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Abstract PAKE protocols, for Password-Authenticated Key Exchange, enable two parties to estab-
lish a shared cryptographically strong key over an insecure network using a short common secret
as authentication means. After the seminal work by Bellovin and Merritt, with the famous EKE,
for Encrypted Key Exchange, various settings and security notions have been defined, and many
protocols have been proposed.
In this paper, we revisit the promising SPEKE, for Simple Password Exponential Key Exchange,
proposed by Jablon. The only known security analysis works in the random oracle model under
the CDH assumption, but in the multiplicative groups of finite fields only (subgroups of Z∗p), which
means the use of large elements and so huge communications and computations. Our new instanti-
ation (TBPEKE, for Two-Basis Password Exponential Key Exchange) applies to any group, and our
security analysis requires a DLin-like assumption to hold. In particular, one can use elliptic curves,
which leads to a better efficiency, at both the communication and computation levels. We addition-
ally consider server corruptions, which immediately leak all the passwords to the adversary with
symmetric PAKE. We thus study an asymmetric variant, also known as VPAKE, for Verifier-based
Password Authenticated Key Exchange. We then propose a verifier-based variant of TBPEKE, the
so-called VTBPEKE, which is also quite efficient, and resistant to server-compromise.
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A pw B pw

Global parameters: G = 〈g〉 of prime order p, U, V
R←G, and H a hash function onto {0, 1}`

accept← false accept← false

x
R← Z∗p, X ← gx, X ′ ← X × Upw A‖X ′ - X ← X ′/Upw

Y ← Y ′/V pw Y ′� y
R← Z∗p, Y ← gy, Y ′ ← Y × V pw

accept← true accept← true
Z ← Y x Z ← Xy

sk ← H(A‖B‖X ′‖Y ′‖Z)

Figure 1. Simple Password Authenticated Key Exchange

1 Introduction

1.1 Dictionary Attacks

Key exchange protocols are cryptographic primitives used to provide several users (two or more),
communicating over a public unreliable channel, with a secure session key. This allows estab-
lishment of virtual secure channels (i.e., private and authenticated) in any network, even under
the control of adversaries. This is thus one of the main practical applications of cryptography:
it can guarantee privacy to any user, whatever the architectures are and the providers do.

Bellare and Rogaway gave the first foundations of authenticated key exchange in [10,11],
but password-based authentication requires more work: in this setting, where the authentication
means is a short secret chosen from a small set of possible values (e.g., a four-digit PIN), the
brute-force method, which consists in trying all the possible values in the dictionary, succeeds
after a rather small number of attempts. This attack is called on-line dictionary attack and is
unavoidable, since the adversary just has to check whether the authentication with a tentative
password succeeds or not. But its damages can be limited by a policy that invalidates or blocks
an account, and thus the use of a password, after a fixed number of failures (which is always
possible in the two-party setting, but not necessarily in some other settings where such failures
can be undetectable to the authenticator [26]). The security goal when studying a PAKE protocol
is to show that this on-line dictionary attack is the best one can do, and namely that no one
can guess the correct password without a linear number of interactions.

On the other hand, the classical symmetric PAKE setting, as introduced by Bellovin and
Merritt [12] in 1992, with the famous Encrypted Key Exchange protocol (EKE), requires the
server to know all the passwords in clear, which can be dramatic in case of intrusion into the
server. With the increase of password-controlled accesses, users often use related passwords (if
not the same) for many providers, which amplifies the damages of a hack of a single server
to many services. To overcome this issue, Bellovin and Merritt proposed the Augmented EKE
protocol [13], where the server just stores a means, called a verifier, to verify that the client used
the correct password, but not the password itself. In concrete systems, the verifier is a hash of
the password with a salt. This temporarily limits the impact of leakage of information on the
server side, since it forces the adversary to spend a lot of time to learn many passwords. This
should give enough time for letting the users renew (all) their passwords.

Such an asymmetric PAKE is also known as VPAKE, for Verifiable Password-Authenticated
Key Exchange. In addition to the basic security when there is no server compromise, extract-
ing the password from the verifier in case of database corruption should take a computation
time linear in the number of possible passwords, for each user, when passwords are uniformly
distributed, without any speed-up taking advantage of the large number of verifiers. This cor-
responds to the time of the trivial off-line dictionary attack, which we cannot avoid but which
should be the best: for each verifier, the adversary tries all the possible passwords. Of course, in
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such a case, the number of possible passwords should not be too small, and the time to check
a possible candidate to a verifier should not be too short either (hence the use of slow hash
functions).

Indeed, the same way as the on-line dictionary attack cannot be avoided but is proven to be
the best possible attack against a PAKE (or a VPAKE, before a server compromise), an off-line
dictionary attack cannot be avoided in case of server compromise, and one has to prove any new
password-recovery is linear in the size of the dictionary after a server compromise.

As already mentioned, verifiers are usually hash values or transformations V = H(s, pw) of
the private passwords pw with public extra data s, called salt. For each user, the server thus
stores the pair (s, V ). The salt aims at binding an exhaustive search on the passwords to a
specific user, or at least to a small fraction with the same salt. Indeed, after the compromise
of a server, or even several servers, the adversary gets access to many verifiers for many users,
together with any information useful to verify the passwords. If there are many collisions among
the salt values, the adversary can focus on the salt value s∗ that corresponds to the highest
number of verifiers V ∗1 , . . . , V

∗
k . Then, the exhaustive search on the password, which consists in

computing H(pw , s∗) for all the passwords, will fall on one of the V ∗i ’s with probability k/N
for each test, where N is the size of the dictionary and k the number of verifiers for the tested
salt value s∗. The smaller k is, the safer is the system. Hence, one has to limit the collusions
on the salt values: in practice, this is either a random value, but then it must be large enough
to avoid collisions (birthday paradox), or server-user identities, which exclude collisions, have
compact representations, and can even be known in advance by the user. This might depend on
the practical scenario.

1.2 Previous Constructions

Bellovin and Merritt [12] proposed the first scheme, the so-called Encrypted Key Exchange
(EKE), which is essentially a Diffie-Hellman key exchange, where the two flows are encrypted
with a symmetric encryption scheme under the password as the symmetric key. A first security
analysis has been provided in the indistinguishability-based (or BPR) framework, in the ideal-
cipher model [8], followed by several proofs of variants [18,19,6], trying to reduce the need of
ideal models but still keeping the initial efficiency of EKE. EKE has also been studied in the
simulation-based framework, in the random-oracle model [17], followed by studies in the UC
framework [3] with security against adaptive corruptions, but still in ideal models.

The “Simple Password-Authenticated Key Exchange” protocols (SPAKE), proposed by Ab-
dalla and Pointcheval [6], are definitely the most efficient variants, with a security analysis in
the BPR framework. And it works in any group where the CDH assumption holds: two full ex-
ponentiations and one small exponentiation, plus a multiplication and a division for each user,
and just one group element to send in each direction, for the basic SPAKE presented on Fig-
ure 1. However, the above simple construction is secure for non-concurrent executions only. The
password has to be added to the last key derivation step to handle concurrent executions. More
importantly, forward-secrecy has never been proven for these constructions, while it is essential
to guarantee the privacy of a past communication even if the password is later leaked.

Katz, Ostrovsky and Yung [34] proposed the first practical scheme, but still less efficient
than above schemes, in the standard model with a common reference string, followed by a
generalization from Gennaro and Lindell [28,27], using the power of smooth-projective hash
functions [25], in the BPR framework. Many variations [22,4,37,31,38] have thereafter been
proposed, to achieve security in the UC framework, to improve round efficiency, or to rely
on new assumptions. But the most efficient, in the standard model, is definitely the recent
“Simple Password-Only Key Exchange” protocol (SPOKE) [2,1], where the players have globally
to compute less than 17 exponentiations and to send 6 group elements. The security just relies
on the DDH assumption. Even if this is quite efficient in the standard model, this is still too
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A pw B pw

Global parameters: G of prime order p, G a hash function onto G, and H a hash function onto {0, 1}`

accept← false accept← false

g ← G(pw), x
R← Z∗p, X ← gx A‖X -

Y� g ← G(pw), y
R← Z∗p, Y ← gy

accept← true accept← true
Z ← Y x Z ← Xy

sk ← H(A‖B‖g‖X‖Y ‖Z)

Figure 2. Simple Password Exponential Key Exchange

costly in constrained environments, where constructions proven secure in ideal models are still
preferable.

Whereas the huge majority of the protocols rely on a Diffie-Hellman-like assumption, some
schemes have also been proposed on factoring-related assumptions [41,43,24,30]. However, be-
cause of the huge parameters of factoring-based protocols, efficiency is far from SPAKE and even
SPOKE.

Other alternatives are the Secure Remote Password protocol (SRP) [50] and the Simple
Password Exponential Key Exchange protocol (SPEKE) [33], presented in Figure 2, that have
been standardized, and the latter has even been analyzed in [42] in the BPR model, under the
CDH assumption in the random oracle model. A specific instantiation has also been proposed
with SAE [32].

While the security analysis [42] of SPEKE relies on the CDH assumption in the random
oracle, the instantiation targets the specific prime-order subgroup of the squares in the finite
field Z∗p, where p = 2q+ 1, with both p and q being large primes. There is no easy way to extend
this instantiation to more efficient groups, such as elliptic curves. The main issue is to map the
passwords into the group (modeled by G on Figure 2). As a consequence, this requires huge
parameters, similar to factoring-based protocols.

While several constructions of VPAKE protocols were proposed in the early 2000, the first
formal security model has been described in [29], with an ideal functionality in the UC frame-
work [20,21] using a generic conversion (the so-called Ω-method). Unfortunately, the definition
makes sense in ideal models only, such as the random oracle model [9]. More recently, the no-
tion of password hashing [14] formalizes the way in which a verifier can be computed from a
password, and the strong security it should guarantee in case of server compromise. This defines
the notion of tight one-wayness which says that extracting a password for one verifier chosen
among a set of verifiers should take nearly as long as hashing 2β passwords, where β is the
min-entropy of the password distribution D. We recall that the min-entropy of a distribution is
a very conservative way of measuring the unpredictability, or the number of random bits: it is
defined as the negative 2-logarithm of the probability of the most likely element. The password
hashing method is quite strict to allow the user to run the first flow of the protocol without
knowing the salt, which is later sent by the server. Kiefer and Manulis [39] later extended this
definition requiring the salt to be known by the user from the beginning. Depending on the salt,
this might imply a pre-flow from the server, in order to send the salt to the user, or the server
plays first, which is not always optimal in practice since the user is the one who wants to initiate
a communication.

Cash et al. [23] proposed a new computational hard problem, the twin Diffie-Hellman prob-
lem, which is at least as hard as the ordinary Diffie-Hellman problem, but that additionally
allows a trapdoor test to efficiently decide on twin Diffie-Hellman pairs. Based on this problem,
they presented a verifier-based version of the SPAKE protocol [6], actually the SPAKE2 variant,
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they thus called SPAKE2+. While it has been proven secure against server compromise, as for
SPAKE, forward-secrecy has never been considered. Note that both SPAKE2 and SPAKE2+
have been considered under IEFT standardization [40]. Another related work is AugPAKE (for
Augmented Password-Authenticated Key Exchange), proposed by Shin and Kobara [45,?,?].
According to the security proof [48], this is a secure PAKE protocol that resists to server com-
promise, under the Strong-Diffie-Hellman assumption [15]. None of them make an explicit use
to a secure password hashing method to compute the verifier from a salt. This could be done,
but at the cost of an additional flow.

1.3 Objectives and Contributions

As said above, EKE-like schemes in the random oracle model and constructions based on smooth-
projective hash functions in the standard model are the two main streams in the literature. In
the following, we revisit the third family of SPEKE-like protocols, in order to make it work in
any group where a CDH-like assumption holds, such as elliptic curves. We expect it to lead to
new efficient instantiations, at least as good as SPAKE.

Actually, our new instantiation of the random oracle, in order to map a password into the
group, is inspired from SPAKE recalled on Figure 1, with two independent bases (hence the
name TBPEKE, for Two-Basis Password Exponential Key Exchange). Its security will rely on
a DLin-like assumption, which can hold in many kinds of groups, such as elliptic curves. There
is no need of random oracle that maps onto group elements. It can thus be instantiated in any
group, in an efficient way.

In a second step, we make it verifier-based at a quite low additional cost, and name it
VTBPEKE, for Verifier-based Two-Basis Password Exponential Key Exchange). To this aim, we
use the revised version of password-hashing from [39]. Its tight one-wayness has been proven
in [14]. It requires the knowledge of the salt to start the key exchange protocol. As said above,
this is not always optimal since this might make the server start the protocol, or one has to
use a deterministic salt (such as server-user identities) and one has to assume the user can per-
fectly remember it. However, we additionally provide explicit user-authentication to the server,
which anyway requires 3 flows when the user initiates the protocol and thereafter confirms his
knowledge of the session key.

As a consequence, our VTBPEKE protocol is quite efficient from the communication point
of view (number of flows), whatever kind of salt is used, and just requires 4 exponentiations on
the user side (less than twice as much as the TBPEKE protocol).

2 Security Model

At the same time, Bellare, Pointcheval and Rogaway [8], and Boyko, MacKenzie and Patel [17]
first formalized security of Password-Authenticated Key Exchange, in two different frameworks.
Later, Canetti, Halevi, Katz, Lindell and MacKenzie [22] provided an ideal functionality in the
Universally Composable (UC) security framework [21].

For the sake of efficiency, we focus on the weaker BPR security model, instead of UC. This is a
Find-then-Guess game, in the indistinguishability-based framework where an adversary should
not be able to get an advantage significantly greater than qS/N in distinguishing a random
session key from a real session key, if qS is the number of active sessions against an honest
user and N the size of the dictionary. It has thereafter been improved to the Real-or-Random
scenario [5]. More precisely, the adversary is given access to oracles:

– Execute-queries model passive attacks of execution between honest players;
– Send-queries model active attacks against honest players;
– Corrupt-queries model corruptions with the leakage of long-term secrets, in order to study

forward-secrecy;
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– Reveal-queries model bad uses of session keys and thus the leakage of ephemeral secrets;
– and Test-queries model the semantic security of the session key, with a real or random

answer.

In the Find-then-Guess scenario, only one Test-query can be asked, whereas in the Real-or-
Random scenario many Test-queries can be asked with either always-real or always-random
answers. The latter is clearly at least as strong as the former: while the former security model
shows that sessions keys are individually indistinguishable from random, the latter shows that
the session keys are globally indistinguishable from random, and independent from each other.
It is well-known that both scenarios are polynomially equivalent for encryption schemes [7], but
with a linear loss in the number of Test-queries. This makes them quite different for PAKE, where
the advantage should remain in qs/N , whatever the number of Test-queries. It has then been
showed [5] that in this Real-or-Random scenario, Reveal-queries are not useful anymore, hence
simplifying the security game (multiple Test-queries and no Reveal-queries). There are natural
restrictions:

– in a key exchange protocol, when everything works fine, two partners should agree on the
same key, while in the random case the Test-oracle would answer independent random keys.
One can simply prevent the adversary from testing two partners;

– when the adversary knows the password (after a corruption) one cannot guarantee anymore
the secrecy of the future session keys. Therefore, Test-queries on sessions that completed
after corruptions are forbidden. Anyway, the forward-secrecy just considers the secrecy of
the session keys agreed before the corruptions.

Note that this is a slight variant of the so-called weak corruption model in BPR, since the long
term secrets (passwords) only are leaked, and not the internal states, in case of corruption, but
this is the important notion for the forward-secrecy.

We stress that the main difference with the UC security notions is the assumption about the
password distribution: we usually consider a uniform distribution, hence the optimal qs/N bound.
We could extend the result to the min-entropy of the passwords, or by using the probability to
be in the most probable set of qs passwords, as in [19].

3 Variants of SPEKE

In the same vein as SPAKE instantiates the ideal cipher model Epw (X) by X · Upw for a fixed
element U , our goal is to find an efficient instantiation of G(pw), in such a way that it leads to
a random generator in the group G.

3.1 A Naive Construction

The first natural instantiation is g ← hpw for a fixed generator h. But an easy off-line dictionary
follows from a single active attack: the adversary impersonates A to B and sends X ← hz for a
random z. Bob sends Y ← (hpw )y for the correct password pw and computes Z ← Xy, that can
be checked after a Test-query. The adversary can indeed now try any password π, and compute
the candidate T ← Y z/π = ((hpw )y)z/π = (hy)z(pw/π) = (hz)y(pw/π) = (Xy)pw/π = Zpw/π, which
is indeed Z if π = pw . It then leads to the correct sk .

3.2 A Secure Construction: TBPEKE

The problem in this construction is that from the built g, the adversary can extract the correct
x for each tentative password π. This has to be prevented, and the candidate g ← U · V pw ,
where U and V are two random, independent, and fixed group elements, looks appropriate.
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A pw B pw

Global parameters: G of prime order p, U, V
R←G, and H a hash function onto {0, 1}`

accept← false accept← false

g ← U · V pw , x
R← Z∗p, X ← gx A‖X -

Y� g ← U · V pw , y
R← Z∗p, Y ← gy

accept← true accept← true
Z ← Y x Z ← Xy

sk ← H(A‖B‖g‖X‖Y ‖Z)

Figure 3. Two-Basis Password Exponential Key Exchange (TBPEKE)

The resulting scheme, called TBPEKE for Two-Basis Password Exponential Key Exchange, is
presented on Figure 3.

As SPAKE, it instantiates the ideal primitive in the body of the protocol with a simple
product that involves fixed but random group elements and the password. The complexity is
quite similar: two full exponentiations and one small exponentiation, plus a multiplication for
each user, and just one group element to send in each direction. There is one division and one
small exponentation less to compute for each user than in SPAKE, and much smaller elements
to exchange, compared from the original SPEKE protocol analyzed in the random oracle model
in [42] that works in finite fields only. We can indeed hope this construction to work in any group
where the CDH assumption holds (or a similar assumption), which would allow elliptic curves
with 256-bit long group elements: 32 bytes only have to be sent in each direction. Eventually,
as in SPAKE, only one random oracle is required for the final key derivation.

4 Security Analysis of TBPEKE

Before providing security results for our new construction, let us precise the computational
assumptions.

4.1 Assumptions

– The Computation Diffie-Hellman (CDH) Assumption states that, given three random
generators g, X = gx, and Y = gy, in a cyclic group G of prime order p, it is hard to fond
DHg(X,Y ) = gxy.

– The Decisional Linear (DLin) Assumption states that, given six random generators
f, g, h, and X = fx, Y = gy, Z = hz, in a cyclic group G of prime order p, it is hard to
decide whether z = x+ y mod p.

– The Simultaneous Diffie-Hellman (SDH) Assumption states that, given three random
generators X, g = Xa, and h = Xb in a cyclic group G of prime order p, it is hard to find
Y 6= 1 and R,S that simultaneously satisfies R = DHg(X,Y ) = Y 1/a and S = DHh(X,Y ) =
Y 1/b.

Reduction of the SDH Assumption to the DLin Assumption. We first show that the SDH
assumption, on which our protocol will rely, can be reduced to the well-known DLin assumption,
that is widely assumed to hold in pairing-friendly settings [16].

Theorem 1. In a pairing-friendly setting, the DLin assumption implies the SDH assumption:
Advdlin(t) ≥ Succsdh(t).

Proof. On input a DLin instance, f, g, h, and X = fx, Y = gy, Z = hz (if b = 0, then z is random,
else z = x+y), one runs the SDH adversary on inputs X ′ ← h, g′ ← f = X ′a, and h′ ← g = X ′b
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(where we formally set a = 1/x mod p and b = 1/y mod p). The adversary outputs Y ′, R′ =

Y ′1/a, S′ = Y ′1/b with probability ε, which validity can be checked: e(f,R′) ?= e(h, Y ′) ?= e(g, S′).
If this test is not satisfied, and so test = false, our algorithm outputs a random value b′.

If the test is satisfied, and so test = true, using the bilinear map e:

e(X,R′) = e(fx, Y ′
1
a ) = e(f

1
a , Y ′

x
) = e(h, Y ′

x
) = e(hx, Y ′)

e(Y, S′) = e(gy, Y ′
1
b ) = e(g

1
b , Y ′

y
) = e(h, Y ′

y
) = e(hy, Y ′).

Then, we have e(X,R′) × e(Y, S′) = e(hx+y, Y ′), which is thus e(Z, Y ′) if and only if the DLin
instance is a linear one. Then the algorithm outputs b′ = 1 in the positive case, and b′ = 0 in
the negative case. Then, Pr[b′ = b] is equal to

Pr[b′ = b|test]× Pr[test] + Pr[b′ = b|¬test]× Pr[¬test]

= Pr[test] +
1

2
× (1− Pr[test]) =

1

2
+

Pr[test]

2

and Pr[test] = Succsdh(A), while Advdlin(t) ≥ 2× Pr[b′ = b]− 1. ut

As a consequence, the SDH assumption is reasonable in pairing-friendly settings, and we now
analyze it in the generic group model, which validates it on classical elliptic curves.

Intractability of the SDH Assumption in the Generic Model. We can also directly
study the SDH assumption in the generic group model [49], where the adversary is given the
representation of X, that is a generator, g = Xa and h = Xb. Only group operations are possible,
which lead to elements of the form XP (a,b), where P ∈ Zp[A,B] is a polynomial of total degree
1, in the two variables A and B. We identify X with the constant polynomial P0 = 1, g with
the polynomial P1 = A, and h with the polynomial P2 = B. For a group operation (the product
between two elements), we simply generate the new polynomial (the sum of the polynomials
to which the two elements were identified). If the polynomial is a new one, a new random
representation is given as a result to the group operation. Otherwise, the same representation
as before is sent.

This simulation of group operations is perfectly indistinguishable from the real execution
unless two polynomials are distinct while their evaluations in (a, b) are the same: at most q + 3
polynomials are involved, where q is the number of group operations, and thus at most (q +
3)(q+ 4)/2 differences, for which the probability to evaluate to 0 on a random pair (a, b) is 1/p.
Hence, the simulation is perfect but with probability at most (q + 3)(q + 4)/2p.

Except in the bad above cases, let us evaluate the probability the adversary outputs a valid
tuple (Y,R, S), where Y is identified to the polynomial α + βA + γB, R to the polynomial
α1 + β1A + γ1B, and S to the polynomial α2 + β2A + γ2B. This tuple is valid Y = Ra = Sb,
which traduces to α + βA + γB = α1A + β1A

2 + γ1AB = α2B + β2AB + γ2B
2. This implies

α = β = γ = α1 = β1 = γ1 = α2 = β2 = γ2 = 0, and thus Y = 1, which is not allowed. So the
probability to break the SDH assumption with a generic attack is bounded by (q+ 3)(q+ 4)/2p
after q group operations. This can be upper-bounded by q2/2p+ 10/p.

Note that using the same kind of argument, the probability to break the CDH assumption
with a generic attack is bounded by (q + 2)(q + 3)/2p after q group operations. This can be
upper-bounded by q2/2p+ 6/p.

Gap Problems. In the security analysis of the forward-secrecy, the simulator will need a DDH
oracle. The two above problems will then become gap problems, where the algorithm has to find
the same outputs but with the additional access to the DDH oracle, hence the GDH and the
GSDH problems. We will denote Succq−gdh(t) and Succq−gsdh(t) the best success probabilities an
adversary can get against the CDH and the SDH problems, respectively, within time t and with
at most q DDH-oracle queries. In the generic model, the complexities of the attacks remain the
same since decisional oracles do not help to solve computational problems.
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4.2 Security Results for TBPEKE

In Sections 6.2 and 6.3, we provide the security result and the full proof of the verifier-based
protocol, in the Real-or-Random security model, which is even stronger than what is actually
required for the TBPEKE since we allow the adversary to choose the salt s. We thus postpone
the security analysis to the verifier-based protocol.

5 VTBPEKE: Verifier-based TBPEKE Protocol

5.1 Password Hashing Scheme

In [14], Benhamouda and Pointcheval proposed a methodology with a password hashing scheme,
which defines a pre-hash value P (from the secret password pw) and a hash value V (the verifier,
from both the secret password pw and the public salt s) which can be verified from the pre-hash
value, the salt, and an additional trapdoor. This is a complex mechanism which is motivated by
a one-round protocol, and thus when the client does not need to know the salt when he sends
his (first) flow. Kiefer and Manulis [39] later extended this definition requiring the salt from the
beginning for the client, which implies a pre-flow from the server, in order to send the salt to
the user, or a deterministic salt that can be known by the client. This will not be a problem in
our case if the client can initiate the proof of knowledge of the password without knowing the
salt. We thus use this variant.

We first recall the naive password hashing scheme from [14], just to explain the idea. With
a hash function H onto {0, 1}2k and a salt s ∈ {0, 1}2k, the verifier is V = H(s, pw) while the
pre-hash value is P = pw . It has been proven, when the password is not too large, which means
pw ∈ D ⊆ {0, 1}n and n < k, where k is the security parameter, that the following properties
hold.

– Second pre-image resistance, which says that only one password should match a given verifier
V and a salt s: For any password pw ∈ {0, 1}n and any salt s, the probability there exists
another password pw ′ ∈ {0, 1}n such that H(s, pw) = H(s, pw ′) is less than 2n/22k ≤ 1/2k,
since H has values in {0, 1}2k, so the second pre-image resistance statistically holds.

– Entropy preservation, which says that for any s, the distribution of V has the same min-
entropy β as pw : If the adversary makes qH queries to the hash function, the probability of a
collision is less than q2H/2

2k, in the random oracle model. Let us now suppose that there are
no collisions. We denote by s the salt and by H the hash value returned by the adversary,
as its guess for H(s, pw), while pw

R←D. Two situations appear:
• either H is not an answer to any pair (s, x) asked by the adversary to H. Then, either

(s, pw) has been asked by the adversary to the random oracle, in which case H(s, pw) 6=
H, or (s, pw) has never been asked to the random oracle, and so H(s, pw) is a random
string in {0, 1}2k and is equal to H with probability 1/22k;
• or H is the answer to H(s, x). Then, the probability that pw = x, is at most 2−β, and

if pw 6= x, the probability H(s, pw) = H is at most 1/22k, as above.
Therefore, one can guess V with probability bounded by 2−β + (q2H + 1)× 2−2k.

– Tight one-wayness, which is the most important notion, since it says that extracting just
one password P = pw from a huge list of pairs (s,V) needs a computational time linear in
2β, where β is the min-entropy of the distribution D of the passwords: First, the probability
that two salts are equal is less than n2s/2

2k (where ns is the number of salts)1. When there
is no collision, each query to H enables to check at most one password for only one salt. So
the probability to extract pw from V and s is bounded by qH × 2−β + n2s × 2−2k, since each
password appears with probability at most 2−β.

Unfortunately, with this password hashing scheme, one cannot (efficiently) prove the knowledge
of P that leads to V from s.
1 if the salt is the pair server-user identities, this probability is 0, whatever the length of the salt is.
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A pw B s,V where P ← Hp(s, pw) and V ← V P

Global parameters: G of prime order p, U, V
R←G, Hp a hash function onto Zp, and H onto {0, 1}k

accept← false accept← false

α
R← Z∗p, R← V α, R′ ← H(11‖R) A‖R′ - g ← U · V, y R← Z∗p, Y ← gy

P ← Hp(s, pw),V ← V P s, ε, Y� ε
R←{0, 1}k

g ← U · V, x R← Z∗p, X ← gx, Z ← Y x

ρ← α+ ε · P mod p, σ ← Eek (ρ) X,σ - Z ← Xy, ρ← Dek (σ)

R← V ρV−ε, R′ ?= H(11‖R)
accept← true accept← true

ek ← H(01‖A‖B‖g‖X‖Y ‖Z‖R′‖s‖ε)
sk ← H(00‖A‖B‖g‖X‖Y ‖Z‖R′‖s‖ε‖σ)

Figure 4. Verifier-based Two-Basis Password Exponential Key Exchange

5.2 Our Password Hashing Scheme

We thus define another password hashing scheme, with a hash function Hp onto Zp and a salt
s ∈ {0, 1}2k, the pre-hash is P = Hp(s, pw), while the verifier is V = hP , where h is a random
generator in G:

– Second pre-image resistance: as above, since the exponent is an injection, a collision on V
is a collision on P = Hp(s, pw) which happens with probability less than 2n/p ≤ 1/2k.

– Entropy preservation: again, because of the injectivity of the exponentiation, one can guess
V with probability bounded by 2−β + (q2H + 1)/p.

– Tight one-wayness: unless one can solve faster the DL problem, the probability to get one
P from a huge list of pairs (s,V) is bounded by qH × 2−β + n2s/p.

In addition, one can efficiently prove the knowledge of P that leads to V, using a Schnorr-like
proof of knowledge [44].

5.3 Description of VTBPEKE

The idea of the verifier-based version our TBPEKE is to start from a secret password pw known
to the client only, and a public and common salt s, but not assumed to be remembered by the
client. Hence, once s is known by the client, he can compute the verifier V = V Hp(s,pw) that has
been stored by the server: this is the common secret used by the client and the server to run our
previous TBPEKE, with an additional proof of knowledge of P = Hp(s, pw) by the client, using a
Schnorr-like proof of knowledge [44], with the final answer encrypted under an ephemeral secret
key derived from the TBPEKE final key. The resulting protocol is described on Figure 4.

We stress that pw is the only value known by the client (as well as the global parameters
of the system, as G, U, V , and Hp,H which are hard-coded in the software). The client-server
specific salt s is not required to be known in advance by the client, but just sent to him by the
server. Indeed, the server stores, for each client, the salt s and the verifier V. Once the client
knows s, he can also compute V, and they can both run the TBPEKE on this common value.

Note that an adversary can send a wrong salt, but this does not alter the security of the
protocol, as shown below.

6 Security Analysis of VTBPEKE

6.1 Discussions

The intuition behind this protocol is
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– first, the basic TBPEKE with V as common password does not leak any information about
V against a passive adversary;

– an additional proof of knowledge of P, to prevent an attacker, after compromised the server,
from cheating the server by impersonating the client via using V without knowing P and
so the password pw . This is a Schnorr-like proof which consists of a random hash R′ and a
random challenge ε together with a ciphertext σ under the indistinguishable key ek . This
way, it does not leak any information about V either;

– an adversary trying to impersonate the server will have to guess V to have a chance to learn
something, while an adversary trying to impersonate the client will have to guess pw or P,
because of the proof of knowledge.

About the additional encryption σ ← Eek (ρ), one might wonder if this is required or not. Let us
assume we let the client send ρ in clear, then this value would satisfy R′ = H(11‖V ρV −Pε), which
would lead to an off-line dictionary attack for a passive adversary. However, we additionally have
to prove this encryption is enough for the security.

6.2 Forward-Secrecy & Verifier-Based

Theorem 2. Under the GDH and GSDH assumptions, the VTBPEKE (see Figure 4) is a forward-
secure VPAKE: the best advantage an adversary can get in the Real-or-Random security game is
bounded by

Adv(A) ≤ qs
N

+ q2P × Succ2qH−gsdh(t) + Succ2qH−gdh(t)

+
q2P + q2S

p
+ qS · AdvindE (t),

where qS = qs + qe is the global number of sessions (qe for the passive sessions and qs for the
active sessions), qH is the number of queries to H and qP is the number of queries to Hp.

Since both the problems GDH and GSDH are hard in the generic group model, with the best
attacks leading to a success probability bounded by q2/2p+ 10/p and q2/2p+ 6/p respectively,
where q is the number of group operations in G (either the number of additions of points, in an
elliptic curve, or the number of multiplications, in a multiplicative subgroup of a finite field), we
can additionally state:

Adv(A) ≤ qs
N

+ qS · AdvindE (t) +
q2P × (q2 + 20) + q2S

p
,

Thanks to the secure password hashing scheme, in case of corruption of the server, the adversary
will not be able to extract the passwords too quickly.

6.3 Security Proof

We do the proof with a series of games, starting from the real game G0, which makes use of a
random oracle H and a symmetric encryption scheme (E ,D).

We say that two users (a client C and a server S) are compatible if they use the same salt-
verifier pair (s,V). They are initially all set as the same for each client and the server, but a
corruption of the server with a new salt or a new verifier can replace them by different values:
C and S are then said incompatible. Note that as in [35,?], the compatibility is defined at the
beginning of the execution of the protocol (by uploading passwords in the local memory), which
means that even in case of password change in the database during the protocol, this does not
affect the passwords used during this execution.
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Game G1: In this game, one simulates the random oracleH on new queries (0, 1, C, S, g,X, Y, Z,R′, s, ε),

(0, 0, C, S, g,X, Y, Z,R′, s, ε, σ) or (1, 1, R) with random answers, either ek , sk , orR′
R←{0, 1}`.

For keeping consistent, one stores ((0, 1, C, S, g,X, Y, Z,R′, s, ε), ek), ((0, 0, C, S, g,X, Y, Z,R′, s, ε, σ), sk)
or ((1, 1, R), R′) in Λ that is used to give the same answer if the same query is asked twice.
One also simulates the random oracle Hp on new queries (s, pw): it outputs a random

P R← Zp. One then stores ((s, pw),P) in Λp that is used to give the same answer if the
same query is asked twice. This is a perfect simulation of the random oracles H and Hp:
AdvG0(A) ≤ AdvG1(A).
We formally restrict to Λ̄ the set of the truncated tuples (C, S,X, Y, s) corresponding to
the above tuples in Λ that satisfy Z = DHg(X,Y ), with g = U · V, for any verifier V of
any user, or g = U · V Hp(s,pw), for any password of any user. In addition to the initial salts
associated to the users, for any salt s sent for a client C (by the adversary), one computes
PC = Hp(s, pwC) and g = U · V PC to build this list.

Game G2: Execute-queries between compatible users, before corruption.
We first deal with passive attacks (Execute-queries), in which we know from the beginning
whether the players are compatible or not. In this game, we modify the way Execute-queries
between compatible users, before corruption, are answered. We make Ci and Sj send the
correct salt s, random group elements X and Y , but a correct proof of knowledge of PC ,
with R′ = H(11‖R), ε, and ρ encrypted under a random key ek

R←{0, 1}`, into σ. One also

randomly draws sk
R←{0, 1}`, and stores (C, S,X, Y, s) in Λ1.

Unless (∗, C, S, g,X, Y, Z, s, ∗), for the appropriate g and Z, has been asked to H, this
is indistinguishable from the previous game. We thus set the event Bad1H to true (and
let the adversary win) as soon as Λ̄ ∩ Λ1 6= ∅. Unless Bad1H = true, the two games are
indistinguishable: AdvG1(A) ≤ AdvG2(A) + Pr[Bad1H].

Game G3: We can now replace R′
R←{0, 1}` and σ by a random ciphertext. Under the indis-

tinguishability of the encryption scheme, the two games are indistinguishable: AdvG2(A) ≤
AdvG3(A) + qcomp

e · AdvindE (A).
Game G4: Execute-queries between incompatible users, before corruption.

Execute-queries between incompatible users, before corruption, are answered the same way
as above, but with independent sessions keys. Unless the same Bad1H = true, the two
games are indistinguishable under the indistinguishability of the encryption scheme (E ,D):
AdvG3(A) ≤ AdvG4(A)+qincomp

e ·AdvindE (A). As a conclusion, since the initial game, we have

AdvG0(A) ≤ AdvG4(A) + qe · AdvindE (A) + Pr[Bad1H].

We will now modify the Send-queries, where Send0 is the start-query for a client to initiate
an execution of the protocol, followed by Send1, Send2, and Send3.

Game G5: Send2-queries, before corruption.
We now modify the behavior of the client before corruption. To a Send2-query (s, ε, Y ), one

selects X
R←G and keys ek , sk

R←{0, 1}`. The simulator also stores (C, S,X, Y, s) in Λ2.
As above, an inconsistency can be detected if an H-query has been asked with the appro-
priate g and Z. But this time Y has been chosen by the adversary, without knowing the
real password/verifier (before corruption). More generally, we set the event Bad2H to true
(and let the adversary win) as soon as Λ̄∩Λ2 6= ∅. Unless Bad2H = true, the two games are
indistinguishable: AdvG4(A) ≤ AdvG5(A) + Pr[Bad2H].

Game G6: In addition, we replace σ by a random ciphertext, which is indistinguishable since
ek is random:

AdvG5(A) ≤ AdvG6(A) + qC · AdvindE (A).

Game G7: Send3-queries, before corruption.
We now modify the behavior of the server before corruption. To a Send3-query (X,σ), one

selects a random key sk
R←{0, 1}`, and stores (C, S,X, Y, s) in Λ2.
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As above, an inconsistency can be detected if an H-query has been asked with the appropri-
ate g and Z. But with X chosen by the adversary, without knowing the real password/verifier
(before corruption), which is already covered by the event Bad2H that makes the adversary
win: AdvG7(A) = AdvG6(A).

Game G8: H-queries.
We enhance the simulation of theH-queries with a possible ⊥ instead of Z, which is assumed
to stand for Z = DHg(X,Y ). Let us focus on the (g,X, Y, Z) part in the input and the output
y:

– for a new query (from the simulator) involving (g,X, Y,⊥), one looks for any (Z, y) for
which Z would complete the query in Λ and checks whether DDH(g,X, Y, Z) is true or

not. If this is true for a pair (Z, y), then the answer is y, otherwise a random y
R←{0, 1}`

is drawn and output. The query, completed with y, is stored in Λ;
– for a new query involving (g,X, Y, Z) such that completed query-answer ((g,X, Y,⊥), y) ∈
Λ, one checks whether DDH(g,X, Y, Z) is true or not. If this is true, then the answer is

y (⊥ is replaced by Z in the list), otherwise a random y
R←{0, 1}` is drawn and output,

and the query, completed with y, is stored in Λ.
Of course, as before, one gives the same answer if the same query is asked twice. This is a
perfect simulation of the random oracle H, but with access to a DDH oracle which, on input
(g,X, Y, Z), checks whether Z = DHg(X,Y ) or not. The number of DDH-oracle-queries will
be bounded by qH: AdvG8(A) = AdvG7(A).

Game G9: Send3-queries, after corruption.
We now deal with the corruptions, and the answer to a Send3-query (X,σ) but for a Y
generated before the corruption, and so the adversary might possibly be correct for the
X and g: the simulator asks for the appropriate (g,X, Y,⊥)-query to H, to get sk , with
g = U · VS,C , using the above simulation of the random oracle H. Thanks to the enhanced
simulation of the random oracle, one will get the same answers as the adversary asked for
the correct queries, with the correct Z: AdvG9(A) = AdvG8(A).

Game G10: Send1-queries, before corruption.
We can complete the behavior of the server before corruption, since Z is not needed any-
more to answer Send3-queries. To a Send1-query (A,R′), one selects Y

R←G: AdvG10(A) =
AdvG9(A).

Game G11: In the above game, one can remark that the passwords/verifiers are not needed for
the simulation of the honest players, unless they have been corrupted, but just required to
build the list Λ̄, and to evaluate the events Bad1H and Bad2H. This is enough to evaluate
them at the very end only. However, the server must have generated a salt for each client,
from the beginning.
So, in the final game, the passwords/verifiers are not known at the beginning, but just at
the corruption time or at the very end only:

– Execute(Ci, Sj)-queries: the simulator randomly selectsX,Y
R←G, and stores (C, S,X, Y, s)

in Λ1. If the users are compatible, they are given the same random key sk = skC =
skS

R←{0, 1}`. If they are incompatible, they are given two independent random keys

skC , skS
R←{0, 1}`;

– Send0(C
i)-queries (which asks C to initiate an execution of the protocol): the simulator

randomly selects α
R← Z∗p, sets R← V α and R′ ← H(11‖R), and outputs (C,R′);

– Send1(C,R
′)-queries: before a corruption, the simulator selects the appropriate salt s

and a random challenge ε, but randomly chooses Y
R←G. Otherwise it randomly selects

y
R← Z∗p and sets Y ← gy, for g ← U · VS,C ;

– Send2(s, ε, Y )-queries: before a corruption, the simulator randomly selects X
R←G, the

keys ek , sk
R←{0, 1}`, and the ciphertext σ, and stores the tuple (C, S,X, Y, s) in Λ2,

otherwise it randomly selects x
R← Z∗p, sets X ← gx and Z ← Y x, for g ← U · V PC with

PC ← H(s, pwC), and asks for ek and sk to H and answers σ correctly;
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– Send3(X,σ)-queries: thee cases appear

• before corruption, one chooses skC
R←{0, 1}`;

• after corruption, but Y has been generated before corruption, one asks for sk from
H on the tuple (g,X, Y,⊥), for g ← U · VS,C ;
• after corruption, and Y = gy for g = U · VS,C , one asks for sk from H on the tuple

(g,X, Y, Z), where Z ← Xy.
– Corrupt(C) and Corrupt(S,C,⊥)-queries: if this is the first corruption query involving
C, one first chooses a random password pw (to be pwC) and defines PC = H(s, pw)
from the already chosen salt s, and sets VS,C = V PC . One then checks for events Bad1H
and Bad2H, for sessions involving C;

– Corrupt(S,C, (s,V))-query: it sets VS,C ← V as well as sS,C ← s;
– Test-queries are answered using the defined session key, and according to the bit b.

In case of collision between the X’s or the Y ′ chosen by the simulator (either in Execute-
answer or a Send-answer), and a previously sent value (either by the simulator or the ad-
versary), we set Coll to true (and let the adversary win). Unless a collision happens, thanks
to the definition of the session ids (the entire transcripts), no instance of a player can have
more than one partner (with the same session id). At the very end, or at the time of a
corruption, the passwords are drawn at random, and the pre-hashes P and verifiers V are
computed. As a consequence,

AdvG10(A) ≤ AdvG11(A) + Pr[Coll].

In this last game, the way the session keys are defined is exactly the same as in the random
and the real cases (chosen at random before corruption). Then the probability for b′ = b is
exactly one half:

AdvG0(A) ≤ Pr[Bad1H] + Pr[Bad2H] + Pr[Coll]

+ (qe + qC) · AdvindE (A).

Collisions. The probability the event Coll is upper-bounded by (qe + qs)
2/p, where qe is the

number of Execute-queries and qs is the number of Send-queries.

Event Bad1H. The event Bad1H means that for some tuple (g = U · V P , X = gx, Y = gy, Z),
we have Z = gxy. Let us be given a Diffie-Hellman instance (u, v = ua, w = yb). We set
U ← u, V ← uz for a random z, and for any random element X,Y , one chooses random x, y
and sets X ← vx and Y ← wy: the basis is g = u1+Pz, while X = uax = gax/(1+Pz) and
Y = uby = gby/(1+Pz). Therefore, Z = gabxy/(1+Pz)

2
= (uab)xy/(1+Pz). We thus have solved the

CDH problem with Z(1+Pz)/xy, which can be checked with qH additional DDH-oracle queries:
Pr[Bad1H] ≤ Succ2qH−gdh(t).

Event Bad2H. The event Bad2H cannot be proven to be negligible, since it can at least happen
when the adversary guesses correctly the password. We have to show this cannot happen more
often than once per active session. Let us assume that the adversary can make a given tuple
(C, S, g,X, Y, Z, s) raise the event Bad2H for two distinct choices pw1 6= pw2 of the password
and so two distinct pre-hashs P1 6= P2 with the same salt s (unless there is a collision on Hp).
Let us be given an instance (u, v = ua, w = ub) for which we want to get R, R1/a, R1/b (break
the SDH problem). We set U ← (vP2/wP1)1/P2−P1 and V ← (v/U)1/P1 . With this definition,
one can note that U · V P1 = v and U · V P2 = w. For a random choice of X or Y in G, one sets
it to ux for a random scalar x. Let us assume this is X = ux (but by symmetry it would be the
same with Y ). If (g,X, Y, Z, s) would raise the event Bad2H for both P1 and P2, there are Z1

and Z2 in the list Λ such that Z1 = DHv(X,Y ) and Z2 = DHw(X,Y ), which can be checked

with DDH-oracle queries. For X = ux: Z
1/x
1 = Y 1/a and Z

1/x
2 = Y 1/b. With R ← Y , we have

Z
1/x
1 = R1/a and Z

1/x
2 = R1/b.
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Scheme Communication Computation Forward Security Assumptions Limitations
(Both Sides) (Both Sides) Secrecy Model

PAKE

EKE [12] 1G / 1G 2E / 2E Yes ICM CDH [19]
SPAKE [6] 1G / 1G 2E+2sE / 2E+2sE No ROM CDH
SPAKE2 [6] 1G / 1G 2E+2sE / 2E+2sE No ROM CDH
SPEKE [33] 1G / 1G 2E / 2E No ROM CDH in Z∗p only
SAE [32] 2G / 2G 3E / 3E No ROM CDH [42] in Z∗p only
SRP [50] 3G / 3G 2E / 3E No proof in Z∗p only
GL-SPOKE [2] 4G / 3G 10E /10E Yes Standard DDH
GK-SOPKE [2] 2G / 4G 8E / 9E Yes Standard DDH
TBPEKE 1G / 1G 2E+1sE / 2E+1sE Yes ROM GSDH

Verifier-based PAKE

SPAKE2+ [23] 1G / 1G 5E / 5E No ROM CDH
AugPAKE [45] 1G + k / 1G + k 2E / 3E No ROM Strong DH [48]
VTBPEKE 1G + k + |p| / 1G + k 4E / 4E Yes ROM GSDH

Figure 5. Comparisons

As a consequence, let us randomly choose pw1 6= pw2 and P1,P2
R← Zp. we set U ←

(vP2/wP1)1/P2−P1 and V ← (v/U)1/P1 , and for a query Hp(s, pw1) we output P1, and for the
future Hp(s, pw2) we will output P2. With probability 1/N2qP , we have done the good choices
for pw1 (among N), pw2 (among N) and s (among at most qP queries to H(·, pw1)): a tuple
(C, S, g,X, Y, Z, s) is very unlikely to raise the event Bad2H for two distinct choices P1 6= P2,
but only for one, and there is one such tuple per session:

Pr[Bad2H] ≤ qs
N

+
q2P
p

+N2qP × Succ2qH−gsdh(t),

where t is the running time of the adversary (since the basic reduction is essentially the classical
attack). However, because of the N2 loss, in case of a large dictionary, we can simply answer P1
and P2 for two randomly chosen Hp queries, and with probability 1/q2P these are the good ones:

Pr[Bad2H] ≤ qs
N

+
q2P
p

+ q2P × Succ2qH−gsdh(t).

Conclusion. By combining all the bad cases, we have

Adv(A) ≤ qs
N

+ q2P × Succ2qH−gsdh(t) + Succ2qH−gdh(t)

+
q2P + q2S

p
+ qS · AdvindE (t),

where qS = qs + qe is the global number of sessions (qe for the passive sessions qs for the active
sessions), qH is the number of queries to H and qP is the number of queries to Hp.

7 Parameters and Efficiency

On Figure 5, we list a number of representative PAKE and VPAKE protocols, and compare their
security levels as well as the efficiency, from both the communication and the computation points
of view. For communication, we count the number of group elements (G), scalars (|p|), and bit
strings of length k, the security parameter, in both directions, but ignore the salt (for VPAKE).
For the computations, we focus on exponentiations (E is the cost of one exponentiation, while
sE is the cost of an exponentiation to a small scalar). While SRP does not admit any formal
security analysis, the authors recommend the use of a group of order p in a finite field Z∗q with a
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k |p|
64 320
80 400

112 560
128 640

Figure 6. Bit-length of the order of the groups

safe prime q = 2p+ 1, which leads to a very inefficient construction, as for any implementation
that requires discrete logarithm in finite fields.

Our TBPEKE is the most efficient PAKE (it even additionally provides forward secrecy): the
EKE construction is only proven in the ideal-cipher model (ICM), with a symmetric encryption
scheme over the cyclic group G, which is not efficiently implementable.

As AugPAKE, our VTBPEKE also allows some off-line pre-computation independent of the
password and the salt, on the client side. They have a similar communication complexity. Our
VTBPEKE is a bit more costly, but it is proven to guarantee the forward-secrecy in the Real-or-
Random security game, whereas AugPAKE is just proven secure in the Find-then-Guess security
game, without forward-secrecy.

For a PAKE or VPAKE, one expects the advantage of the adversary to be bounded by qs/N+ε.
With a safe and efficient symmetric encryption scheme (as AES), we can ignore qS · AdvindE (t).
And we need to make q2P × (q2 + 20) + q2S ≤ p · 2−k, for the security parameter k: p ≥ 2k× (q2P ×
(q2 + 20) + q2S). A safe bound is p ≥ 25k (See Figure 6).

8 Conclusion

We have proposed a quite efficient forward-secure verifier-based password-authenticated key
exchange: the computations on the client side just consist of 4 exponentiations, and the global
communication is approximately 14k, for a security parameter k, which is approximately 224
Bytes for a 128-bit security level. It follows the line of SPEKE that has not been studied as much
as EKE, while it is also an interesting family, as this work shows. We have indeed proven that

– off-line dictionary attacks are only possible after the compromise of the server, but the
computational cost will be linear in N , the cardinality of the dictionary;

– on-line dictionary attacks also require a linear number of active attacks to guess the pass-
word;

– thanks to the forward-secrecy, even when the password or the verifier are known, the privacy
of previous sessions still holds.
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