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Truncated polynomial rings

• Let P be the ring Z[X]/(XN − 1) where N is a “small” prime:

251, 347 or 503 (previously: 167, 263 or 503).

P is identified with the set of integer polynomials of degree < N .

• The multiplication ∗ in P is called the convolution product.

Convolutions can easily be computed thanks to XN − 1.

• The function r 7→ r(1) is a ring homomorphism from P to Z,

because 1 is a root of XN − 1.

• For a and b in P, we write a ≡ b (mod p)

when the coefficients are pairwise congruent modulo p.
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The NTRU Primitive (1996)

• Let S be a subset of sparse polynomials with coeffs 0 and ±1.

q is a small power of 2, typically 128.

p is a small odd number, typically 3.

• Private key := f and g in S such that f(1) = 1 and g(1) = 0.

The number of 0 and ±1 is known for both f and g.

f is chosen to be invertible mod p and q:

f ∗ fp ≡ 1 (mod p) and f ∗ fq ≡ 1 (mod q).

• Public key h := g ∗ fq (mod q). Note that f ∗ h ≡ g (mod q).
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Encryption and Decryption

• A message m is an element of P with coeffs 0 or ±1.

m is encrypted into e := m+ pr ∗ h (mod q) where r ∈R S.

• To decrypt e, notice that e ∗ f ≡ m ∗ f+ pr ∗ g (mod q).

If the reduction is centered, this “should” be an equality over P.

By taking residues modulo p and dividing by f, one recovers m.

• For the recommended parameters, the decryption may fail,

but the failure probability seems to be negligible.

• Encryption and decryption cost O(N 2 ln q).

Keysize is O(N ln q).
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Modifications to NTRU (2000)

• Replace p = 3 by a small polynomial p = X + 2.

Ternary polynomials become binary polynomials.

• Special form for sparse polynomials: f, g, r.

For instance, r = r1 ∗ r2 + r3.

• These changes improve the efficiency.

But they may affect the security.
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Security of NTRU

• The best attack known is based on lattice reduction [CoSh97].

It tries to recover the private key from the public key.

• The authors of NTRU claim that the attack is exponential in N ,

and that N = 263 is “at least as secure” as RSA-1024.

• However, “textbook” NTRU, like “textbook” RSA/El Gamal,

is not “secure”.
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Security notions

• Security goals:

One-wayness: intractability of decrypting a random ciphertext.

Semantic security [GoMi84]: indistinguishability of ciphertexts.

• Security models:

CPA: Chosen-plaintext attacks.

CCA2 [RaSi91]: Adaptive chosen-ciphertext attacks.
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Security of the NTRU Primitive

• E(m; r) := m+ pr ∗ h (mod q) = e.

• No semantic security: e(1) ≡ m(1) (mod q) because r(1) = 0.

• Malleability: X ∗ E(m; r) = E(X ∗m;X ∗ r).

• Though the primitive is probabilistic, there is a plaintext-checking

oracle which can check whether e is an encryption of m, because

h is “almost” invertible: one can compute H ∈ P such that

whenever a(1) ≡ 0 (mod q), h ∗ H ∗ a ≡ a (mod q).

Thus, r ≡ p−1H ∗ (e−m) (mod q).
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Chosen-ciphertext attacks

• Because X ∗ E(m; r) = E(X ∗m;X ∗ r), there are chosen-ciphertext

attacks that can decrypt any message (like RSA/El Gamal).

• [JaJo00] presented more powerful chosen-ciphertext attacks

which can recover the private key (not like RSA/El Gamal).

It worked against an “OAEP-like” padding proposed by NTRU.

• NTRU therefore proposed new paddings in 2000: Π1, Π2 and Π3.

All were claimed to bring IND-CCA2 security (in the ROM),

but no “security proof” was provided.

Π3 is the NTRU proposal for the CEES standard.
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Analysis of Padding I

• E1(m; r) := E
′(m||r;H(m||r))

where E ′(m′; r′) =M(m′) + p ∗ h ∗ R(r′) (mod q)

and r represents 40 to 80 bits of randomness.

• Based on the [FuOk99] conversion technique.

But [FuOk99] requires an IND-CPA primitive!

• Π1 is not semantically secure: E1(m; r)(1) =M(m||r)(1).

Depending on the encodingM, r is likely to be sufficiently small

to allow us to distinguish encryption of special messages,

such as m0 = 0
k and m1 = 1

k.
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One-wayness of Padding I

• E1(m; r) := E
′(m||r;H(m||r))

where E ′(m′; r′) =M(m′) + p ∗ h ∗ R(r′) (mod q)

and r represents 40 to 80 bits of randomness.

• The one-wayness of Π1 is a stronger assumption

than the one-wayness of the NTRU primitive.

We call the corresponding problem

the NTRU Partial-Information Inversion problem.
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Analysis of Padding II

• E2(m; r) := E
′((m⊕ F (r))||r;H(m||r))

where E ′(m′; r′) =M(m′) + p ∗ h ∗ R(r′) (mod q)

and r represents 40 to 80 bits of randomness.

• The one-wayness is equivalent to that of the NTRU primitive.

The reduction is very tight.

• But IND-CCA2 is related to the NTRU Partial-Information

Inversion assumption.

The reduction advantage is linear in the number of hash queries.
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Analysis of Padding III

• E3(m; r) := E
′(m1||m2;H(m||r))

where E ′(m′; r′) =M(m′) + p ∗ h ∗ R(r′) (mod q)

and r represents 40 to 80 bits of randomness.

• Based on an all-or-nothing transformation (OAEP).

Halve m = m||m and r = r||r.

Let m1 = (m||r)⊕ F (m||r) and m2 = (m||r)⊕G(m1).

• The one-wayness is equivalent to that of the NTRU primitive.

• But IND-CCA2 is related to the NTRU Partial-Information

Inversion assumption with “bad” parameters.
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An Improvement of Padding III

• E ′3(m; r) := E
′(s||t;H(m||r))

where s = m⊕G(r) and t = r ⊕ F (s).

• One can prove IND-CCA2 security under the basic NTRU

assumption.

• The OAEP construction provides semantic security,

• The hash function H() adds chosen-ciphertext security.

• But the reduction is quadratic in the number of hash queries,

because of the OAEP construction.
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An Improvement of REACT [OkPo01]

• We use a symmetric encryption scheme (E, D).

• E4(m; r) := E
′(r;H(r, b))||b

where b = EK(m) and K = G(r).

• It provides IND-CCA2 under the basic NTRU assumption.

The reduction is linear in the number of hash queries.

Reduces the amount of randomness of the generic REACT,

by re-using the hash value.
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Conclusion

• None of the NTRU paddings Π1,Π2 and Π3 should be used:

• Π1 is not semantically secure.

• Π2 and Π3 require a stronger assumption for IND-CCA2

than the basic NTRU assumption.

The reduction is not tight.

• There exist efficient alternatives with

a better security assumption and a tighter security proof.

• All NTRU paddings known use the random oracle model.
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