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2 Dépt d’Informatique, ENS – CNRS, 45 rue d’Ulm, 75230 Paris Cedex 05, France
E-mail: David.Pointcheval@ens.fr – URL: http://www.di.ens.fr/users/pointche

Abstract. The last few months, several new results appeared about the OAEP con-
struction, and namely the RSA–OAEP cryptosystem. Whereas OAEP was believed to
provide the highest security level (IND-CCA2), with an efficient exact security level, the
effective security result had been showed to be incomplete. Nevertheless, the particular
instantiation with RSA (which is anyway almost the sole application) had been eventu-
ally proven secure, but the security reduction appears to be quite inefficient. Therefore,
with respect to the provable security result, RSA–OAEP with a 1024-bit modulus just
provides a 240 security level.
Several alternatives have been recently proposed, but most of them face the same prob-
lem with a quadratic time security reduction. Excepted the recent generic conversion,
called REACT, which admits a linear time reduction. Consequently, RSA–REACT ap-
pears to be the best alternative to RSA–OAEP, granted the high security level, even
with real world parameters. RSA–REACT with a 1024-bit modulus indeed guarantees
a 280 security level (IND-CCA2 under the RSA assumption).
Furthermore, the full construction is already proven secure when integrating symmetric
encryption, which guarantees the security of the overall communication.

1 Introduction

The OAEP conversion method [5] was introduced by Bellare and Rogaway in
1994 and was believed to provide semantic security against adaptive chosen-
ciphertext attacks [17, 27], based on the one-wayness of a trapdoor permutation.
Therefore, when Bleichenbacher published his attack on RSA–PKCS #1 v1.5 [28,
7], OAEP was the only efficient and “provably secure” construction. RSA–OAEP
thus became the natural successor, the RSA–PKCS #1 v2.0.

Unfortunately, Shoup [30] recently showed that the security result was incom-
plete. More precisely, he gave a strong argument against the chosen-ciphertext
security under the sole one-wayness of the permutation.

Did Shoup’s result mean that OAEP (and consequently RSA–PKCS #1 v2.0)
was insecure or that it was impossible to prove the security of OAEP? Fortu-
nately not: Shoup’s result did not preclude the possibility of proving the se-
curity of OAEP from stronger assumptions. And thus, Fujisaki, Stern and the
authors [16] introduced a stronger assumption, the partial-domain one-wayness
of the permutation, to prove that OAEP is semantically secure against adaptive
chosen-ciphertext attack in the random oracle model. With the further result
that the partial-domain one-wayness of the RSA function is equivalent to the
(full-domain) one-wayness, we provided a complete argument for the security of
RSA–OAEP under the sole one-wayness of the RSA function.

However, our proof reduction is not efficient. It is indeed a quadratic time
reduction (as the original one [5]). Thus, it does not provide any guarantee
for real world parameters. For example, RSA–OAEP with a 1024-bit modulus
achieves a security level of 240 only!
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Several alternatives to OAEP have been recently proposed, such as OAEP+,
by Shoup [30] himself, and SAEP/SAEP+ by Boneh [8]. But either they provided
an efficient linear time reduction for small exponents only or inefficient quadratic
time reduction for larger exponents. Since people do not trust RSA with small
exponents [11, 9], these alternatives do not provide a better security level than
RSA–OAEP, because of the bad reductions.

Only one construction provides guarantees, even for real world parameters,
the Rapid Enhanced-security Asymmetric Cryptosystem Transform [22], which
applies to most of the trapdoor one-way functions. This is a generalization of the
construction suggested by Bellare and Rogaway for trapdoor permutations [4].
For this construction, we gave an efficient linear reduction which guarantees the
security of RSA–REACT even for 1024-bit moduli.

2 Public-Key Encryption

The aim of public-key encryption is to allow anybody who knows the public key
of Alice to send her a message that only she will be able to recover it through
her private key.

2.1 Definitions

A public-key encryption scheme is defined by the three following algorithms:

– The key generation algorithm K. On input 1k, where k is the security pa-
rameter, the algorithm K produces a pair (pk, sk) of matching public and
secret keys. Algorithm K is probabilistic.

– The encryption algorithm E . Given a message m and a public key pk, E
produces a ciphertext c of m. This algorithm may be probabilistic.

– The decryption algorithm D. Given a ciphertext c and the secret key sk, D
returns the plaintext m.

2.2 Security Notions

The first security notion that one would like for an encryption scheme is one-
wayness: starting with just public data, an attacker cannot recover the complete
plaintext of a given ciphertext. More formally, this means that for any adversary
A, her success in inverting E without the secret key should be negligible over
the probability spaceM×Ω, whereM is the message space and Ω is the space
of the random coins r used for the encryption scheme, and the internal random
coins of the adversary:

Succow(A) = Pr
m,r

[(pk, sk)← K(1k) : A(pk, Epk(m; r)) = m].

However, many applications require more from an encryption scheme, namely
semantic security (a.k.a. polynomial security or indistinguishability of encryp-
tions [17], denoted IND): if the attacker has some information about the plain-
text, for example that it is either “yes” or “no” to a crucial query, no adversary
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should learn more with the view of the ciphertext. This security notion requires
computational impossibility to distinguish between two messages, chosen by the
adversary, one of which has been encrypted, with a probability significantly
better than one half: her advantage Advind(A), where the adversary A is seen
as a 2-stage Turing machine (A1,A2), should be negligible, where Advind(A) is
formally defined as.

2× Pr
b,r

[

(pk, sk)← K(1k), (m0, m1, s)← A1(pk),
c = Epk(mb; r) : A2(m0, m1, s, c) = b

]

− 1.

Another notion was defined thereafter, the so-called non-malleability [12], in
which the adversary tries to produce a new ciphertext such that the plaintexts
are meaningfully related. This notion is stronger than the above one, but it is
equivalent to semantic security in the most interesting scenario [3, 6].

On the other hand, an attacker can use many kinds of attacks: since we are
considering asymmetric encryption, the adversary can encrypt any plaintext of
her choice with the public key, hence chosen-plaintext attack. She may, further-
more, have access to more information, modeled by partial or full access to some
oracles:

– a plaintext-checking oracle which, on input of a pair (m, c), answers whether
c encrypts the message m. This attack has been named the Plaintext-Check-
ing Attack (PCA) [22];

– a validity-checking oracle which, on input of a ciphertext c, just answers
whether it is a valid ciphertext. This weak oracle (involved in the reaction
attacks [18]) had been enough to break some famous encryption schemes [7,
20], namely PKCS #1 v1.5;

– or the decryption oracle itself, which on the input of any ciphertext, except
the challenge ciphertext, responds with the corresponding plaintext (non-
adaptive/adaptive chosen-ciphertext attacks [21, 27]).

The latter, the adaptive chosen-ciphertext attack denoted CCA2, is clearly the
strongest one.

A general study of these security notions and attacks was given in [3], we
therefore refer the reader to this paper for more details. However, the by now
expected security level for public-key encryption schemes is semantic security
against adaptive chosen-ciphertext attacks (IND-CCA2) – where the adversary
just wants to distinguish which plaintext, between two messages of her choice,
had been encrypted; she can ask any query she wants to a decryption oracle
(except the challenge ciphertext). This is the strongest scenario one can define.

3 Review of OAEP

3.1 Description

We briefly describe the f -based OAEP cryptosystem (K, E ,D) obtained from
any permutation f : {0, 1}k −→ {0, 1}k, which can also be seen as

f : {0, 1}n+k1 × {0, 1}k0 −→ {0, 1}n+k1 × {0, 1}k0,
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with k = n+k0 +k1, whose inverse is denoted by g. We need two hash functions
G and H:

G : {0, 1}k0 −→ {0, 1}n+k1 and H : {0, 1}n+k1 −→ {0, 1}k0.

Then,

– K(1k): specifies an instance of the function f , and of its inverse g. The public
key pk is therefore f and the secret key sk is g.

– Epk(m; r): given a message m ∈ {0, 1}n, and a random value r ∈R {0, 1}
k0,

the encryption algorithm Epk computes

s = (m‖0k1)⊕G(r) and t = r ⊕H(s),

and outputs the ciphertext c = f(s, t).
– Dsk(c): thanks to the secret key, the decryption algorithm Dsk extracts

(s, t) = g(c), and next r = t⊕H(s) and M = s⊕G(r).

If [M ]k1 = 0k1, the algorithm returns [M ]n, otherwise it returns “Reject”.

In the above description, [M ]k1 denotes the k1 least significant bits of M , while
[M ]n denotes the n most significant bits of M .

3.2 Security Analysis

The Underlying Problems. In the original analysis of OAEP from [5], it is
only required that f is a trapdoor one-way permutation. However, since [16], we
have to consider additional related problems: the partial-domain one-wayness
and the set partial-domain one-wayness of permutation f :

– (τ, ε)-One-Wayness of f , means that for any adversary A whose running
time is bounded by τ , the success probability Succow(A) is upper-bounded
by ε, where

Succow(A) = Pr
s,t

[A(f(s, t)) = (s, t)];

– (τ, ε)-Partial-Domain One-Wayness of f , means that for any adversary A
whose running time is bounded by τ , the success probability Succpd−ow(A)
is upper-bounded by ε, where

Succpd−ow(A) = Pr
s,t

[A(f(s, t)) = s];

– (`, τ, ε)-Set Partial-Domain One-Wayness of f , means that for any adver-
sary A that outputs a set of ` elements within time bound τ , the success
probability Succs−pd−ow(A) is upper-bounded by ε, where

Succs−pd−ow(A) = Pr
s,t

[s ∈ A(f(s, t))].

We denote by Succow(τ), (resp. Succpd−ow(τ) and Succs−pd−ow(`, τ)) the max-
imal success probability Succow(A) (resp. Succpd−ow(A) and Succs−pd−ow(A)).
The maximum ranges over all adversaries whose running time is bounded by τ .
In the third case, there is an obvious additional restriction on this range from
the fact that A outputs sets with ` elements.
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Security Results. In their paper [5], Bellare and Rogaway provided a se-
curity analysis, which proved that the OAEP construction together with any
trapdoor one-way permutation is semantically security and weakly plaintext-
aware. Unfortunately, this just proves semantic security against non-adaptive
chosen-ciphertext attacks (a.k.a. lunchtime attacks [21] or IND-CCA1). Even if
the achieved security was believed to be stronger (namely IND-CCA2), it had
never been proven. Actually, Shoup [30] recently showed that it is quite unlikely
that such a security proof exists, for any trapdoor one-way permutation, but
maybe under a stronger assumption on the permutation.

In [16], we introduced such a stronger assumption to provide the plaintext-
awareness, and thus to prove the following result.

Theorem 1. Let A be a CCA2–adversary against the “semantic security” of the
OAEP conversion (K, E ,D), with advantage ε and running time t, making qD,
qG and qH queries to the decryption oracle, and the hash functions G and H
respectively. Then, Succs−pd−ow(qH , t′) is greater than

ε

2
−

2qDqG + qD + qG

2k0
−

2qD

2k1
,

where t′ ≤ t+qG ·qH ·(Tf +O(1)), and Tf denotes the time complexity of function
f .

4 RSA–OAEP

The main application of OAEP is certainly the famous RSA–OAEP, which has
been used to update the PKCS #1 standard [28], granted the believed security
result.

4.1 Description: the RSAES–OAEP

The description of RSA–OAEP seems straightforward, but one problem had to
be dealt with, since the RSA function does not map any {0, 1}k into {0, 1}k. The
RSAES–OAEP proposal (in the PKCS #1 v2.0 standard, and in the NESSIE
submission [19]) uses a padding on 1 byte less than the size of the modulus.

Furthermore, in the RSAES–OAEP encoding, the padding differs a little bit
from the original proposition, since the redundancy 0k1 is replaced by another
kind of redundancy (a hash value), and the order of s and t is inverted before
applying the RSA function: the value maskedSeed‖maskedDB is the input to f ,
the RSA function, where maskedSeed plays the role of t, and maskedDB the role
of s. But these latter modifications do not affect the security analysis.

However, the difference between the size of the padding and the length of
the modulus affects it a lot: let us consider an `-bit modulus N . Define k =
8(|N |byte− 1) and k = n+ k0 + k1, where k0 and k1 are security parameters, and
n is the size of the messages to be encrypted. The padding of size k is still the
same (see figure 1), involving two hash functions G and H:

G : {0, 1}k0 −→ {0, 1}n+k1 and H : {0, 1}n+k1 −→ {0, 1}k0.
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Fig. 1. OAEP Padding

But the function f

f : {0, 1}k −→
� ?

N

x 7−→ xe mod N

is no longer a permutation, since the e-th roots of elements in
�

?
N are not nec-

essarily smaller than 2k. Indeed, this only happens with average probability
between 2−7 and 2−8. However, a full security analysis can be driven, but it
leads to a more inefficient reduction [31].

4.2 Security Result

In his paper [30], Shoup was able to repair the security result for a small expo-
nent, e = 3, using Coppersmith’s algorithm from [10]. However, the above result
can be applied to repair RSA–OAEP, regardless of the exponent. Thanks to the
multiplicative random self-reducibility of RSA, the partial-domain one-wayness
of RSA is indeed equivalent to that of the whole RSA problem, as soon as a
constant fraction of the most significant bits (or the least significant bits) of the
pre-image can be recovered:

Lemma 2 (see [16]). Let A be an algorithm that outputs a q-set containing
` − k0 of the most significant bits of the e-th root of its input (partial-domain
RSA, for any 2`−1 < N < 2`, with ` > 2k0), within time bound t, with probability
ε. There exists an algorithm B that solves the RSA problem (N, e) with success
probability ε′, within time bound t′ where

ε′ ≥ ε× (ε− 22k0−`+6),

t′ ≤ 2t + q2 ×O(`3).

Thanks to this lemma, in [16], we immediately derived a security theorem for
RSA–OAEP, which is not completely true for the RSAES–OAEP, because of
the above remark. In the reduction, when one is given, or gets from a random
self-reduction, an element y ∈

�
?
N to be used as the challenge ciphertext, it is

a correct one (with an e-th root smaller than 2k) only with probability greater
than 1/256. Therefore, one can only state the following security result:
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Theorem 3. Let A be a CCA2–adversary against the “semantic security” of
RSAES–OAEP (with a `-bit long modulus, with ` > 2k0), with running time
bounded by t and advantage ε, making qD, qG and qH queries to the decryption
oracle, and the hash functions G and H respectively. Then, the RSA problem
can be solved with probability ε′ greater than

ε2

4
− ε ·

(

2qDqG + qD + qG

2k0
+

2qD

2k1
+

32

2k−2k0

)

within time bound t′ ≤ 217t + qH · (qH + 2qG)×O(`3).

Which is a totally inefficient security reduction, since it is quadratic in the
number of queries to the random oracles, and it furthermore has to run thousands
of time the adversary to invert the RSA function.

5 Some OAEP Alternatives

5.1 The OAEP+ Padding

In his paper [30], Shoup also proposed a formal security proof of RSA–OAEP
with a much more efficient security reduction, but in the particular case where
the encryption exponent e is equal to 3. However many people think that RSA
with exponent 3 may be weaker than with greater exponents [11, 9]. Therefore,
he also proposed a slightly modified version of OAEP, called OAEP+, which can
be proven secure, under the sole one-wayness of the permutation, whatever the
exponent is.

5.2 The SAEP+ Padding

Boneh [8] recently proposed two new paddings to be used with the Rabin prim-
itive [26] or RSA. They are simpler than OAEP, hence the name Simplified
Asymmetric Encryption Padding. Indeed, whereas OAEP is a two-round Feistel
network [13], SAEP is just a single-round. Unfortunately, as it was with the
improved security reduction for OAEP proposed by Shoup, the SAEP conver-
sion only works with low exponents (e = 2, the Rabin primitive, or e = 3).
Nevertheless, the SAEP+ padding works with any exponent, of any size.

5.3 Security Reductions

Even though OAEP and SAEP with small exponents admit efficient reductions
(linear in the number of oracle queries), OAEP+ and SAEP+ both have only
been provided with more expensive reductions (quadratic in the number of oracle
queries, as in the recent RSA–OAEP result), with possibly a further loss in the
success probability, which does not guarantee anything for practical parameters.

6 Rapid Enhanced-security Asymmetric Cryptosystem

Transform

In [22], the authors proposed a new generic conversion, we called REACT. It is
an efficient conversion, which admits a very efficient security reduction.
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6.1 Description of REACT

The Basic Conversion. Let us describe this generic conversion [22] on any
asymmetric encryption scheme (K, E ,D)

Epk :Mpk ×Ωpk → Cpk Dsk : Cpk →Mpk,

where Mpk is the messages space, Cpk is the ciphertexts space and Ωpk is the
random coins space, which may depend on the public key pk. We also need two
hash functions G and H,

G :Mpk → {0, 1}
k1, H :Mpk × {0, 1}

k1 × Cpk × {0, 1}
k1 → {0, 1}k2,

where k1 and k2 are security parameters. The REACT conversion is depicted on
Figure 2.

K′: Key Generation
(pk, sk)← K(1k)
→ (pk, sk)

E ′: Encryption of m ∈ M′ = {0, 1}k1 → (a, b, c)
R ∈ Mpk and r ∈ Ωpk are randomly chosen
c1 = Epk(R; r) c2 = m⊕G(R) c3 = H(R, m, a, b)
→ (c1, c2, c3) is the ciphertext

D′: Decryption of (c1, c2, c3)
Given c1 ∈ Cpk, c2 ∈ {0, 1}

k1 and c3 ∈ {0, 1}
k2

R = Dsk(c1) m = c2 ⊕G(R)
if c3 = H(R, m, c1, c2) and R ∈ Mpk → m is the plaintext

(otherwise, “Reject: invalid ciphertext”)

Fig. 2. Rapid Enhanced-security Asymmetric Cryptosystem Transform

Then, the new scheme (K′, E ′,D′) works as follows:

– K′(1k): it simply runs K(1k) to get a pair of keys (sk, pk), and outputs it.
– E ′pk(m; R, r): for any k1-bit message m and random values R ∈ Mpk and

r ∈ Ωpk, it gets c1 = Epk(R; r), then it computes the session key K = G(R),
c2 = K ⊕ m as well as c3 = H(R, m, c1, c2). The ciphertext consists of the
triple C = (c1, c2, c3).

– D′

sk(c1, c2, c3): it first extracts R from c1 by decrypting it, R = Dsk(c1). It
verifies whether R ∈ Mpk. It can therefore recover the session key K = G(R)
and m = K ⊕ c2 which is returned if and only if c3 = H(R, m, c1, c2) and
R ∈ Mpk. Otherwise, it outputs “Reject”.

The overload is minimal. Actually, if we consider the encryption phase, it just
adds the computation of two hash values and one XOR. Concerning the decryp-
tion phase, which had been made heavy in some previous conversions [14, 15, 25]
with a re-encryption to check the validity, we also just add the computation of
two hash values and one XOR, as in the encryption process.
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The Hybrid Conversion. As it has already been done with some previous
encryption schemes [14, 15, 23–25], the “one-time pad” encryption can be gen-
eralized to any symmetric encryption scheme which is not perfectly secure, but
semantically secure against passive attacks.

Let us consider two encryption schemes, (K, E ,D) is a OW-PCA–secure asym-
metric scheme and (SymE,SymD) is a IND–secure symmetric scheme on λ-bit
long messages, which uses k1-bit long keys, as well as two hash functions G and
H which output k1-bit strings and k2-bit strings respectively. Then, the hybrid
scheme (Khyb, Ehyb,Dhyb) works as follows:

– Khyb(1k): exactly has above, for K(1k).
– Ehyb

pk (m; R, r): for any λ-bit message m and random values R ∈ Mpk and
r ∈ Ωpk, it gets c1 = Epk(R; r) and a random session key K = G(R). It
computes c2 = SymEK(m) as well as the checking part c3 = H(R, m, c1, c2).
The ciphertext consists of C = (c1, c2, c3).

– Dhyb

sk (c1, c2, c3): it first extracts R from c1 by decrypting it, R = Dsk(c1). It
verifies whether R ∈ Mpk or not. It can therefore recover the session key
K = G(R) as well as the plaintext m = SymDK(c2) which is returned if and
only if c3 = H(R, m, c1, c2) and R ∈ Mpk. Otherwise, it outputs “Reject”.

The overload is similar to the previous conversion one, but then, the plaintext
can be longer. Furthermore, the required property for the symmetric encryption
is very weak: it is just required to be semantically secure in the basic scenario
(no plaintext/ciphertext attacks).

6.2 Security Result

About the (basic) converted scheme, one can claim that if an attacker, against
the semantic security in a chosen-ciphertext scenario, can gain an advantage ε
after qD, qG and qH queries to the decryption oracle and to the random oracles
G and H respectively, within a time t, then one can design an algorithm that
outputs, for any given C, the corresponding plaintext, after less than qG + qH

queries to the Plaintext-Checking Oracle, with probability greater than ε/2 −
qD/2k2, within a time t+(qG + qH)Tpca, where Tpca denotes the time required by
the PCA oracle to answer any query.

This security result, in the random oracle model, comes from two distinct
remarks:

– the adversary has necessarily asked either G(R) or H(R, mi, c1, c2) to get
any information about the encrypted message m (either m0 or m1). Which
means that for a given c1 = Epk(R; r), R is in the list of queries asked to G
or to H. Simply asking for the qG + qH candidates to the Plaintext-Checking
Oracle, one can output the right one. Then, with probability ε/2, one inverts
Epk, after (qG + qH) queries to the Plaintext-Checking Oracle.

– However, in the chosen-ciphertext scenario, the adversary may ask queries to
the decryption oracle. We have to simulate it. To any query (c1, c2, c3) asked
by the adversary to the decryption oracle, one looks at all the pairs (R, m)
such that (R, m, c1, c2) has been asked to the random oracle H. For any such
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R, one asks to the Plaintext-Checking Oracle whether c1 is a ciphertext of
R (remark that it does not make more queries to the Plaintext-Checking
Oracle, since it has already been taken in account above). Then it computes
K = G(R), maybe using a simulation of G if the query R has never been
asked. If c2 = K ⊕ m then one outputs m as the plaintext of the triple
(c1, c2, c3). Therefore, any correctly computed ciphertext is decrypted by the
simulator. But if the adversary has not asked H(R, m, c1, c2) the probability
that the ciphertext is valid, and thus the decryption not correctly simulated,
is less than 1/2k2.

For the hybrid construction, the proof is a bit more intricate, because of the
symmetric encryption, but one can claim [22]:

Theorem 4. Let us consider a CCA2–adversary Acca2 against the “semantic
security” of the conversion (Khyb, Ehyb,Dhyb), on λ-bit long messages, within a
time bounded by t, with advantage ε, after qD, qG and qH queries to the decryption
oracle, and the hash functions G and H respectively. Then for any 0 < ν < ε,
and

t′ ≤ t + qGTsym + (qH + qG)Tpca

(Tsym and Tpca are the time complexity of SymEK and the PCA oracle respec-
tively), there either exists

– an adversary Bpca against the (t′, ϕ)-OW-PCA-security of the asymmetric
encryption scheme (K, E ,D), after less than qG+qH queries to the Plaintext-
Checking Oracle, where

ϕ =
ε− ν

2
−

qD

2k2
.

– or an adversary B against the (t′, ν)-IND–security of the symmetric encryp-
tion scheme (SymE,SymD).

7 RSA–REACT

7.1 Description

Contrarily to OAEP, the specific instantiation of RSA–REACT is straightfor-
ward (see figure 3), since it works with any functions

Epk :Mpk ×Ωpk → Cpk Dsk : Cpk →Mpk,

the encryption and the decryption algorithms, whereMpk is the messages space,
Cpk is the ciphertexts space and Ωpk is the random coins space. One has just to
remark that for the RSA function, Mpk = Cpk =

�
N. Since it is furthermore

deterministic, Ωpk is an empty set for any pk. Then, RSA–REACT works as
follows:

– K(1k): randomly choose a k-bit RSA modulus N , a public exponent e, rela-
tively prime to ϕ(N). Then, define d = e−1 mod ϕ(N).
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Fig. 3. RSA–REACT

– Epk(m; R): for any λ-bit message m and a random value R ∈
�

N, it gets
c1 = Re mod N and a random session key K = G(R). It computes c2 =
SymEK(m) as well as the checking part c3 = H(R, m, c1, c2). The ciphertext
consists of C = (c1, c2, c3).

– Dsk(c1, c2, c3): it first extracts R from c1 by decrypting it, R = cd
1 mod N .

(Then, by construction, R necessarily lies in
�

N.) It can therefore recover
the session key K = G(R) as well as the plaintext m = SymDK(c2) which is
returned if and only if c3 = H(R, m, c1, c2). Otherwise, it outputs “Reject”.

7.2 Security Result

One can thus simply apply the Theorem 4, with the particular RSA instantia-
tion. But for a complete security result, one needs to know what OW-PCA means
for RSA. Actually, since RSA is a deterministic function, a Plaintext-Checking
Oracle on (R, c1) simply consists in computing Re mod N , and checking the re-
sult with the given challenge ciphertext c1. Therefore, OW-PCA and OW-CPA are
equivalent notions for RSA, and thus intractable for moduli large enough under
the RSA assumption. Furthermore, the time required by an execution of the
Plaintext-Checking Algorithm, in the RSA situation, is just that of one expo-
nentiation to the power e. Thus:

Theorem 5. Let us consider a CCA2–adversary Acca2 against the “semantic
security” of RSA–REACT, on λ-bit long messages, within a time bounded by t,
with advantage ε, after qD, qG and qH queries to the decryption oracle, and the
hash functions G and H respectively. Then for any 0 < ν < ε, and

t′ ≤ t + qGTsym + (qH + qG)Trsa(e)

(Tsym is the time complexity of SymEK , and Trsa(e) is the time complexity for
an N-modular exponentiation to the power e, and thus is in O(k3)), there either
exists

– an algorithm B that inverts RSA, within a time bound t′, with success prob-
ability greater than

ε− ν

2
−

qD

2k2
.
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– or an adversary B against the (t′, ν)-IND–security of the symmetric encryp-
tion scheme (SymE,SymD), on λ-bit messages.

7.3 Discussion

This latter theorem shows how efficient is the reduction. It is indeed in linear
time, without any loss in the success probability, if the symmetric encryption
is secure enough. Consequently, it guarantees the perfect equivalence with the
RSA inversion, for moduli which require just a bit more than 270 to be factored.
This is achieved with 1024 bit-long moduli, which is anyway the minimal size
currently advised.

In comparison to other proposals (OAEP, OAEP+, SAEP, SAEP+), RE-
ACT is a full scheme and not just a pure padding applied to the message before
the RSA function. Consequently, the ciphertext is a bit longer. However, even
if it can be used for key transport, it furthermore allows integration of a sym-
metric encryption scheme to achieve very high rates, as shown in the hybrid
construction.

In an ISO report [29], Shoup suggested a possible OAEP-alternative, based
on ideas from Bellare and Rogaway [4]. In that paper, Bellare and Rogaway
proposed a generic construction from any trapdoor one-way permutation. Ac-
tually, it is a particular case of the above REACT construction. And thus, the
suggested “simple RSA” is nothing else than a slight variant of RSA–REACT.
However, it requires a stronger symmetric encryption scheme.

As Shoup remarked, thanks to the random self-reducibility of RSA, a high
security level is still guaranteed even when encrypting many cleartexts [1, 2], in
the “simple RSA”, but also in the RSA–REACT construction. Unfortunately,
the random self-reducibility of RSA is not preserved in the OAEP and SAEP
variants, as we have already seen, because of the padding which only outputs
uniformly distributed k-bit strings, but not uniformly distributed in

�
N , or in

�
?
N .

8 Conclusion

Granted the efficient construction, the efficient linear time security reduction,
and the above comments, RSA–REACT appears like the best alternative to
RSA–OAEP. Even if the ciphertext is a bit longer, it does not make any difference
with the classical use of asymmetric encryption, which is only used for the key
transport, and then combined with a symmetric encryption scheme.
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