Analysis and Improvements of NTRU Encryption Paddings

Phong Q. Nguyễn David Pointcheval CNRS/École normale supérieure

France

Aug. 20th, 2002

0

Summary

- NTRU Encryption
- Security Notions
- Analysis of NTRU Paddings
- Improved Paddings

Truncated polynomial rings

• Let \mathcal{P} be the ring $\mathbb{Z}[X]/(X^N-1)$ where N is a "small" prime: 251, 347 or 503 (previously: 167, 263 or 503).

 \mathcal{P} is identified with the set of integer polynomials of degree < N.

- The multiplication * in \mathcal{P} is called the convolution product. Convolutions can easily be computed thanks to $X^N - 1$.
- The function $\mathbf{r} \mapsto \mathbf{r}(1)$ is a ring homomorphism from \mathcal{P} to \mathbb{Z} , because 1 is a root of $X^N 1$.
- For a and b in P, we write a ≡ b (mod p)
 when the coefficients are pairwise congruent modulo p.

2

The NTRU Primitive (1996)

- Let S be a subset of sparse polynomials with coeffs 0 and ±1.
 q is a small power of 2, typically 128.
 p is a small odd number, typically 3.
- Private key := f and g in S such that f(1) = 1 and g(1) = 0. The number of 0 and ±1 is known for both f and g.
 f is chosen to be invertible mod p and q:
 f * f_p ≡ 1 (mod p) and f * f_q ≡ 1 (mod q).
- Public key $h := g * f_q \pmod{q}$. Note that $f * h \equiv g \pmod{q}$.

Encryption and Decryption

- A message m is an element of P with coeffs 0 or ±1.
 m is encrypted into e := m + pr * h (mod q) where r ∈_R S.
- To decrypt e, notice that e * f ≡ m * f + pr * g (mod q).
 If the reduction is centered, this "should" be an equality over P.
 By taking residues modulo p and dividing by f, one recovers m.
- For the recommended parameters, the decryption may fail, but the failure probability seems to be negligible.
- Encryption and decryption cost $O(N^2 \ln q)$. Keysize is $O(N \ln q)$.

Modifications to NTRU (2000)

4

- Replace p = 3 by a small polynomial p = X + 2. Ternary polynomials become binary polynomials.
- Special form for sparse polynomials: f, g, r. For instance, $r = r_1 * r_2 + r_3$.
- These changes improve the efficiency. But they may affect the security.

Security of NTRU

- The best attack known is based on lattice reduction [CoSh97]. It tries to recover the private key from the public key.
- The authors of NTRU claim that the attack is exponential in N, and that N = 263 is "at least as secure" as RSA-1024.
- However, "textbook" NTRU, like "textbook" RSA/El Gamal, is not "secure".

6

Security notions

• Security goals:

One-wayness: intractability of decrypting a random ciphertext. Semantic security [GoMi84]: indistinguishability of ciphertexts.

• Security models:

CPA: Chosen-plaintext attacks.

CCA2 [RaSi91]: Adaptive chosen-ciphertext attacks.

Security of the NTRU Primitive

- $\mathcal{E}(\mathbf{m};\mathbf{r}) := \mathbf{m} + p\mathbf{r} * \mathbf{h} \pmod{q} = \mathbf{e}.$
- No semantic security: $e(1) \equiv m(1) \pmod{q}$ because r(1) = 0.
- Malleability: $X * \mathcal{E}(\mathsf{m}; \mathsf{r}) = \mathcal{E}(X * \mathsf{m}; X * \mathsf{r}).$
- Though the primitive is probabilistic, there is a plaintext-checking oracle which can check whether e is an encryption of m, because h is "almost" invertible: one can compute H ∈ P such that whenever a(1) ≡ 0 (mod q), h * H * a ≡ a (mod q). Thus, r ≡ p⁻¹H * (e m) (mod q).

9

Chosen-ciphertext attacks

- Because $X * \mathcal{E}(\mathbf{m}; \mathbf{r}) = \mathcal{E}(X * \mathbf{m}; X * \mathbf{r})$, there are chosen-ciphertext attacks that can decrypt any message (like RSA/El Gamal).
- [JaJo00] presented more powerful chosen-ciphertext attacks which can recover the private key (not like RSA/El Gamal).
 It worked against an "OAEP-like" padding proposed by NTRU.
- NTRU therefore proposed new paddings in 2000: Π₁, Π₂ and Π₃. All were claimed to bring IND-CCA2 security (in the ROM), but no "security proof" was provided.
 Π₃ is the NTRU proposal for the CEES standard.

Analysis of Padding I

- $\mathcal{E}_1(m; r) := \mathcal{E}'(m||r; H(m||r))$ where $\mathcal{E}'(m'; r') = \mathcal{M}(m') + p * h * \mathcal{R}(r') \pmod{q}$ and r represents 40 to 80 bits of randomness.
- Based on the [FuOk99] conversion technique.
 But [FuOk99] requires an IND-CPA primitive!
- Π₁ is not semantically secure: *E*₁(*m*; *r*)(1) = *M*(*m*||*r*)(1).
 Depending on the encoding *M*, *r* is likely to be sufficiently small to allow us to distinguish encryption of special messages, such as *m*₀ = 0^k and *m*₁ = 1^k.

11

One-wayness of Padding I

- $\mathcal{E}_1(m; r) := \mathcal{E}'(m||r; H(m||r))$ where $\mathcal{E}'(m'; r') = \mathcal{M}(m') + p * h * \mathcal{R}(r') \pmod{q}$ and r represents 40 to 80 bits of randomness.
- The one-wayness of Π₁ is a stronger assumption than the one-wayness of the NTRU primitive.
 We call the corresponding problem the NTRU Partial-Information Inversion problem.

Analysis of Padding II

- $\mathcal{E}_2(m; r) := \mathcal{E}'((m \oplus F(r))||r; H(m||r))$ where $\mathcal{E}'(m'; r') = \mathcal{M}(m') + p * h * \mathcal{R}(r') \pmod{q}$ and r represents 40 to 80 bits of randomness.
- The one-wayness is equivalent to that of the NTRU primitive. The reduction is very tight.
- But IND-CCA2 is related to the NTRU Partial-Information Inversion assumption.

The reduction advantage is linear in the number of hash queries.

13

Analysis of Padding III

- $\mathcal{E}_3(m; r) := \mathcal{E}'(m_1 || m_2; H(m || r))$ where $\mathcal{E}'(m'; r') = \mathcal{M}(m') + p * h * \mathcal{R}(r') \pmod{q}$ and r represents 40 to 80 bits of randomness.
- Based on an all-or-nothing transformation (OAEP). Halve $m = \overline{m} ||\underline{m}|$ and $r = \overline{r} ||\underline{r}|$. Let $m_1 = (\overline{m} ||\overline{r}) \oplus F(\underline{m} ||\underline{r})$ and $m_2 = (\underline{m} ||\underline{r}) \oplus G(\underline{m_1})$.
- The one-wayness is equivalent to that of the NTRU primitive.
- But IND-CCA2 is related to the NTRU Partial-Information Inversion assumption with "bad" parameters.

An Improvement of Padding III

- $\mathcal{E}'_3(m; r) := \mathcal{E}'(s||t; H(m||r))$ where $s = m \oplus G(r)$ and $t = r \oplus F(s)$.
- One can prove IND-CCA2 security under the basic NTRU assumption.
 - The OAEP construction provides semantic security,
 - The hash function H() adds chosen-ciphertext security.
 - But the reduction is quadratic in the number of hash queries, because of the OAEP construction.

15

An Improvement of REACT [OkPo01]

- We use a symmetric encryption scheme (E, D).
- $\mathcal{E}_4(m; r) := \mathcal{E}'(r; H(r, b)) || b$ where $b = \mathsf{E}_K(m)$ and K = G(r).
- It provides IND-CCA2 under the basic NTRU assumption. The reduction is linear in the number of hash queries. Reduces the amount of randomness of the generic REACT, by re-using the hash value.

Conclusion

- None of the NTRU paddings Π_1, Π_2 and Π_3 should be used:
 - Π_1 is not semantically secure.
 - Π_2 and Π_3 require a stronger assumption for IND-CCA2 than the basic NTRU assumption.

The reduction is not tight.

- There exist efficient alternatives with a better security assumption and a tighter security proof.
- All NTRU paddings known use the random oracle model.

17