New Public Key Cryptosystems based on the Dependent–RSA Problems

David Pointcheval

Laboratoire d'Informatique École Normale Supérieure

David.Pointcheval@ens.fr http://www.dmi.ens.fr/~pointche

New Public Key Cryptosystems based on the Dependent-RSA Problems

Summary

- Public Key Cryptosystems
 - Definition
 - Security/Attacks
- Previous Schemes
- The Dependent-RSA Problems
 - Presentation
 - Relations with RSA
 - Assumptions
- <u>New Schemes</u>
 - The Main Scheme
 - Security Against Chosen-Plaintext Attacks
 - Two Variants Secure Against Adaptively CC-Attacks
- Efficiency
- <u>Conclusion</u>

The New Scheme

David Pointcheval

New Public Key Cryptosystems based on the Dependent–RSA Problems

Ind-CPA \Leftrightarrow D-DRSA

However, Chosen-Ciphertext Attacks can break both One-Wayness and Semantic Security (indeed, this scheme is easily malleable).

Because of the D-DRSA, one has to use a large exponent e.

9

New Public Key Cryptosystems based on the Dependent-RSA Problems

Efficiency

Schemes	El Gamal	OAEP	DRSA	DRSA v2
	512	1024	1024	1024
Security				
One-Wayness	DH	RSA	C-DRSA	RSA
Ind-CPA	DDH	RSA	D-DRSA	RSA
Ind-CCA	—	RSA	—	RSA
Size (in bits)				
Plaintext	511	448	1024	1024
Ciphertext	1024	1024	2048	2208
Expansion	2	2.3	2	2.2
Encryption				
Workload/kB	6144	311	1112	280
Decryption				
Workload/kB	3072	7022	4184	3352

David Pointcheval

New Public Key Cryptosystems based on the Dependent-RSA Problems

Conclusion

- DRSA: a new family of Problems
 - a Computational one (mostly equivalent to RSA)
 - a Decisional one
- DRSA: a new family of Cryptosystems
 - Ind-CPA (w.r.t. D-DRSA) in the standard model
 - Ind-CCA (w.r.t. RSA) in the random oracle model

 $\Rightarrow \left\{ \begin{array}{c} \text{as secure as OAEP} \\ \text{more efficient than OAEP} \end{array} \right.$

15