be probabilistic otherwise, with the challenge $c = \mathbf{E}(m_b)$ one computes $c_0 = \mathbf{E}(m_0)$ and checks whether $c_0 = c$

For any plaintext, the number of possible ciphertexts must be lower-bounded by 2^k , for a security level in 2^k :

at least length(c) \geq length(m) + k

David Pointcheval - CNRS - ENS

OAEP 3-Round: a Generic and Secure Asymmetric Encryption Padding - 5

CCA: Redundancy?

- For IND-CCA2: redundancy Plaintext-awareness = invalid ciphertexts
- Last year, we proposed:
 - Full-Domain Permutation
 - OAEP 3-Round

IND-CCA2 without redundancy

David Pointcheval - CNRS - ENS

OAEP 3-Round: a Generic and Secure Asymmetric Encryption Padding - 6

OAEP 3-Round

- $\mathbf{E}(m) : c = f(t || u)$
- **D**(c) : $t \parallel u = f^{-1}(c)$ then invert OAEP, and return m

F. G and H: random functions

Security Result: Asiacrypt '03

With a random of size k_0 , but no redundancy In the ROM, a (t,ε) -IND-CCA2 adversary helps to **partially invert** f within time $t'\approx t+q_{\mathbf{G}}q_{\mathbf{H}}T_f$, with success probability $\geq \varepsilon-q_{\mathbf{D}}Q/2^{k_0}$

Limitations:

- Requires a trapdoor OW permutation
- Reduction to the partial-domain one-wayness

David Pointcheval - CNRS - ENS

OAEP 3-Round: a Generic and Secure Asymmetric Encryption Padding - 7

David Pointcheval - CNRS - ENS

Intuition

- From the view of the challenge c*
 - > OAEP (with redundancy): [Sh01] showed that an adversary could produce a ciphertext c, with $r=r^*$
 - FOPS01] ... but needs to query $\mathbf{H}(s^*)$
 - > OAEP 2-round (w/t redundancy): we thought that no easy proof could lead to $\mathbf{H}(s^*)$ but...
 - OAEP 3-round (w/t redundancy): could prove the requirement of the query $\mathbf{H}(t^*)$
 - ⇒ Partial-Domain OW
- This paper: requirement of both

 $G(s^*)$ and $H(t^*) \Rightarrow Full-Domain OW$

David Pointcheval - CNRS - ENS

OAEP 3-Round: a Generic and Secure Asymmetric Encryption Padding - 9

New Security Result

With a random of size k_0 , but no redundancy In the ROM, a (t,ε) -IND-CCA2 adversary helps to **invert** f within time $t'\approx t+q_{\mathbf{G}}q_{\mathbf{H}}T_{f'}$

with success probability $\geq \varepsilon/2 - 5q_{\mathbf{p}}Q/2^{k_0}$

where Q is the global number of queries Simulation of the decryption oracle on c:

- ► look for all the tuples $(s, \mathbf{G}(s), t, \mathbf{H}(t))$
- check whether $f(t \parallel \mathbf{H}(t) \oplus s) = c$
- compute $m = s \oplus \mathbf{F}(t \oplus \mathbf{G}(s))$ or random

David Pointcheval - CNRS - ENS

OAEP 3-Round: a Generic and Secure Asymmetric Encryption Padding - 10

Permutation Requirement

- The permutation requirement rules out many candidates: ElGamal, Paillier, Rabin, NTRU, ...
- Could we apply it to trapdoor one-way probabilistic injections?
- $f: (x, \rho) \to y = f(x, \rho)$
 - injection in x: at most one x for each y(but possibly many ρ)
 - hard to invert
 - a trapdoor helps to recover x

 $\mathbf{E}(m,r||\rho) = f(t||u,\rho)$

OAEP 3-Round: a Generic and Secure Asymmetric Encryption Padding - 11

Problems for the Simulation

- Simulation of the decryption oracle on c:
 - ≥ look for all the tuples $(s, \mathbf{G}(s), t, \mathbf{H}(t))$
 - check whether $f(t \parallel \mathbf{H}(t) \oplus s, \rho) = c$ (existence of ρ)
 - compute $m = s \oplus \mathbf{F}(t \oplus \mathbf{G}(s))$ or random
- Need of a decisional oracle: Same(c, c')
 - Do c and c' encrypt the same element?
 - Computational problem given access to a decisional oracle → Gap Problem
- And what about $c = f(t^* \parallel \mathbf{H}(t^*) \oplus s^*, \rho)$?
 - Same (c, c^*) is true, but $m = m^*$ is unknown

David Pointcheval - CNRS - ENS

Relaxed Chosen-Ciphertext Security

- [ADR02] Generalized CCA:
 - R is a decryption-respecting relation
 - → Intuition: R formalizes a trivial relation between ciphertexts encrypting the same plaintext.
 - The adversary is not allowed to ask decryption queries on c in relation with c^*
- [CKN03] Replayable CCA:
 - > On c which encrypts either m_0 or m_1 : answer = TEST
- Relaxed CCA: $(m,r,\rho) \rightarrow c = \mathbf{E}(m,r||\rho)$
 - On $c = \mathbf{E}(m^*, r^* || \rho)$: answer = TEST

David Pointcheval - CNRS - ENS

OAEP 3-Round: a Generic and Secure Asymmetric Encryption Padding - 13

Relations

- Generalized CCA: is the most natural
 - non-significant bits in the ciphertext cannot be used in the attack.
- Replayable CCA: TEST reveals some information
- RCCA security ⇒ Replayable CCA
 - a RCCA simulator decrypts more often
 - On $c = \mathbf{E}(m^*, r^* \| \mathbf{p}) \Rightarrow m$ is $m_{_b}$ and thus either $m_{_0}$ or $m_{_1}$
- If $|\rho|=0$

- $\mathbf{E}(m,r||\rho) = f(t||u,\rho)$
- > TEST on c^* only: **RCCA = CCA**
- Same is the equality test: no more Gap Problem

David Pointcheval - CNRS - ENS

David Pointcheval - CNRS - ENS

OAEP 3-Round: a Generic and Secure Asymmetric Encryption Padding - 14

Security Result

With a random of size k_0 , but no redundancy In the ROM, a (t,ε) -IND-RCCA adversary helps to **invert** f within time $t'\approx t+q_{\mathbf{D}}q_{\mathbf{G}}q_{\mathbf{H}}(T_f+T_{\mathrm{Same}})$ with success probability $\geq \varepsilon/2-5q_{\mathbf{D}}Q/2^{k_0}$ after less than $q_{\mathbf{D}}q_{\mathbf{G}}q_{\mathbf{H}}$ queries to the Same oracle

- quite loose reduction in general:
 - large security parameters
 - but small overhead: 160 bits of additional randomness

The RSA Case

- The same proof applies to RSA
 - RCCA = CCA
 - Gap-RSA = RSA
 - Proper bookkeeping: better reduction

$$\rightarrow q_{\mathbf{D}}q_{\mathbf{G}}q_{\mathbf{H}} \rightarrow q_{\mathbf{G}}q_{\mathbf{H}}$$

- ⇒ Cost of the reduction similar to OAEP but relative to the Full-Domain RSA
- ⇒ The most efficient reduction for an RSA-based padding into a **Z**_{,*}* element

Conclusion

OAEP 3-Round: the best OAEP-like variant

- the tightest reduction in the RSA case
 - for any exponent
 - relative to the RSA problem
- no redundancy: almost optimal bandwidth
- applicable to most of the asymmetric primitives
 - namely ElGamal, relative to the Gap DH

David Pointcheval - CNRS - ENS