Financial Cryptography '2000 21-25 february 2000 - Anguilla

Self-Scrambling Anonymizers

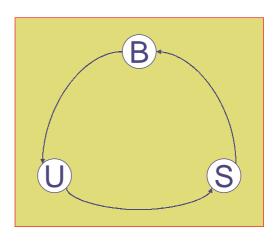
David Pointcheval Département d'Informatique ENS - CNRS

David.Pointcheval@ens.fr

http://www.di.ens.fr/~pointche

Overview

- Introduction to E-cash
- Weak/Strong Anonymity
- A New Scenario
- Self-Scrambling Anonymizer
- An Example: DL-based
- Security Analysis
- Conclusion


Introduction

E-cash usually involves 3 participants:

the bank

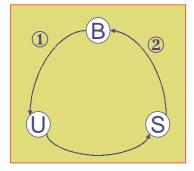
the user

the shop

David Pointcheval ENS-CNRS

Self-Scrambling Anonymizers - Financial Cryptography '2000 - 3

Classical Scenario


Use of e-coins:

the coin is obtained from the bank

- \Rightarrow withdrawal
- the user buys something with it
 - \Rightarrow spending

◆ the shop gives it back to the bank
 ⇒ deposit

Anonymity

① B knows the coin it gives to U

② B sees the coin deposited by S

 \Rightarrow B learns the transaction U-S

Leakage of private data

Cannot be avoided

e usually avoided: blind signatures

David Pointcheval ENS-CNRS

Self-Scrambling Anonymizers - Financial Cryptography '2000 - 5

Over-Spending

Duplication of a coin:

 \Rightarrow possibility of spending it many times

Two scenarios:

- the bank is on-line during the spending
 → immediate detection
- the bank is off-line \rightarrow late detection

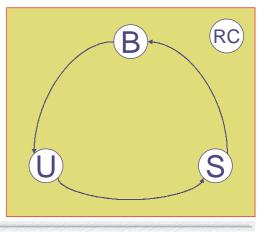
because of anonymity: who is the bad guy?

Identity in the Coin

 ◆ Chaum-Fiat-Naor (1988): identity embedded in the coin such that
 ID remains concealed after one use
 ID is revealed after twice
 ◆ Still allows "perfect crime": blackmailing without any risk!
 ⇒ revokable anonymity

David Pointcheval ENS-CNRS

Self-Scrambling Anonymizers - Financial Cryptography '2000 - 7


Revokable Anonymity

New participant: Revocation Center

 \rightarrow can revoke anonymity

- \Rightarrow reveal the link between
 - a coin and a user

a transaction and a user
 when the need arises

Strong Anonymity

Problem of hiding:

the link transaction-user

 \rightarrow untraceability

• the link transaction-transaction of one user \rightarrow unlinkability

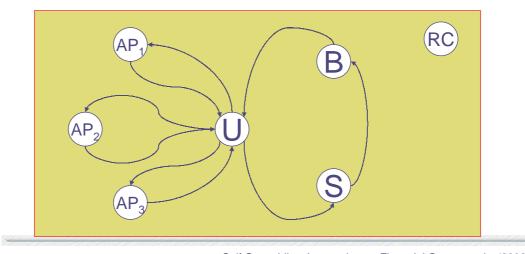
Strong notion:

any adversary <u>cannot learn</u> the link, but with negligible probability

David Pointcheval ENS-CNRS

Self-Scrambling Anonymizers - Financial Cryptography '2000 - 9

Weak Anonymity

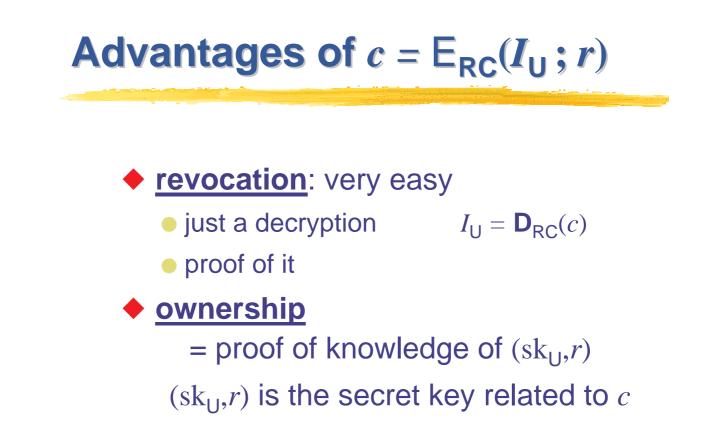

Weak notion:

an adversary may know a link, however, he <u>cannot prove</u> it

His knowledge is non-transferable

New Scenario

<u>New participants</u>: Anonymity Providers \rightarrow help the user to get anonymous coins (still revocable by RC)



David Pointcheval ENS-CNRS

Self-Scrambling Anonymizers - Financial Cryptography '2000 - 11

New Scenario

Usually: the bank "blindly" certifies a coin after an intricate proof of its validity (*i.e.* that revocability is possible by RC) \rightarrow restrictive blind signatures **Here:** the bank certifies $c=\mathbf{E}_{RC}(I_{U}; r)$ after the view of both I_{U} and r $Coin = (c, Cert_{c})$

David Pointcheval ENS-CNRS

Self-Scrambling Anonymizers - Financial Cryptography '2000 - 13

Self-Scrambling Anonymity

But the bank will recognize *c*,... Anonymity?

the user "scrambles himself"

- $c \text{ into } c' = \mathbf{E}_{RC}(I_{U}; r')$
- \Rightarrow c' unknown to the bank

but c' is not certified!!

• c' ~ c:

 \blacklozenge the AP certifies c' when he knows that

• c is valid: with $Cert_c$ with a proof of ownership

with a proof of equivalence

Self-Scrambling Anonymizers - Financial Cryptography '2000 - 14

Proof of Equivalence

 ◆ to achieve, at least, <u>weak anonymity</u> this proof must be "non-transferable"
 ⇒ e.g. Zero-Knowledge Proof

 ◆ to get evidences of <u>over-spending</u> (when a coin is used at least twice) this proof must be "non-repudiable"
 ⇒ e.g. Undeniable Proof

David Pointcheval ENS-CNRS

Self-Scrambling Anonymizers - Financial Cryptography '2000 - 15

An Example: DL-based

• Revocation Center: $pk_{RC} = Y = g^{sk_{RC}}$ • User: $pk_U = I_U = g^{sk_U}$ • Coin: El Gamal Encryption $c = (a = g^r, b = Y^r I_U)$ • Ownership: Okamoto's variant \rightarrow knowledge of (r, sk_U) s.t. $b = Y^r g^{sk_U}$ $u, v \in \mathbb{Z}_q$ and $t = Y^u g^v \mod p \xrightarrow{t} (e \in \mathbb{Z}_{2^k})$ $\alpha = u - e \cdot r \mod q$ $\beta = v - e \cdot sk_U \mod q$

David Pointcheval ENS-CNRS

Self-Scrambling Anonymizers - Financial Cryptography '2000 - 16

Self-Scrambling (1/2) $c = (a = g^r, b = Y^r I_U) \text{ and } c' = (a' = g^{r'}, b' = Y^{r'} I_U)$ with $r' = r + \rho$ • Proof of <u>equivalence</u> of ciphertexts: $\log_g a'/a = \log_Y b'/b$ • Proof of <u>ownership</u>: signature of the message $m = (d = h^\rho, AP, date, etc)$ with the secret (r, sk_U) related to $b = Y^r g^{sk_U}$ \Rightarrow the owner of c knows $\rho = \log_h d$

David Pointcheval ENS-CNRS

Self-Scrambling Anonymizers - Financial Cryptography '2000 - 17

Self-Scrambling (2/2)

 $c = (a = g^r, b = Y^r I_U)$ and $c' = (a' = g^{r'}, b' = Y^{r'} I_U)$ with $r' = r + \rho$

> Confirmation: proof of equality log_h d = log_g a'/a = log_Y b'/b
> Interactively: Zero-Knowledge proof which just convinces the AP
> Non-Interactively: Designated-Verifier Signature

Anonymity

♦ None, if not required

 ⇒ no extra cost

 ♦ <u>Weak Anonymity</u>:

 with at least one AP
 (under the DDH assumption)

 ♦ <u>Strong Anonymity</u>:

 with at least one honest AP

David Pointcheval ENS-CNRS

Self-Scrambling Anonymizers - Financial Cryptography '2000 - 19

Security Analysis

Impersonation: the secret sk_U is only used in ZK or NIZK proofs ⇒ never leaked
 But required for any use of a coin
 Revocation: with the coin c = (a,b) ⇒ I_U = b / a^{sk_{RC}} with the proof of log_g Y = log_a b/I_U
 But under evidences of fraud...

Evidences

Two of some

 spending: signature with b, of some coin c = (a,b), on a purchase
 anonymizing: signature with b, of some coin c = (a,b), on m = (d=h^p, AP, date, etc)
 ⇒ related coin c' = (a',b') such that log_h d = log_g a'/a = log_Y b'/b to be blacklisted

David Pointcheval ENS-CNRS

Self-Scrambling Anonymizers - Financial Cryptography '2000 - 21

Fraud Detection

Counterfeit Money:

• **<u>duplication</u>** of a coin: over-spending

creation of money by an AP

when a coin is used, the receiver

- the shop for a spending
- the AP for anonymizing

asks for its value to the certifier, the AP, which is seen as a middleman

over-spent coin: asked many times

Conclusion

New tool for anonymity

efficiency

- on extra-cost, if no anonymity required
- few exponentiations (~10) per anonymizing

security

anonymity related to semantic security
 ⇒ based on DDH

practicability: profitability

• AP gives c' of just 99.9% of the value of c

David Pointcheval ENS-CNRS

Self-Scrambling Anonymizers - Financial Cryptography '2000 - 23