Chosen-Ciphertext Security without Redundancy

Duong Hieu Phan

ENS – France

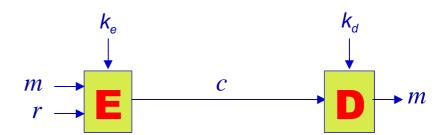
David Pointcheval

CNRS-ENS - France

Asiacrypt '03 Taipei - Taiwan

December 1st 2003

Summary


- Asymmetric Encryption
- Full-Domain Permutation Encryption
- 3-round OAEP
- Conclusion

Asymmetric Encryption

An asymmetric encryption scheme $\pi = (G, E, D)$ is defined by 3 algorithms:

• **G** – key generation ω \longrightarrow (k_e, k_d)

- E encryption
- D decryption

David Pointcheval - CNRS - ENS

Chosen-Ciphertext Security without Redundancy - 3

Security Notions

One-Wayness (OW) :

without the private key, it is computationally impossible to recover the plaintext

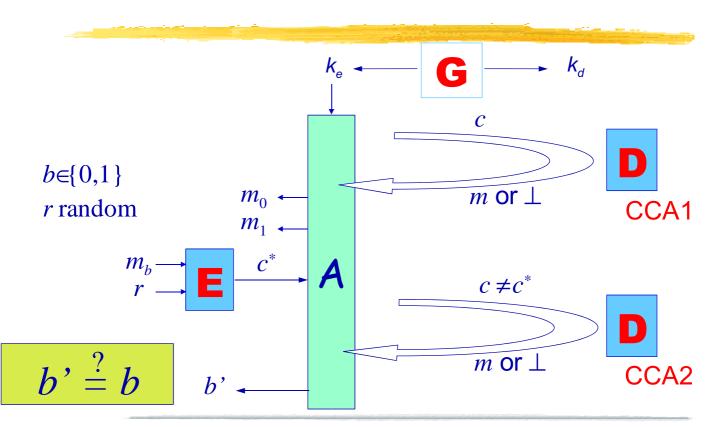
Semantic Security (IND - Indistinguishability) :

the ciphertext reveals *no more* information about the plaintext to a **polynomial adversary**

Attacks

Chosen-Plaintext Attacks (CPA)

- the basic attack in the public-key setting
 - → the adversary can encrypt any message of its choice
- More information: oracle access
- Chosen-Ciphertext Attacks (CCA)


the adversary has access to the decryption oracle on any ciphertext of its choice (except the challenge)

- non-adaptive (CCA1): only before receiving the challenge
- adaptive (CCA2): unlimited oracle access

David Pointcheval - CNRS - ENS

Chosen-Ciphertext Security without Redundancy - 5

IND-CCA2

Indistinguishability: Probabilistic

To achieve indistinguishability, a public-key encryption scheme must be probabilistic

otherwise, with the chalenge $c=\mathbf{E}(m_b)$ one computes $c_0=\mathbf{E}(m_0)$ and checks whether $c_0=c$

For any plaintext, the number of possible ciphertexts must be lower-bounded by 2^k , for a security level in 2^k :

at least length(c) \geq length(m) + k

David Pointcheval - CNRS - ENS

Chosen-Ciphertext Security without Redundancy - 7

Chosen-Ciphertext Security: Redundancy

To resist chosen-ciphertext attacks, all the proposed constructions introduce redundancy:

OAEP: redundancy in the padding plaintext

plaintext

REACT: MAC in the ciphertext

Cramer-Shoup: Proof of validity = redundancy

Such a redundancy makes that a random ciphertext is valid (a possible output of the encryption algorithm) with a very small probability, less than 2-k:

in practice: at least length(c) \geq length(m) + 2k

David Pointcheval - CNRS - ENS

Chosen-Ciphertext Security without Redundancy - 8

Optimal Size = No Redundancy

- No redundancy = any ciphertext is valid:
 - \rightarrow is a possible output of $\mathbf{E}(m,r)$
 - the function **E**: $M \times R \rightarrow C$ $(m,r) \rightarrow c$ is a surjection
- Advantages:
 - optimal bandwidth
 - no reaction attack / implementation issues
 - easier distribution of the decryption process

David Pointcheval - CNRS - ENS

Chosen-Ciphertext Security without Redundancy - 9

Full-Domain Permutation Encryption

- First candidate: in the same vein as the Full-Domain Hash Signature
- Public permutation **P** (Random Permutation Model) onto $\mathbb{M} \times \mathbb{R} \approx \mathcal{C} \approx \{0,1\}^n \times \{0,1\}^k \approx \{0,1\}^l$
- Trapdoor one-way permutation f onto {0,1}

E:
$$M \times R \rightarrow C$$

 $(m,r) \rightarrow c = f(\mathbf{P}(m,r))$

- the public key is the pair (f, \mathbf{P}) which includes \mathbf{P}^{-1}
- the private key is the trapdoor f⁻¹

FDP Encryption is IND-CCA2 Secure

In the RPM, a (t,ε) -IND-CCA2 adversary helps to invert f within almost the same time t, and with success probability greater than $\varepsilon - q/2^k$

- Simulation of the oracles P, P^{-1} and D using a list Λ of tuples $\{(m,r,p,c)\}$: p = P(m,r), c = f(p) = E(m,r)
 - problem if (m,r) is assumed to correspond to $\mathbf{P}^{-1}(f^{-1}(\mathbf{c}))$ from the \mathbf{D} -simulation, and the adversary asks for $\mathbf{P}(m,r)$:
 - the simulation should output $p = f^{-1}(c)$, which is unknown but **D** outputs m only: r is unpredictable

David Pointcheval - CNRS - ENS

Chosen-Ciphertext Security without Redundancy - 11

FDP Encryption: Properties

- No redundancy
- Optimal bandwidth: length(c) = length(m) + k
- High security level: IND-CCA2
 - with efficient reduction
 - but in the Random-Permutation Model

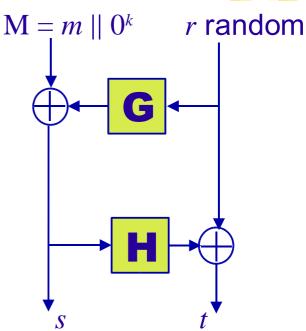
Can we weaken the assumptions?

The Random-Oracle Model

- A weaker model : the random-oracle model
 - access to a truly random function
- How to build a random permutation from a random function?
 - Luby-Rackoff: a Feistel construction
 - not that easy: here, one has access to the internal function...Let us try anyway: OAEP

David Pointcheval - CNRS - ENS

Chosen-Ciphertext Security without Redundancy - 13


2-round OAEP

 $\mathbf{E}(m): c = f(s \parallel t)$

 $D(c) : s || t = f^{-1}(c)$

then invert OAEP,

if the redundancy is satisfied, one returns m

G, H: random functions

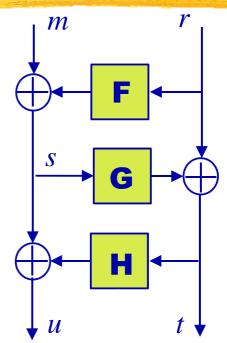
2-round OAEP (cont'd)

- In the random-oracle model
- If f is a trapdoor partial-domain OW permutation:
 - $(s,t) \rightarrow f(s \parallel t)$ trapdoor one-way
 - $f(s \parallel t) \rightarrow s$ also hard to compute
- With a redundancy 0^k and random of size k_0

The encryption scheme *f* -OAEP:

- IND-CCA2 with quadratic time reduction (in $q_{\bf p}q_{\bf g}T_f$) + quadratic lost (in $q_{\bf p}q_{\bf g}/2^{k_0}$: $k_0=2k$)
- length(c) = length(m) + 3k

David Pointcheval - CNRS - ENS


Chosen-Ciphertext Security without Redundancy - 15

What About the Redundancy?

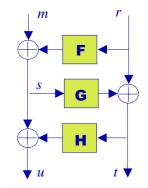
- For IND-CCA2: redundancy
 Plaintext-awareness = unvalid ciphertexts
- Without redundancy... is it still IND-CCA2?
 - 2-round OAEP: no known attack, but no proof either
 - Any simulation seems to be subject to the Shoup's attack (malleability of OAEP)
 - 3-round OAEP: can be proven

3-round OAEP

- $\mathbf{E}(m) : c = f(t || u)$
- $\mathbf{D}(c) : t \mid\mid u = f^{-1}(c)$ then invert OAEP, and return m

F, G and H: random functions

David Pointcheval - CNRS - ENS


Chosen-Ciphertext Security without Redundancy - 17

Idea of the Security

- 2-round OAEP: as in the Shoup's attack,
 - the adversary can forge a ciphertext c, with the same r as in the challenge ciphertext
 - the simulator cannot check that!
- With one more round:
 - the adversary is stuck!
- ⇒ one can simulate everything
 - at random when not already known

Tightness of the Reduction

- Everything works well with lists, Λ_F, Λ_G, Λ_H, Λ_D
- But for $g = \mathbf{G}(s)$, which implies
 - $ightharpoonup \mathbf{F}(r) = m \oplus s \text{ for } r = t \oplus g$
 - For any $(t, h) ∈ Λ_H$, and $(m, c) ∈ Λ_D$ such that c = f(t, h ⊕s)

in case such a query is asked later

Problem if such a query has already been asked... Since g is random, the overall probability of such a bad event is upper-bounded by q_p q_f / 2^k.

David Pointcheval - CNRS - ENS

Chosen-Ciphertext Security without Redundancy - 19

Security Result

With a random of size k_0 , but no redundancy In the ROM, a (t,ε) -IND-CCA2 adversary helps to partially invert f within $t' \approx t + q_{\bf G} q_{\bf H} T_{f'}$ and with success probability greater than $\varepsilon - q_{\bf p} Q/2^{k_0}$

The 3-round OAEP is:

- IND-CCA2 with quadratic time reduction + quadratic lost ($\Rightarrow k_0 = 2k$)
- length(c) = length(m) + 2k

Conclusion

We have proposed the first IND-CCA2 encryption schemes, without redundancy:

- the FDP encryption is optimal
 - based on the OW of the trapdoor permutation
 - optimal bandwidth
 - but in the Random-Permutation Model
- the 3-round OAEP has similar characteristics as the 2-round OAEP, but without redundancy

David Pointcheval - CNRS - ENS

Chosen-Ciphertext Security without Redundancy - 21