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Truncated polynomial rings

e Let P be the ring Z[X]/(X" — 1) where N is a “small” prime:
251, 347 or 503 (previously: 167, 263 or 503).
P is identified with the set of integer polynomials of degree < N.

e The multiplication * in P is called the convolution product.
Convolutions can easily be computed thanks to X~ — 1.

e The function r +— r(1) is a ring homomorphism from P to Z,
because 1 is a root of X~ — 1.

e For a and b in P, we write a = b (modp)

when the coefficients are pairwise congruent modulo p.

The NTRU Primitive (1996)

e Let S be a subset of sparse polynomials with coeffs 0 and +1.
q is a small power of 2, typically 128.
p is a small odd number, typically 3.

e Private key := f and g in S such that f(1) =1 and g(1) = 0.
The number of 0 and +1 is known for both f and g.
f is chosen to be invertible mod p and g:
f+f, =1 (modp) and f*f, =1 (modq).

e Public key h := g *f, (modgq). Note that f+ h =g (modg).




Encryption and Decryption

A message m is an element of P with coeffs 0 or +1.

m is encrypted into e := m + prxh (mod ¢q) where r € S.

To decrypt e, notice that e « f = m *xf+ prx g (mod q).

If the reduction is centered, this “should” be an equality over P.
By taking residues modulo p and dividing by f, one recovers m.
For the recommended parameters, the decryption may fail,

but the failure probability seems to be negligible.

Encryption and decryption cost O(N?1ng).

Keysize is O(N Inq).

Modifications to NTRU (2000)

e Replace p = 3 by a small polynomial p = X + 2.
Ternary polynomials become binary polynomials.
e Special form for sparse polynomials: f, g, r.
For instance, r = ry % ry + r3.
e These changes improve the efficiency.

But they may affect the security.




Security of NTRU

e The best attack known is based on lattice reduction [CoSh97].
It tries to recover the private key from the public key.
e The authors of NTRU claim that the attack is exponential in IV,
and that N = 263 is “at least as secure” as RSA-1024.
e However, “textbook” NTRU, like “textbook” RSA/El Gamal,
is not “secure”.
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Security notions
e Security goals:
One-wayness: intractability of decrypting a random ciphertext.
Semantic security [GoMi84]: indistinguishability of ciphertexts.
e Security models:

CPA: Chosen-plaintext attacks.
CCA2 [RaSi91]: Adaptive chosen-ciphertext attacks.




IND-CPA

Challenger public key —

two distinct messages mO and

arandom encryption of mt
—

guessing the bit b




Security of the NTRU Primitive

E(m;r) :=m+ prxh (modq) =e.

No semantic security: e(1) = m(1) (mod gq) because r(1) = 0.
Malleability: X x E(m;r) = E(X *m; X ).

Though the primitive is probabilistic, there is a plaintext-checking
oracle which can check whether e is an encryption of m, because

h is “almost” invertible: one can compute H € P such that
whenever a(1) =0 (mod q), h*xHxa = a (modq).

Thus, r = p~'Hx* (e — m) (mod q).

Chosen-ciphertext attacks

Because X * E(m;r) = E(X xm; X xr), there are chosen-ciphertext
attacks that can decrypt any message (like RSA/El Gamal).
[JaJo00] presented more powerful chosen-ciphertext attacks

which can recover the private key (not like RSA /El Gamal).

It worked against an “OAEP-like” padding proposed by NTRU.
NTRU therefore proposed new paddings in 2000: II;, II; and II5.
All were claimed to bring IND-CCA2 security (in the ROM),

but no “security proof” was provided.

I3 is the NTRU proposal for the CEES standard.
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Analysis of Padding I

E1(myr) := & (ml|r; H(m||r))

where E'(m/;r") = M(m') + p*h«R(r’") (mod q)

and 7 represents 40 to 80 bits of randomness.

Based on the [FuOk99] conversion technique.

But [FuOk99] requires an IND-CPA primitive!

I1; is not semantically secure: &1 (m;7)(1) = M (m]|r)(1).
Depending on the encoding M, r is likely to be sufficiently small
to allow us to distinguish encryption of special messages,

such as mg = 0F and my = 1.
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One-wayness of Padding I

o Ei(myr) =& (mllr; H(ml|r))
where &' (m/;r") = M(m') + pxh*R(r’") (mod q)
and r represents 40 to 80 bits of randomness.

e The one-wayness of II; is a stronger assumption
than the one-wayness of the NTRU primitive.
We call the corresponding problem

the NTRU Partial-Information Inversion problem.
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Analysis of Padding II

Ex(mi ) i= €'((m & F(r)Irs H(ml|r))

where E'(m/;r") = M(m') + p*h«R(r’") (mod q)

and r represents 40 to 80 bits of randomness.

The one-wayness is equivalent to that of the NTRU primitive.
The reduction is very tight.

But IND-CCA? is related to the NTRU Partial-Information
Inversion assumption.

The reduction advantage is linear in the number of hash queries.
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Analysis of Padding III

E3(m;r) == &' (mal[ma; H(ml|r))

where E'(m’;r") = M(m') + pxhx« R(r’") (mod q)

and 7 represents 40 to 80 bits of randomness.

Based on an all-or-nothing transformation (OAEP).

Halve m = m||m and r = 7||r.

Let my = (m||F) @ F(m||r) and my = (m||r) & G(m1).

The one-wayness is equivalent to that of the NTRU primitive.
But IND-CCA? is related to the NTRU Partial-Information

Inversion assumption with “bad” parameters.
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An Improvement of Padding III

E4msr) = & (st H(mlr))
where s =m & G(r) and t =1 & F(s).
One can prove IND-CCA2 security under the basic NTRU
assumption.
e The OAEP construction provides semantic security,
e The hash function H() adds chosen-ciphertext security.
e But the reduction is quadratic in the number of hash queries,

because of the OAEP construction.
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An Improvement of REACT [OkPo01]

e We use a symmetric encryption scheme (E, D).

o Eq(myr): =& (r; H(r,0))||b
where b = Ex(m) and K = G(r).

e It provides IND-CCA2 under the basic NTRU assumption.
The reduction is linear in the number of hash queries.
Reduces the amount of randomness of the generic REACT,

by re-using the hash value.
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Conclusion

None of the NTRU paddings I1;,II; and I3 should be used:
e II; is not semantically secure.
e II; and II3 require a stronger assumption for IND-CCA2
than the basic NTRU assumption.
The reduction is not tight.
There exist efficient alternatives with
a better security assumption and a tighter security proof.

All NTRU paddings known use the random oracle model.
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