Financial Cryptography ' 2001 19-22 February 2001 Grand Cayman Islands - BWI

Monotone Signatures

Joint work with David Naccache and Christophe Tymen (Gemplus, France)

David Pointcheval Département d'Informatique ENS - CNRS

David.Pointcheval@ens.fr

http://www.di.ens.fr/users/pointche

Overview

- Introduction
- Monotone Signatures
- Attackers
 - Immediate Attacks
 - Delayed Attacks
- Optimized Solution
- Conclusion

Cryptography

Cryptography proposes many solutions for

- Confidentiality
- Authentication
- Integrity

but often based on some secret data

David Pointcheval ENS-CNRS

Monotone Signatures Financial Cryptography '2001 - Grand Cayman Island - BWI - February 2001 - 3

Corruption

However, no secret can be guaranteed for any time

- Corruption
- Kidnapping

to force the authority to publish the secret data in the newspaper

We can easily prevent duplication of coins while checking double/multiple spending However, we are aware of the problem caused by the so-called

Bank-Robbery Attack

 \Rightarrow protections have been found, but they are very costly

David Pointcheval ENS-CNRS

Monotone Signatures Financial Cryptography '2001 - Grand Cayman Island - BWI - February 2001 - 5

ID Cards

Previous protections

(against Bank-Robbery Attacks)
require an on-line context,
which is not suitable to any situation
such as ID-cards, Driving License, etc

Another possibility: threshold signature but one cannot prevent a massive corruption of *k* share-holders

Achievement

A Signature Scheme such that, after a corruption, one updates the verification process in such a way that only "really" valid signatures are accepted However, at the time of the corruption, the adversary "thinks" he holds the secret key

David Pointcheval **ENS-CNRS**

Monotone Signatures Financial Cryptography '2001 - Grand Cayman Island - BWI - February 2001 - 7

Signatures

Financial Cryptography '2001 - Grand Cayman Island - BWI - February 2001 - 8

Monotone Predicates

The Verification Algorithm checks a predicate: $\mathbf{P}(m,\sigma) = \mathbf{V}_P(m,\sigma)$ Predicates $\mathbf{P}_1, \mathbf{P}_2, \dots, \mathbf{P}_n$ are said to be *monotone* if for any input x $\mathbf{P}_n(x) \Rightarrow \mathbf{P}_{n-1}(x) \Rightarrow \dots \Rightarrow \mathbf{P}_2(x) \Rightarrow \mathbf{P}_1(x)$

P₁(x) = x is an integer
 P₂(x) = x is even
 P₃(x) = x is zero

David Pointcheval ENS-CNRS

Monotone Signatures Financial Cryptography '2001 - Grand Cayman Island - BWI - February 2001 - 9

Monotone Signature

A Key Generation Algorithm
 G(1^k, 1ⁿ) → (S₁,...,S_n;P₁,...,P_n)

 A Signing Algorithm
 S_{S1},...,S_n(m) → σ

 A list of n Monotone Verifying Algorithms
 Vⁱ_{P1},...,P_i(m,σ) → True/False
 for i=1,...,n

Properties

As for any Signature Scheme: • Completeness: $\sigma = \mathbf{S}_{S_1,...,S_n}(m) \Rightarrow \mathbf{V}^n_{P_1,...,P_n}(m,\sigma) = True$ • Soundness: (No Existential Forgery) for any adversary A, the probability of $(m,\sigma) \leftarrow A(S_1,...,S_{i-1},P_1,...,P_i)$: $\mathbf{V}^i_{P_1,...,P_i}(m,\sigma) = True$ is negligible

David Pointcheval ENS-CNRS

Monotone Signatures Financial Cryptography '2001 - Grand Cayman Island - BWI - February 2001 - 11

Indistinguishability

Missing public keys must not change the distribution:

For any $i \le n$, there exists a simulator *S* such that the distributions, for any *m*

• $S_{S_1,\ldots,S_i}(m)$

$$\mathbf{S}_{S_1,\ldots,S_n}(m)$$

are indistinguishable for someone who does not know the S_{i+1}, \ldots, S_n

Attacks

As usual, one can consider
no-message attacks: the adversary just knows the verification algorithm (*i.e.* the public key)
known-message attacks: she knows some message-signature pairs
(adaptively) chosen-message attacks: she has access to a signature oracle

David Pointcheval ENS-CNRS

Monotone Signatures Financial Cryptography '2001 - Grand Cayman Island - BWI - February 2001 - 13

Corruption

But we have to consider the corruption: the adversary

• gets some secret keys S_1, \ldots, S_i

• checks their validity w.r.t. P_1, \ldots, P_j

immediate attacks:

the adversary forges signatures before the update to $\mathbf{V}^{j+1}_{P_1,\ldots,P_{j+1}}$ (thus without P_{j+1})

delayed attacks:

the adversary waits for the new verification algorithm (with P_{i+1}) before starting to forge

Immediate Attacks

David Pointcheval ENS-CNRS

Monotone Signatures Financial Cryptography '2001 - Grand Cayman Island - BWI - February 2001 - 15

Random-looking Redundancy

To prevent immediate attacks, one can simply use • subliminal channel (low bandwidth) • secret-redundancy From a signature scheme (**G**,**S**,**V**), one signs a redundant message $\mu = m \parallel r$, where *r* "looks" random but $r_i = f_i (m, r_1, ..., r_{i-1})$ for some *i*

Symmetric Monotone Signatures

The published verification key is just the public key of the basic scheme

After corruption (and thus publication of the signing key), one publishes some redundancy criteria

 \Rightarrow immediate forgeries will be spotted

Further corruptions (under immediate attacks) will be prevented until some secret redundancy remains.

David Pointcheval ENS-CNRS

Monotone Signatures Financial Cryptography '2001 - Grand Cayman Island - BWI - February 2001 - 17

Delayed Attacks

◆ A runs the Key Generation Algorithm
 G(1^k, 1ⁿ) → (S₁,...,S_n; P₁,...,P_n)

• A publishes a partial public key (P_1, \ldots, P_i)

• A produces signatures $S_{S_1,...,S_n}(m) \rightarrow \sigma$

• Corruption: the adversary gets (S_1, \ldots, S_j)

• A publishes new public keys ($P_{i+1},...$)

 Forgeries: the adversary forges new signatures

Concatenation of Signatures

To prevent delayed attacks, one can concatenate mixture of signatures and random strings:

$$\mathbf{S}_{S_{1},...,S_{n}}(m) = \mathbf{S}_{S_{1}}(m) || \mathbf{S}_{S_{2}}(m) || R_{3} || \mathbf{S}_{S_{4}}(m) || ... || R_{n}$$

But then, the distributions, for any key S_i , and any message m, $\mathbf{S}_{S_i}(m)$ and $R \leftarrow \{0,1\}^l$ must be indistinguishable

David Pointcheval ENS-CNRS

Monotone Signatures Financial Cryptography '2001 - Grand Cayman Island - BWI - February 2001 - 19

Example: Schnorr's Signature

 \Rightarrow indistinguishable from a random pair Don't use (*r*,*s*) as output signature!

Properties

At least *n* Schnorr's signatures to prevent up to *n* corruptions
And about *n* random values as well
Therefore:
Cost: *n* times the basic computational time *n* exponentiation per signature
2*i* exponentiations per verification

Length: 2*n* times the basic length

⇒ 2*n* × 320 bits = 80 *n* Bytes

David Pointcheval ENS-CNRS

Financial Cryptography '2001 - Grand Cayman Island - BWI - February 2001 - 21

Okamoto-Schnorr Signature Extending the Okamoto's variant: $G = \langle g \rangle$ of order q and $g_1, \dots, g_n \in G$ $e (x_1, \dots, x_n)$: secret key $e (x_1, \dots, x_n)$: secret key $e (y = g_1^{x_1} \dots g_n^{x_n}$: public key $e (y = g_1^{x_1} \dots g_n^{x_n})$: $e (y = g_1^{x_1} \dots g_n^{x_n})$ $e (y = g_1^{x_1} \dots g_n^{x_n})$

Degrees of Freedom

 $e = h(m, g_1^{s_1} \dots g_n^{s_n} y^e)$

Without any relation between the g_i 's, one has no freedom about the s_i 's, since *e* is provided once the t_i 's are fixed With some relations, one can hide secret redundancy into some s_i 's. The more relations are known,

the more of s_i 's can be chosen:

 $s_i = f_i(m//r)$

David Pointcheval ENS-CNRS

Monotone Signatures Financial Cryptography '2001 - Grand Cayman Island - BWI - February 2001 - 23

Properties

 At least k relations must exist to prevent up to k corruptions

And about k independent values as well Therefore:

Cost:

k exponentiation per signature

• 2k exponentiations per verification

• Length: only 2k+1 elements in \mathbb{Z}_q $\Rightarrow (2k+1) \times 160$ bits $\approx 40 k$ Bytes

David Pointcheval ENS-CNRS

Monotone Signatures Financial Cryptography '2001 - Grand Cayman Island - BWI - February 2001 - 24

Conclusion

Monotone Signatures propose new features
 Resistance against many corruptions,
 Prevention of the immediate attacks:

 Symmetric Monotone Signatures which are almost as efficient as the basic signature scheme

 Prevention of the delayed attacks:

 Concatenation of Signatures
 Signatures with various degrees of freedom can improve efficiency