Public Key Cryptography PKC ' 2000

18-20 january 2000 - Melbourne - Australia

The Composite Discrete Logarithm and Secure Authentication

David Pointcheval Département d'Informatique ENS - CNRS

David.Pointcheval@ens.fr

http://www.di.ens.fr/~pointche

Overview

- Introduction
- Zero-Knowledge vs. Witness-Hiding
- The Discrete Logarithm Problem
- The GPS Identification Scheme
- The New Schemes
- Conclusion

Introduction

Authentication Protocols:

Identification (Zero-Knowledge Proofs)

Signatures (Non-Interactive Proofs)

Blind Signatures (Anonymity)

David Pointcheval ENS-CNRS

The Composite Discrete Logarithm and Secure Authentication - PKC '2000 - 3

Previous Work

Fiat-Shamir (SQRT), Ong-Schnorr (2^k-th roots) Guillou-Quisquater (RSA), Schnorr (DL(p))

e-th roots and discrete logarithm

 \Rightarrow high computational load

♦ PKP, SD, CLE, PPP

combinatorial problems

 \Rightarrow high communication load

Tools: ZK vs. WI

Zero-Knowledge:

(GMR 85)

no information leaked about the secret

 Witness Hiding/Indistinguishability: (FS 90)

> no useful information leaked about the witness (secret key)

David Pointcheval ENS-CNRS

The Composite Discrete Logarithm and Secure Authentication - PKC '2000 - 5

Zero Knowledge

Advantages:

 no information leaked about the secret
 ⇒ perfect proof of knowledge (perfect authentication)

non-interactive version
 \Rightarrow signature schemes (FS86 - PS96)

Drawbacks:

- simulation \Rightarrow many iterations
- large computations/communications
 - One of the best: Schnorr's protocols

Witness Indistinguishability

The Discrete Logarithm Problem

Setting:

- *n* and *m* large numbers such that $m|\varphi(n)$
- g in \mathbf{Z}_n^* of order m
- Secret: x in \mathbf{Z}_m^*
- Public: $y=g^x \mod n$
- Usually DL(p):

n=p and m=q/p-1are both large prime integers

The Composite Discrete Logarithm

David Pointcheval ENS-CNRS

The Composite Discrete Logarithm and Secure Authentication - PKC '2000 - 9

New Setting: *α*-strong modulus

• α -strong prime *p*: *p*=2*r*+1 and for any $m \le \alpha$, gcd(m,r)=1

α-strong RSA modulus n: n=pq
 and both p and q are α-strong primes

• asymmetric basis $g \in \mathbf{Z}_n^*$:

2 divides $\operatorname{Ord}_p(g)$ but not $\operatorname{Ord}_q(g)$

Theorem: a collision of $x \rightarrow g^x \mod n$ provides the factorization of *n*

The Schnorr 's Identification

David Pointcheval ENS-CNRS

The Schnorr 's Identification

David Pointcheval ENS-CNRS

The GPS Scheme

Girault (EC '91) - Poupard-Stern (EC '98)

- n=pq large RSA modulus
- g in \mathbf{Z}_n^* of large order (unknown)

The GPS Scheme

David Pointcheval ENS-CNRS

The GPS Scheme

Advantages:

high security level: DL(n)

 just r+es to do on-line no more modular reduction

Drawbacks:

zero-knowledge: several iterations

• S > Ord(g) (for any g): $S > \lambda(n)$ and $R >> S.2^k$

> \Rightarrow large parameters (S and R) and large secret key (s)

The Composite Discrete Logarithm and Secure Authentication - PKC '2000 - 15

David Pointcheval ENS-CNRS

New Scheme (New Setting)

• g asymmetric basis in \mathbf{Z}_n^* of large order

• Keys: s in \mathbf{Z}_s

and $v = g^{-s} \mod n$

sk - security level

 $s \log S$ - size of the secret

s log *R* - size of the random

Properties

David Pointcheval ENS-CNRS

The Composite Discrete Logarithm and Secure Authentication - PKC '2000 - 17

Efficiency

◆ Drawbacks:
a lower security level: FACT(n) but isn't that enough...?
◆ Advantages:
a still just r+es to do on-line (no modular reduction)
a witness-indistinguishable:
⇒ only one iteration with large k
a still S > Ord(g) and R >> S.2^k but Ord(g) can be small (160 bits)
⇒ small secret key and numbers

More Concrete Efficiency

Signature

Security Properties

Statement:

- if S > Ord(g), then
- an existential forgery
- under an adaptively chosen-message attack
- in the random oracle model is harder than factorization

David Pointcheval **ENS-CNRS**

The Composite Discrete Logarithm and Secure Authentication - PKC '2000 - 21

Blind Signature

• n=pq large 2^k-strong RSA modulus

- g asymmetric basis in \mathbf{Z}_{n}^{*} of large order
- Keys: s in \mathbb{Z}_s and $v = g^{-s} \mod n$

David Pointcheval ENS-CNRS

Security Properties

David Pointcheval ENS-CNRS

The Composite Discrete Logarithm and Secure Authentication - PKC '2000 - 23 $\,$

Parameters

Scheme	GPS	New ID	New Sign.
Modulus	n=pq =1024 bits with $ p = q =512$		
$\mathbf{Ord}(g)$	1022 bits	160 bits	
Security (k)	24	24	128
Information leakage (k')	64		
S	1030 bits	168 bits	168 bits
R	1118 bits	256 bits	360 bits
Size	1222 bits	360 bits	488 bits
Security	= DL(n)	>Fact(n)	>Fact(n)

Conclusion

 New setting for GPS schemes:

 very efficient identification (precomputation)
 very efficient signature ("on the fly")
 very small secret key (less than 200 bits)
 security relative to factorization (at least) (and then security of Schnorr's schemes)

 New blind signature scheme

 very efficient for the signer
 with security relative to factorization

David Pointcheval ENS-CNRS