8th ACM Conference on Computer and Communications Security ' 2001

5-8 November 2001 Philadelphia - Pennsylvania - USA

Twin Signatures: an Alternative to the Hash-and-Sign Paradigm

David Naccache (Gemplus, France)
David Pointcheval (ENS, France)
Jacques Stern (ENS, France)

Overview

- Introduction
- Security notions for signatures
- The twinning paradigm
- ◆ A DL-based example
- An RSA-based example
- Conclusion

Introduction

- Digital signature = electronic version of handwritten signatures
- ⇒ authenticates the sender of a message
 - the receiver knows the identity
 of the sender
 - the sender cannot deny later having sent the message (non-repudiation)

D. Naccache - D. Pointcheval - J. Stern

Twin Signatures: an Alternative to the Hash-and-Sign Paradigm ACM CCS '2001 - Philadelphia - Pennsylvania - USA - November 2001 - 3

Digital signatures

Defined by two algorithms

- the signing algorithm S:
 private key + message m
 → signature σ
- the verification algorithm V:
 public key + message m
 + alleged signature σ
 → agrees or not

Digital signatures

Signing algorithm **S**Verification algorithm **V**

Private key *S*Public key *P*

Security: it is impossible to produce a new valid pair (m, σ)

D. Naccache - D. Pointcheval - J. Stern

Twin Signatures: an Alternative to the Hash-and-Sign Paradigm ACM CCS '2001 - Philadelphia - Pennsylvania - USA - November 2001 - 5

Security notions

More precisely, one considers

- total break:
 the adversary recovers the private key
- universal forgery:
 the adversary can sign
 any message of her choice
- existential forgery:
 the adversary can produce accepted message/signature pairs

Adversaries

The information available to the adversary may be various, thus several attacks

- no-message attacks:
 the adversary just knows the verification algorithm (i.e. the public key)
- known-message attacks: she knows some message-signature pairs
- (adaptively) chosen-message attacks:
 she has access to a signing oracle

D. Naccache - D. Pointcheval - J. Stern

Twin Signatures: an Alternative to the Hash-and-Sign Paradigm ACM CCS '2001 - Philadelphia - Pennsylvania - USA - November 2001 - 7

Secure signature schemes

For achieving non-repudiation, the scheme must prevent existential forgeries.

Furthermore, signatures are aimed to be published, thus known-message attacks should be withstood.

Secure signature scheme:

no existential forgery even against adaptively chosen-message attacks.

Example: RSA signature

n = pq product of large primes e: **public** exponent $d = e^{-1} \mod \varphi(n)$: **private** exponent

Signature of the message $m \in \mathbb{Z}_n$ $\sigma = m^d \mod n$ Verification of (m,σ) test whether $m = \sigma^e \mod n$

D. Naccache - D. Pointcheval - J. Stern

Twin Signatures: an Alternative to the Hash-and-Sign Paradigm ACM CCS '2001 - Philadelphia - Pennsylvania - USA - November 2001 - 9

RSA signature: problems

- ◆ Only small messages (in **Z**_n) can be signed
- Existentially forgeable
- \Rightarrow in order to solve the former problem: use of a collision-resistant hash function h

If h furthermore behaves like a truly random function $\{0,1\}^* \to \mathbf{Z}_n$: FDH in the ROM

FDH-RSA, provably secure [BR96, Co00]

⇒ hash-and-sign or hash-and-decrypt

An alternative: twinning

- Without the hash function, the RSA signature is insecure
 - even with it, the security proof only holds in the random oracle model

Insecure? Because from σ it is easy to compute m such that $m = \sigma^e \mod n$

What about considering twin-signatures (σ, τ) such that $m = \sigma^e \mod n$ and $m+1 = \tau^e \mod n$?

D. Naccache - D. Pointcheval - J. Stern

Twin Signatures: an Alternative to the Hash-and-Sign Paradigm ACM CCS '2001 - Philadelphia - Pennsylvania - USA - November 2001 - 11

Twin signatures

- Let S be a signature scheme (maybe weakly secure)
- We consider the signature scheme which consists in computing
 - $m_1 = f(m,r)$ and $m_2 = g(m,r)$ for some random r
 - \bullet $\sigma_1 = \mathbf{S}(m_1)$ and $\sigma = \mathbf{S}(m_2)$
- We thus sign two related messages

A DL-based example: DSA

G = $\langle g \rangle$ of prime order qx: **secret** key $y=g^x$: **public** key

• For signing $m \in \mathbf{Z}_q$, $\mathbf{S}_{x}(m) = (c,d)$, where

$$0 < u < q$$
 $c = (g^u) \mod q$ $c \neq 0$
and $d = (m+x c)/u \mod q$ $d \neq 0$

lacktriangle Verification, $\mathbf{V}_{y}(m,c,d)$:

$$h = 1/d \mod q$$
, $h_1 = h \mod q$, $h_2 = h \mod q$, $c' = g^{h_1} y^{h_2}$

check whether 0 < c, d < q and c = c mod q

D. Naccache - D. Pointcheval - J. Stern

Twin Signatures: an Alternative to the Hash-and-Sign Paradigm ACM CCS '2001 - Philadelphia - Pennsylvania - USA - November 2001 - 13

Twin-DSA

 $\mathsf{DSA}_{\scriptscriptstyle \mathcal{X}}(m) = \mathbf{S}_{\scriptscriptstyle \mathcal{X}}(\mathsf{SHA}(m))$

 Unfortunately, no security result, even in the random oracle model, or the generic model.

Twin-DSA_x(m) = ((c, d), (c', d')), where (c, d) and (c', d') are two distinct signatures of m (with different random u, u')

Twin-DSA is secure in the generic model

An RSA-based example: GHR

n = pq product of large primes $y \in \mathbf{Z}_n$: **public** element

- For signing e, $\mathbf{S}_{p,q}(e) = s$, where $d = e^{-1} \mod \varphi(n)$, $s = y^d \mod n$
- $lack Verification, \qquad \mathbf{V}_{y}(e,s): s^e = y \bmod n$
- ◆ EuroC' 99: $GHR_{p,q}(m) = \mathbf{S}_{p,q}(h(m))$ if h is divisible-intractable + chameleon
 - ⇒ no existential forgeries against adaptive chosen-message attacks

D. Naccache - D. Pointcheval - J. Stern

Twin Signatures: an Alternative to the Hash-and-Sign Paradigm ACM CCS '2001 - Philadelphia - Pennsylvania - USA - November 2001 - 15

Twin-GHR

- ◆ The chameleon property of h is required for simulating the signing oracle
 ⇒ without it, no security against chosen-message attacks
- ◆ Twin-GHR_{p,q} $(m,a//b) = (\mathbf{S}_{p,q}(e_1), \mathbf{S}_{p,q}(e_2))$ for $e_i = h(m_i)$ where $m_1 = (m \oplus a) \parallel (m \oplus b)$ and $m_2 = a \parallel b$
- Verification: get m_1 and m_2 , and $M = m_1 \oplus m_2$, check the redundancy $M = m \parallel m$, output m

Twin-GHR: Security

The twinning replaces the chameleon property: if *h* simply achieves divisible-intractability (or injection in the primes)

Twin-GHR prevents existential forgeries even against adaptive chosen-message attacks

- no generic model
- no random oracle
- just the flexible RSA problem.

D. Naccache - D. Pointcheval - J. Stern

Twin Signatures: an Alternative to the Hash-and-Sign Paradigm ACM CCS '2001 - Philadelphia - Pennsylvania - USA - November 2001 - 17

Conclusion

Twinning is a new paradigm to

- prevent existential forgeries (cf. DSA) it may replace the random oracle model in some situations
- achieves security against adaptive chosen-message attacks (cf. GHR) it may replace chameleon hash function or the random oracle model
- this new direction should be more investigated.