
This extended abstract appeared in
Proceedings of the 2017 ACM Symposium on Information, computer and communications security (AsiaCCS ’17)
(April 4–6, 2017, Abu Dhabi, United Arab Emirates), ACM Press. DOI: 10.1145/3052973.3052996

Functional Encryption with Oblivious Helper

Pierre-Alain Dupont and David Pointcheval

CNRS, INRIA, and ENS/PSL Research University, Paris, France

Abstract. Functional encryption is a nice tool that bridges the gap between usability and privacy
when providing access to huge databases: while being encrypted, aggregated information is available
with a fine-tuned control by the owner of the database who can specify the functions he allows
users to compute on the data. Unfortunately, giving access to several functions might leak too much
information on the database, since once the decryption capability is given for a specific function,
this is for an unlimited number of ciphertexts. In the particular case of the inner-product, if rows or
records of the database contain ` fields on which one got ` independent inner-product capabilities,
one can extract all the individual fields. On the other hand, the major applications that make use
of inner-products, such as machine-learning, need to compute many of them.
This paper deals with a practical trade-off in order to allow the computation of various inner-
products, while still protecting the confidentiality of the data. To this aim, we introduce an oblivious
helper, that will be required for any decryption-query, in order to control the leakage of information
on the database. It should indeed learn just enough information to guarantee the confidentiality of
the database, but without endangering the privacy of the queries.

Keywords: Functional encryption; oblivious decryption; confidentiality; privacy

1 Introduction . 2
2 Functional Encryption Model . 3

2.1 Description . 4
2.2 Security Model . 4

3 Building Blocks . 6
3.1 ElGamal Encryption Scheme . 7
3.2 Non-Interactive Zero-Knowledge Proofs . 7
3.3 Randomizable Signatures . 7

4 Our Protocol . 8
4.1 Computational Assumptions . 8
4.2 Description . 8
4.3 Decryption . 10
4.4 Communication Complexity . 11
4.5 Security Analysis . 11
4.6 Test of Interval . 13

A Proof of Data Privacy. 15

c© Authors 2017. Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

http://dx.doi.org/10.1145/3052973.3052996

2

1 Introduction

With the new cloud paradigm shift, and the rise of machine learning, very huge databases are
being made available to many users, in order to allow computations on them. For example, this
allows medical research to share quite useful data for improving medical diagnosis. But such
endeavour should not sacrifice privacy. Individual fields in databases should not be released since
they contain critical information on the people and only aggregated data should be provided as
it is enough anyway for machine learning techniques.

Our goal is thus to allow aggregation of data from encrypted databases, in order to provide
both privacy and utility. Unfortunately, classical encryption schemes do not address this issue,
because they target specific users (the owners of the decryption key) who then have full ability
to decrypt any data. On the other hand, the recent Functional Encryption (FE) [SW05,BSW11,
O’N10] allows a better control of which can be decrypted.

In such a scheme, with the master secret key, the authority can provide, for any function f , a
functional key skf that allows, on a ciphertext C of a messagem, to get back f(m) only. No more
information about m is released. We stress that functional encryption is used to encrypt large
messages m (records with many fields of a database, or even the entire database) in each large
ciphertext. Hence m in bold that denotes a vector. So f(m) can actually be some computation
on records of the database, or on the entire database. And while the data are encrypted, the
functional key skf allows to get the evaluation in clear but nothing else is leaked.

A simpler approach would be to ask for on-the-fly computation of f(m), but this requires
that the data owners (which may be numerous in a public-key encryption scheme) are on-line
and available to answer the requests. Another solution would be to directly encrypt f(m) under
a key related to f (which is possible for any function encryption scheme), but this requires
in-advance precise knowledge of the functions f that can be asked, as the ciphertext’s size
grows linearly with the number of functions to be handled. Eventually, the decryption key could
be distributed among several on-line servers that would help the user to get f(m). But the
decryption key (even distributed) is critical, and using it too often is quite dangerous for its
privacy. Functional encryption suffers neither of those drawbacks, since the master key is used
for issuing the functional keys only.

Functional Encryption. While a series of papers proposed secure constructions of FE schemes
for general circuits [GGH+13,BCP14,Wat15,GGHZ16], they are very inefficient, perhaps because
of their generality. Some concrete constructions, that only target specific functions of interest
have recently been proposed. Notably, the construction in [ABDP15] on the inner-product seems
very interesting in a support vector machine setup in machine learning (see below), as both
the learning and the classifying phases can be handled by computing several inner-products.
Some improvements have thereafter been presented to achieve adaptive security and/or function
hiding [BJK15,ALS15,ALS16,ABDP16].

While this functionality has found many applications, it still suffers from the classical draw-
back of functional encryption: a combination of too many functional keys leads to a total leakage
of the plaintext. This is obviously the case for an inner-product functionality, as an adversary
yielding ` keys for a vector-plaintext of length ` simply has to invert an `× ` matrix to recover
the entire vector-plaintext. We stress that it is not a flaw of any of the above constructions, but
a direct consequence of the functionality itself: being able to compute f(m) on any ciphertext,
and for too many functionalities f , one can get the whole database in clear.

Machine Learning. Machine-Learning is a subfield of computer-science that allows pattern
recognition [JDM00] on an automated basis independent of the specificities of the actual data. In
particular, supervised learning is where a set of data is first manually labeled and learned-on, then
a classifying algorithm can be used to assign a label to new data. A particular well-studied set
of supervised learning algorithms are the support vector machine (SVM) algorithms [HDO+98,
SS02], that take a geometrical approach and try to determine linear classifiers (n− 1 dimension

3

hyperplane) to separate two sets of points. They notably only make use of inner-products for
both the learning phase (finding the optimal hyperplane) and the classifying phase (assigning
the correct value to new data, in which case a fixed vector is used).

These techniques are widely used nowadays, and nobody could miss them anymore, as they
are of great help for making researches on big data (data mining) or for taking decisions. But
this is at the price of a big loss of privacy, since huge unencrypted databases are used, for both
the learning and the classifying tasks. Being able to address these tasks on encrypted databases
is the holy grail!

This works thus focuses on this problem, and does so by introducing an additional player to
the classical FE setup: the helper, to limit and control the leakage of information. This means
that our new construction will be interactive, but this fits right with the new cloud paradigm,
where everything is online anyway.

Functional Encryption with Helper. In order to control and limit the information learned
by the users, an interaction with this helper is required in order to get anything about the
encrypted database, in addition to the functional decryption keys.

More precisely, a functional decryption key is still a first requirement to start the decryption
process, but an interaction with the helper is another requirement, to conclude the process. The
role of this helper is to apply a restriction policy, to limit the number of decryption queries the
users can ask, so that the privacy of the global database cannot be endangered.

On the other hand, it cannot be trusted: it should not be able to get any information about
the plaintext, and neither should he learn any information about the queries asked by the user.
It should be an oblivious helper, that helps the user, without learning anything other than the
minimum information needed to apply the restriction policy (e.g. a query was made on a given
ciphertext). This is in contrast with the simpler approach mentioned above, with on-line servers
that help to compute f(m): either they learn everything (the plaintext and the function to be
applied) or secure multi-party computation is required.

We further restrict this functional encryption scheme by allowing a different primitive than
the classical decryption: the decryption test, in which the user provides in advance a set V of
possible values for f(m) and, with one interaction with the helper, only learns whether the
actual value is in the set. For the inner-product case, we provide an efficient construction for the
test of membership of an interval: the user can learn whether the inner-product value is in an
interval of his choice, but does not get more; the helper just learns the ciphertext and the size
of the interval, which are important information to evaluate the global leakage on the database
(the larger is the interval, the less information is leaked).

Our functional encryption scheme with helper is akin to combining classical functional en-
cryption with a secure two-party computation protocol in which one party (the helper) provides
its decryption key as input and only learns the ciphertext used, but neither the result nor the
function, and the other party (the user) provides the ciphertext and the function as input and
only learn f(m), and nothing else. However, the scheme we propose is much more efficient than
such generic compositions: we tailor our construction to our specific problem.

Organization. The next section defines the formal model for such a functional encryption
scheme. Then we will briefly introduce some of the key cryptographic building blocks that our
concrete protocol will require. Lastly, we present our construction and prove its security in our
security model.

2 Functional Encryption Model

We now define the formal model for our new functional encryption scheme with oblivious helper,
that generalizes regular functional encryption schemes by adding a player (the oblivious helper)
and introducing a decryption test algorithm, that reveals whether f(m) ∈ V for a specified set
of values V , instead of a regular decryption that reveals f(m).

4

This section first formalizes our new functional encryption with helper, with its correctness
and then defines the security model to encompass our expected security goals.

2.1 Description

In order to limit the leakage of information to the users, we define a new functional encryption
scheme with the same properties as usual, but which requires helper queries for any decryption,
or even just decryption test (for a ciphertext C of a message m, does f(m) belong to V ?).

– Setup(1λ): Given the security parameter λ, it generates the global parameters param of the
system;

– KeyGene(param): Given the global parameters param, it generates the master secret key msk,
the encryption key ek and the verification key vk. This encryption key is used in the encryp-
tion of a message while the verification key allows to check the signature of the functional
secret keys;

– KeyGenh(param) Given the global parameters param, it generates the helper public and secret
keys, pkH and skH;

– KeyDer(msk,f): Given the master secret keymsk and a function f , it generates the functional
secret key skf ;

– Encrypt(ek, pkH,m): Given the encryption key ek, the helper public key pkH, and a message
m, it generates a ciphertext C;

– TestDecryptH(pkH, C, skf , V): Given a ciphertext C, the functional secret key skf , a set V
of possible values for the evaluation of f on the plaintext and the helper public key pkH, it
confirms (with output 1) or not (with output 0) that this evaluation of f on the plaintext
belongs to V , with an interaction with the test-helper H owning skH.

For correctness we require that:

∀param← Setup(1λ),

∀(ek, vk)← KeyGene(param),

∀pkH ← KeyGenh(param),

∀(m ∈M,f ∈ F , V),

∀C ← Encrypt(ek, pkH,m),

∀skf ← KeyDer(msk,f),

TestDecryptH(pkH, C, skf , V) = 1 ⇐⇒ f(m) ∈ V

For efficiency reasons, we will focus on schemes that have one-round TestDecrypt protocols. This
means that the user makes one interaction only with H during the TestDecrypt protocol. The
helper might output ⊥ in case of bad inputs, and then TestDecrypt aborts. KeyDer and Encrypt
might output ⊥ in case of invalid inputs.

2.2 Security Model

First, our main contribution is on the limit of the leakage of information one can get from the
functional keys, thanks to the helper queries: while the functional keys give some decryption
rights to the user, the helper will restrict the quantity of learned information (e.g., limiting the
number of TestDecrypt-queries). After such TestDecrypt-queries, an adversary should not learn
more than whether f(m) ∈ V or not for the plaintext m encrypted in the ciphertext C, and of
course nothing about other plaintexts (indistinguishability).

On the other hand, in the case of collusion with the helper H owning skH, no-one should
learn more than the evaluation of the functions for which it got the functional secret keys on
the plaintexts. This is essentially the classical notion of semantic security for basic functional

5

encryption schemes, that we can fall-back on if the helper was to be compromised (under such a
collusion assumption, this is the best one can achieve). We call it data privacy in our setting.

Moreover, the helper H should not learn more information than required to restrict the
amount of information the user can get: its role is to limit the number of queries, but it should
not be able to get information on any plaintexts (which is already guaranteed by the above data
privacy security notion, since skH is known to the adversary) and it should not learn anything
about the queries (query privacy). There may however be several limitations: the helper H may
limit the number of queries globally, by a given user1 whatever the queries are; or the number
of queries can be limited per ciphertext (globally or per user). In the latter case, we allow the
helper to know on which ciphertext C the TestDecrypt-query is asked, which looks important to
evaluate the amount of information the user can get about a specific ciphertext.

In any case, it is important that the helper cannot provide a wrong answer to the user
(verifiability), but still, it should not learn the answer either.

We now formally define the experiments for those four security notions, where the Initialize-
query must be called first, and once only, while the Finalize-query must be called last, and once
only. All other queries can be called as many times as necessary and in any order.

Indistinguishability (IND). This notion is the most important contribution in our security
model: it models the restrictions for the user with TestDecrypt-queries. The adversary plays the
role of a user, and everything that it can learn with the system could be learned with explicit
queries to Test(C,f , V), on legitimate ciphertexts C = Encrypt(m) and legitimate functions f
asked to KeyDer, that simply checks whether f(m) ∈ V or not. More precisely, in the experiment
below, we expect the AskH-queries to be answered using the above Test-queries only:

– Initialize(λ): it runs param ← Setup(1λ), generates the keys (msk, ek) ← KeyGene(param),
(pkH, skH)← KeyGeno(param), and outputs (param, ek, pkH);

– KeyDer(f): it stores f in the list Ψ and outputs skf ← KeyDer(msk,f);
– Encrypt(m): it computes C ← Encrypt(ek, pkH,mb), stores C in the list Φ, and outputs C;
– AskH(M): if b = 0, it runs the TestDecrypt procedure with H (knowing skH), by sending
M ; otherwise it runs it with the simulator S that only has access to Test, and forwards the
answer;

– Finalize(b′): Returns (b = b′).

The adversary wins if Finalize outputs true. A good adversary is an adversary that wins signifi-
cantly more often than half of the time against any simulator S:

AdvindS (A) = Pr[Finalize = true]− 1/2 ≥ ε,

for some non-negligible ε.
We stress that for AskH-queries answered by S, the latter has just access to Ψ , Φ, and helper

Test(C,f , V) that answers whether f(m) ∈ V or not, for legitimate ciphertexts C ∈ Φ and
functions f ∈ Ψ .
Data Privacy (D-Priv). This security notion is actually the classical semantic security for
basic functional encryption schemes, where the adversary should distinguish the ciphertexts of
two plaintexts of its choice, with the constraint that the functions for which it gets the functional
secret keys should evaluate the same way on the two plaintexts. We stress that in this experiment,
the adversary controls both a player and the helper H. It is thus given the helper secret key skH.
The challenger flips a random coin b $← {0, 1}, which is used in the following helpers:

– Initialize(λ): it runs param ← Setup(1λ), generates the keys (msk, ek) ← KeyGene(param),
(pkH, skH)← KeyGeno(param), and outputs (param, ek, skH, pkH);

– KeyDer(f): it stores f in the list Ψ and outputs skf ← KeyDer(msk,f);
1 This of course means that such queries occur on an authenticated channel for the user and that in case of
collusion between several users, their number of authorized query sum up

6

– LREncrypt(m0,m1): it stores (m0,m1) in the list Φ and outputs the ciphertext C ←
Encrypt(ek, pkH,mb);

– Finalize(b′): if fresh, it returns (b = b′). Otherwise it returns false.

The adversary wins if Finalize outputs true. A good adversary is an adversary that wins signifi-
cantly more often than half the time:

Advd-priv(A) = Pr[Finalize = true]− 1/2 ≥ ε,

for some non-negligible ε. We define the freshness for the data privacy experiment, in order to
exclude trivial attacks:

Definition 1 (Freshness). Data privacy experiments are considered fresh if for any f ∈ Ψ and
any (m0,m1) ∈ Φ, f(m0) = f(m1).

Query Privacy (Q-Priv). In this experiment, the adversary still plays the role of the helper H,
and is thus given the helper secret key skH, but its aim is at understanding users’ helper-queries.
One thus assumes the user can get any functional key of its choice, but helper-queries can be
asked on legitimate ciphertexts only, hence the following available queries:

– Initialize(λ): it runs param ← Setup(1λ), generates the keys (msk, ek) ← KeyGene(param),
(pkH, skH)← KeyGeno(param), and outputs (param, ek, skH, pkH);

– Encrypt(m): it computes C ← Encrypt(ek, pkH,m) and stores C in Λ. Then it outputs C;
– LRTestDecrypt(C, (f0, V 0), (f1, V 1)):
• If C 6∈ Λ, it outputs ⊥.
• Otherwise, it computes skf b ← KeyDer(msk,f b), and runs TestDecrypt(C, skf b, V b). Any

interaction with H in this procedure is done with A instead;
– Finalize(b′): Returns (b = b′).

As above, we define
Advq-priv(A) = Pr[Finalize = true]− 1/2.

One can note that the above security game requires that no information about the outcome of
TestDecrypt is learned by the helper H, even being malicious. Indeed, since it knows m and
(f0,v0), (f1,v1), if (f0(m) ∈ V 0) 6= (f1(m) ∈ V 1), the outcome of the TestDecrypt would
reveal b.

Verifiability (SND). The last security notion is more a soundness property: any misbehavior
should be detectable by the user. More precisely, both the functional keys and the decryption
tests (unless the helper outputs ⊥) should be verifiable. This means that the probability that
the user accepts a false result is negligible.

3 Building Blocks

For our construction, several classical cryptographic tools will be useful, and namely to guarantee
verifiability and privacy. It is the purpose of this section to introduce them.

First, we introduce the well-known ElGamal encryption scheme [ElG84], whose homomorphic
property is at the basis of the Inner-Product functional encryption scheme [ABDP15,ABDP16,
ALS15,ALS16] on which this work builds on.

The interactive protocol between the holder of the functional key skf and the helper H
will require blindly relating a decryption query to a ciphertext (so as to implement a policy
on the number of operations on a ciphertext). Hence, Non-Interactive Zero-Knowledge Proofs
are presented next. They allow to guarantee that the values where honestly computed, without
leaking the secrets involved.

Eventually, the functional keys themselves need to be authenticated, but without any way,
for the helper, to learn more than whether it is legitimate or not. More precisely, it should not

7

be able to link multiple usages of a single key or to relate a presented key to one delivered by
the holder of the master secret key. This can be achieved through a special kind of signature
schemes: randomizable signature schemes.

3.1 ElGamal Encryption Scheme

We will use the famous ElGamal encryption [ElG84], in order to commit and/or encrypt messages
in a cyclic group G of prime order p with generator g. First, one generates the keys dk $← Zp and
ek← gdk. To encrypt a message m ∈ G, one samples r $← Zp and computes C = (c0 ← gr, c1 ←
m · ekr). To decypt, the receiver simply computes m← c1/c

dk
0 .

This scheme achieves the IND−CPA security level under the DDH assumption in G [BDPR98].
This encryption scheme is multiplicatively homomorphic in G: if one multiplies component-

wise, the encryption ofM and the encryption ofM ′, one gets the encryption ofM ·M ′. One often
needs additive homomorphism in Zp. In such a case, one encrypts gm. But then, when decrypting
as explained above, one just gets gm, and so one has to compute a discrete logarithm to get back
the plaintext m ∈ Zp. Hence, one has to limit the ciphertexts to encrypt small messages m ∈M.

3.2 Non-Interactive Zero-Knowledge Proofs

In order to prove the wellformedness of the queries and the answers, the players will have to prove
their honest behavior. It will be sufficient for our purpose to prove some relationships between
hidden scalars, as exponents in possibly different groups Gj that all share the same prime order
p. More precisely, a player will have to prove the existence of scalars (xi)i in Zp, so that for group
elements Gi,j , Tj ∈ Gj , for all j, Tj =

∏
iG

xi
i,j .

As explained in [CS97], this can be proven using Schnorr-like proofs [Sch90a,Sch91]: for each
i, the prover samples ki

$← Zp, and sets Rj =
∏
iG

ki
i,j ; upon receiving a random challenge e $← Zp,

the prover computes si = ki − exi mod p and sends them back to the verifier. The latter can
then check that, for all j, Rj = T ej ×

∏
iG

si
i,j .

By using the Fiat-Shamir heuristic in the random oracle model [BR93], proven in [PS96,PS00],
we can turn it into a non-interactive zero-knowledge proof: the prover samples ki

$← Zp, and sets
Rj =

∏
iG

ki
i,j ; it then computes itself the challenge e = H((Rj)j) and the answers si = ki − exi

mod p. It sends back the full proof:Π = (e, (si)i), which can be checked by e ?= H((T ej×
∏
iG

si
i,j)i).

We stress that we are dealing with proofs of membership only, and not proofs on knowledge:
the rewind for the forking lemma [PS96] is only used for the proof of the soundness, but not for
extraction.

About the complexity, one can note that the size of the proof is just linear in the number of
scalars, and independent of the number of relations: if there are n scalars and m relations, the
size of the proof is just n+ 1 scalars (the challenge e, and the answers (si)i).

3.3 Randomizable Signatures

In addition, in order to limit queries to legitimate ones, the functional keys will be signed.
But they should not be revealed during queries, just proven legitimate. This is in the same
vein as anonymous credentials [CL04]. For better efficiency, we will use the signature scheme
recently proposed [PS16]: in order to sign `-scalar messages, one defines a bilinear group setting
(p,G, g, G̃, g̃, e) $← GroupGen(1λ). The signer chooses `+1 scalars x, y1, . . . , y`

$← Zp, and sets the
signing key as sk ← (x, y1, . . . , y`) and the verification vk ←

(
X̃ = g̃x, Ỹ1 = g̃y1 , . . . , Ỹ` = g̃y`

)
.

The signature of (mi)i is the pair σ = (σ1 ← h, σ2 ← hx+
∑

imiyi), for a randomly chosen
h

$← G\{1G}. This signature σ on the tuple (mi)i can be checked by

σ1 6= 1G and e(σ1, X̃) ·
i=∏̀
i=1

e(σ1, Ỹi)
mi = e(σ2, g̃).

8

It is important to note that, for any random r
$← Zp, σ′ ← (σr1, σ

r
2) is another valid signature on

(mi)i.
This scheme achieves the EUF−CMA security level under a derived assumption of LRSW [LRSW99],

defined in [PS16]. It has been proven in the asymmetric bilinear generic group model. We stress
that type 3 pairings, where the XDH assumption holds are required (see below).

4 Our Protocol

We first define our functional encryption with oblivious helper scheme, which is a natural exten-
sion of [ABDP16,ALS15,ALS16], using the signature from [PS16] in order to certify functional
keys. The latter makes use of a pairing-friendly group of type 3, where the XDH assumption
holds, and even more.

We will first start by a quick review of the computational assumptions needed, followed by the
description of the protocol. For the sake of simplicity, we at first limit ourselves to TestDecrypt-
queries on singletons: V = {v}. We then provide the security analysis. Then, in section 4.6, we
show how to extend the TestDecrypt-queries to intervals: V = {v, . . . , v + L − 1}, while just
leaking the length L.

4.1 Computational Assumptions

Bilinear groups are a set of three cyclic groups G, G̃, and GT of prime order p along with a
bilinear map e : G× G̃→ GT with the following properties:

1. for all g ∈ G, g̃ ∈ G̃ and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)a·b;
2. for g 6= 1G and g̃ 6= 1G̃, e(g, g̃) 6= 1GT

;
3. the map e is efficiently computable.

Galbraith, Paterson, and Smart [GPS08] defined three types of pairings: in type 1, G = G̃; in
type 2, G 6= G̃ but there exists an efficient homomorphism φ : G̃ → G, while no efficient one
exists in the other direction; in type 3, G 6= G̃ and no efficiently computable homomorphism
exists between G and G̃, in either direction.

Recent cryptosystems focus on type 3 pairings for their efficiency. In addition, they allow the
Decision Diffie-Hellman assumption to hold in either G or G̃ (which is also known as the XDH
assumption), which is not the case for type 1 pairings. As for the Pointcheval-Sanders signature,
we stress that using type 1 or type 2 pairings would make both the signature and the use of the
El Gamal encryption totally insecure.

We denote (p,G, g, G̃, g̃, e) $← GroupGen(1λ) the generation of such a type 3 pairing setting.
In addition, we assume hardness of the decisional Diffie-Hellman problem in the group G: given
X = gx, Y = gy and Z = gz, where z is either a random scalar or xy mod p, no efficient
adversary can distinguish the two cases with significant advantage. This allows us to later use
the ElGamal encryption in this group G: the DDH assumption in G provides the semantic security
(indistinguishability).

4.2 Description

We present our construction, with helper queries for the TestDecrypt. It is based on the additively
homomorphic variant of ElGamal. Since the values of interest are f ·m, where m ∈ Z`p are the
encrypted messages and f ∈ Z`p the linear combinations, to allow decryption these values have
to be small enough to be obtained by a discrete logarithm computation in reasonable time Time.
Hence, we defineM⊂ Z`p and F ⊂ Z`p the admissible message space and function space so that
for any m ∈ M and any f ∈ F , one can compute the discrete logarithm of gf ·m in time less
than Time.

9

– Setup(1λ): it samples (p,G, g, G̃, g̃, e) $← GroupGen(1λ) as well as independent generators
gs, gt, gτ

$← G. It sets param = (G, G̃, p, g, gτ , gs, gt, g̃, e);
– KeyGene(param): it samples s = (s1, . . . , s`) and t = (t1, . . . , t`)

$← Z`p, and sets ek = h, with
hi = gsis g

ti
t , for i = 1, . . . , `, it also samples x, y1, . . . , y`

$← Zp, and sets vk = (X̃ = g̃x, Ỹ1 =
g̃y1 , . . . , Ỹ` = g̃y`) and msk = (s, t, x, y1, . . . , y`);

– KeyGeno(param): it samples skH $← Zp and sets pkH = gskH;
– KeyDer(msk,f): for a vector f = (f1, . . . , f`) ∈ F , it samples h $← G, and outputs skf =

(skf0 = h, skf1 = f · s mod p, skf2 = f · t mod p, skf3 = hx+
∑

i yifi). One can check the
validity of this key, since

∏
i h

fi
i = gskf1s · gskf2t and e(skf0, X̃

∏
i Ỹ

fi
i) = e(skf3, g̃);

– Encrypt(ek, pkH,m = (m1, . . . ,m`) ∈ M): it samples r $← Zp and α = (α1, . . . , α`)
$←

Z`p, and outputs C = (C0, C
′
0, C1, D1, . . . , C`, D`), where C0 = grs , C ′0 = grt , and Ci =

pkHαigmihri , Di = gαi ;
– TestDecrypt(pkH, C, skf , (v)): it computes

A =
∏

i
Cfii /(C

skf1
0 · C ′0

skf2) B =
∏

i
Dfi
i .

One can note that A = pkHf ·α · gf ·m and B = gf ·α, which is an ElGamal encryption of gv

under the public key pkH if and only if v = f ·m mod p. This is the verification the user
asks to the helper H (which knows the decryption key skH), through the interactive protocol
described below. Note that this process will not leak any information to H apart from the
ciphertext used C.

Interactions with the helper
Depending on the limitations the helper H might want to apply, the user might have to partially
specify the query. As explained above, while it looks quite important to hide f and v, the
helper might want to be able to count the number of queries on each specific ciphertext. As a
consequence, we focus on a description of H that explicitly receives the ciphertext C (which has
to be a legitimate one: it is either signed by the owner of the database, or the database is publicly
available), but not f nor v. Instead, the user commits on them, and runs an equality test with
the helper. It thus computes

– a randomized signature W0 ← skfσ0 , W1 ← skfσ3 , of the function vector f , for a random
σ

$← Zp;
– an ElGamal encryption (extractable commitment) of W1 under the key gτ , U1 ← gρ1 , T1 ←
W1 · gρ1τ , for random ρ1

$← Zp;
– an ElGamal encryption (extractable commitment) of gv under the key gτ , U2 ← gρ2 , T2 ←
gv · gρ2τ , for random ρ2

$← Zp;
– a re-randomization of (B,A): U ′ ← B · gρ′ , T ′ ← A · Z · pkHρ′/gv, for random ρ′

$← Zp
and Z

$← G. The pair (U ′, T ′) is a re-randomization of the ElGamal ciphertext (B,A) of
gf ·m under the key pkH, into an encryption of Z · gf ·m−v, and thus of Z if and only if
f ·m = v mod p;

– an ElGamal encryption of Z under a fresh key h′ = gβ : U ← gρ, T ← Z · h′ρ, for random
β, ρ

$← Zp;

as well as a proof of validity: existence of ρ, ρ′, ρ1, ρ2, skf1, skf2, v, and f1, . . . , f` such that

gρ1 = U1

∏
i

e(W0, Ỹ1)
fie(gτ , g̃)

ρ1 = e(T1, g̃)/e(W0, X̃) (1)

gρ2 = U2 gρ2τ · gv = T2 (2)

10

g−skf1s · g−skf2t ·
∏

i
hfii = 1G (3)

gρ
′ ·
∏

i
Dfi
i = U ′, gρ = U

pkH−ρ′ · h′ρ · Cskf1
0 C ′0

skf2 · gv ·
∏

i
C−fii = T/T ′.

(4)

Note that the line (1), along with the fact that W0 6= 1G, shows that (U1, T1) commits to the
second part (together with W0) of a valid signature of the function vector f , that satisfies the
relations below, under gτ . The line (2) shows that (U2, T2) commits to gv, that satisfies the
relations below, under gτ . The line (3) shows that (skf1, skf2) is the functional decryption key of
f . The line (4) proves that if (U, T) encrypts some Z under h′, then (U ′, T ′) encrypts Z · gf ·m−v
under pkH.

Using a Schnorr-like proof of knowledge [Sch90b], the user sends 10 group elements (W0, U1, T1),
(U2, T2), (h′, U, T), and (U ′, T ′), as well as ` + 9 scalars for the proof (an id for the ciphertext
C, the proof challenge and the answers for the ` + 7 witnesses ρ, ρ′, ρ1, ρ2, skf1, skf2, v, and
f1, . . . , f`).

After having checked the proofs, the helper H checks if the relevant policy (number of queries
on C by the user) is violated, in which case it aborts by returning ⊥. Otherwise, it computes
V = T ′/U ′skH, which is equal to Z · gf ·m−v, and thus to Z, if and only of f ·m = v mod p. It
now completes the comparison protocol, by rerandomizing (U, T), into the ciphertext U ′′ ← Uw,
T ′′ ← (T/V)w for a random w

$← Z∗p. It also provides a proof of validity: existence of skH and
w′ = 1/w mod p such that

gskH = pkH U ′
−skH · T ′′w

′
= T/T ′ U ′′

w′
= U (5)

which guarantees the correct computation of (U ′′, T ′′), using the secret key associated to pkH.
Note that since (U, T) is an encryption of Z under the key h′, which associated decryption

key β is known to the user, and (U ′, T ′) is an encryption of V = Z · gf ·m−v under the key pkH,
(U ′′, T ′′) is an encryption of (gf ·m−v)w under the key h′.

Concretely, the helper sends (U ′′, T ′′) and 3 scalars for the proof (the challenge and the
answers for the 2 witnesses skH and w′).

Eventually, after having checked the proofs, the user can compute K = T ′′/U ′′β . If K = 1,
this means the answer is YES, otherwise the answer is NO. Indeed, as remarked above, (U ′′, T ′′)
is an encryption of (gf ·m−v)w under the key h′ = gβ . And so, K = 1 if f ·m = v mod p.
Otherwise, gf ·m−v 6= 1G, and so is a generator of G. As a consequence, K is a random element
in G, since w 6= 0 mod p.

4.3 Decryption

Actually, we can also allow a regular decryption query Decrypt(pkH, C, skf): the above pair (B,A)
is an ElGamal encryption of gv, which can be decrypted with the help of H, which knows the
decryption key skH. But again, we do not want to leak any information to H.

Hence, the user does as above, and sends (W0, U1, T1), (U2, T2), (h′, U, T), and (U ′, T ′), with
the proof of correctness, but with U ′ ← B · gρ′ and T ′ ← A ·Z · pkHρ′ (without dividing by gv).
Then (U ′, T ′) is an encryption of Z · gf ·m, that H can decrypt (with a proof of correctness).
Then, the user can remove Z to get gf ·m, from which he can compute the discrete logarithm,
since C ∈ Φ and f ∈ Ψ .

We thus have again a verifiable decryption process, with the helper that remains oblivious.
The same proofs as below for indistinguishability and query-privacy would indeed show that the
helper does not learn anything about the plaintext of C, nor on f , and the user does not learn
anything else than f ·m for the legitimate inputs.

11

4.4 Communication Complexity

During the TestDecrypt protocol, the user sends 10 group elements from G and ` + 9 scalars
from Zp, and the helper answers with 2 group elements from G and 3 scalars from Zp. During
the Decrypt protocol, the user sends 10 group elements from G and ` + 9 scalars from Zp, and
the helper answers with 1 group elements from G and 2 scalars from Zp (for the proof of valid
ElGamal decryption). This assumes that the ciphertext C has been made publicly available, and
that the user only needs to send its id number.

If the ciphertext C is not public, the user also needs to send it, raising the communication
complexity during TestDecrypt or Decrypt by 2` + 2 group elements. To certify the ciphertext
being legitimate in the database, a signature by the owner of the database is also required,
which also increases the communication load (but in this case, any basic signature scheme is
acceptable).

4.5 Security Analysis

For the security proofs below, we do not consider the Decrypt-oracle, but just TestDecrypt-queries.
However, similar security notions/proofs would hold.

Query Privacy. The only information sent by the user are C, which is thus explicit for the
helper, ElGamal encryptions (commitments) of W1 and gv under gτ , ElGamal encryption of Z,
a (partial) randomized signature W0 ← skfσ0 and zero-knowledge proofs of validity. Under the
DDH assumption in G, the ciphertexts and randomized signature do not reveal any information
on f , v, and the outcome (which is equivalent to Z = V). Thanks to the zero-knowledge property
of the proofs, they do not reveal anything either. ut
Data Privacy. The proof for this notion is quite similar to the adaptive security of the basic
Function Encryption scheme from [ALS15,ALS16]. Hence, we just postpone it to the Appendix A
for completeness.

Indistinguishability. In this proof, we have to show the existence of a simulator S that
emulates H from the lists Φ, Ψ and the oracle Test, on the message M sent by the user, but
without skH. We will build this simulator with a sequence of games, starting from H, knowing
skH, and show that we can do the same with Test, without knowing skH. Since Test can only
be asked on legitimate ciphertexts and functions, they are necessarily inM and F , respectively
(Encrypt and KeyDer indeed refuse to answer for values not in these spaces).

Game G0: This is the initial game, where the simulator knows the public keys and skH. It
thus mimics H for TestDecrypt-queries.

Game G1: In this game, the simulator generates gτ = gτ , which allows it to open the commit-
ments (U1, T1) and (U2, T2) to get F1 and F2. The value F1 should be the complement of W0

for a valid signature of f and F2 should be gv. If (W0, F1) is not a valid signature for any
vector f ∈ Ψ , the simulator aborts.
We can show that under the EUF− CMA security of the signature scheme, the simulator never
aborts: In case of abort in G1, this means that in G0, one TestDecrypt-query contains such
an unrelated signature. Now, the simulator does not know anymore the signing key, but has
access to the signing oracle to answer the KeyDer-queries. For such a TestDecrypt-query with
unrelated signature, by rewinding the adversary, one can extract ρ, ρ′, ρ1, ρ2, skf1, skf2, v,
and f1, . . . , f` that satisfy all the relations, and namely f with relations (1):

gρ1 = U1∏
i

e(W0, Ỹ1)
fi · e(gτ , g̃)ρ1 = e(T1, g̃)/e(W0, X̃)

12

Since gτ = gτ and F1 is the plaintext encrypted in (U1, T1) under gτ , we have

e(W0, X̃) ·
∏
i

e(W0, Ỹ1)
fi = e(T1/U

τ
1 , g̃) = e(F1, g̃).

Hence, (W0, F1) is a valid signature of a new vector f , which breaks EUF− CMA.
Game G2: As a consequence, for any TestDecrypt-query, the commitments (U1, T1) and (U2, T2),

allow to learn the unique vector f that satisfies the relations (1), unless one can break the
EUF−CMA security of the signature scheme, by simply looking for it in the list Ψ , and a group
element gv (with v unknown).
Since only legitimate ciphertexts can be queried (C ∈ Φ), we know that there exists a scalar
r such that

C0 = grs C ′0 = grt Ci = pkHαigmihri Di = gαi .

Using relation (3), we know that
∏
ih
fi
i = gskf1s · gskf2t . While relation (4) guarantees that

U = gρ U ′ = gρ
′+α·f

T = T ′ · pkH−ρ′ · h′ρ · Cskf1
0 C ′0

skf2 · gv ·
∏

i
C−fii︸ ︷︷ ︸

=
∏

ih
rfi
i ·gv ·pkH

−α·f ·g−m·f ·
∏

ih
−rfi
i

= T ′ · h′ρ · pkH−ρ′−α·f · gv−m·f .

If (U, T) encrypts some Z under h′, then

T ′ = pkHρ′+α·f · Z · gm·f−v U = gρ
′+α·f

As a consequence, (U ′, T ′) is an ElGamal encryption of Z · gm·f−v, under pkH.
The simulator knows skH, and so it can compute V ← T ′/U ′skH = Z · gm·f−v. It can
perfectly answer to the user, with V . Nevertheless, it will use the zero-knowledge property of
the proofs to simulate them. More precisely, it honestly generates (U ′′, T ′′), but will simulate
the proofs of validity.

Game G3: In this final game, the simulator still knows τ such that gτ = gτ , but now uses the
Test-oracle on legitimate ciphertexts and functions. It can thus extract f and gv from (U1, T1)
and (U2, T2). In order to ask the Test-oracle, it needs to compute the discrete logarithm v:
if after time Time, it fails to compute v, the simulator considers that v 6= f ·m mod p (we
know that for any legitimate C and f , the discrete logarithm of gf ·m can be computed in
time less than Time, so we indeed have v 6= f ·m mod p if time is larger). If it gets v, it
asks the Test-oracle on (C,f , v), for C ∈ Φ and f ∈ Ψ , and learns whether f ·m = v mod p

or not. If f ·m = v mod p, it generates (U ′′ = gw, T ′′ = h′w), for w $← Zp, and thus a
random encryption of 1G. Otherwise, it generates (U ′′ = gw, T ′′ = h′w

′
), for w,w′ $← Zp, and

thus a random ciphertext. It also sends simulated proofs of validity. This is exactly as in the
previous game. ut

Verifiability. The verifiability property means that both the KeyDer-oracle and the TestDecrypt-
oracle give verifiable answers: if they are not correct, the user can detect it, then it is equivalent
to a Denial-of-Service attack.

The former oracle, on input f = (f1, . . . , f`) ∈ F , samples h $← G, and outputs skf = (skf0 =
h, skf1 = f · s mod p, skf2 = f · t mod p, skf3 = hx+

∑
i yifi). As said above, one can check the

validity: ∏
i
hfii = gskf1s · gskf2t e(skf0, X̃

∏
i
Ỹ fi
i) = e(skf3, g̃).

The latter oracle, on input (W0, U1, T1), (U2, T2), (h′, U, T), (U ′, T ′), as well as the proof of
validity, also answers with (U ′′, T ′′) and the proof of validity. Hence, the user has the guarantee
that the plaintext in (U ′′, T ′′) is 1G if and only if f ·m = v mod p. ut

13

4.6 Test of Interval

The construction proposed and analyzed in the previous sections limits the user to ask queries
one by one, which is both a waste of time and sometimes a too precise answer in case of positive
one. In many applications, such as the decision for SVM in machine learning, one just wants
to test whether the scalar product of the plaintext is in an interval {v, . . . , v + L − 1}, without
learning the exact value. We can extend it to handle this case, at a very low cost, by just revealing
the length L of the interval to the helper.

Indeed, the user does exactly as before, until the computation of the pair (U ′, T ′), that is
an ElGamal encryption of Z · gm·f−v under pkH, and of the pair (U, T), that is an ElGamal
encryption of Z under h′ = gβ . He additionally sends L. The helper can easily derive all the
Vi = V × g−i, for i = 0, . . . , L− 1, where V = T ′/U ′skH. One can note that Vi = Z · gm·f−v−i. It
can also compute U ′′i ← Uwi for a random wi

$← Zp, and T ′′i ← (T/Vi)
wi . Then the pair (U ′′i , T

′′
i)

is a random ElGamal encryption of gwi(m·f−v−i).
When decrypting the ciphertexts (U ′′i , T

′′
i)i=0,...,L−1, at most one encrypts 1G, which means

that f ·m ∈ {v, . . . , v + L − 1} mod p. However, the index of the ciphertext that decrypts to
1G leaks f ·m, which is too much information. The server thus has to send the ciphertexts
(U ′′i , T

′′
i)i=0,...,L−1 in a permuted order, but also in verifiable way.

To this aim, it first computes all the (U ′i , T
′
i) that correspond to encryption of Vi under

pkH, as U ′i = U ′ and T ′i = T ′ × g−i, for i = 0, . . . , L − 1. Indeed, since (U ′, T ′) is an ElGamal
encryption of Z ·gm·f−v under pkH, (U ′i , T ′i) is an ElGamal encryption of Vi = Z ·gm·f−v−i under
pkH. And both the user and the server can compute these values. The server makes a shuffling,
using the homomorphic property of the ElGamal encryption scheme and the associated proof of
correctness, which can be done in sublinear size [BG12]. Then, it continues with each of these
ciphertexts, to rerandomize (U, T) into (U ′′i , T

′′
i) for i = 0, . . . , L − 1. These ciphertexts are the

same as above, but in a random order.
Then, among the L ciphertexts, at most one encrypts 1G, which just reveals f ·m ∈ {v, . . . , v+

L−1} mod p, but nothing else. This is at no additional cost for the user, and just linear in L for
the helper, but still leaking no information excepted the considered ciphertext C and the length
L of the interval: the larger L is, the less information is revealed, which is thus an important
information for the helper to allow/restrict more queries.

Conclusion

In this work, we introduced a variant of functional encryption, that makes use of a third player,
the helper, to make decryption interactive which allows fine tuning of the leakage of information,
with a more restrictive policy. In addition, we allow decryption tests only, where one learns
whether f(m) ∈ V , for a ciphertext C of m, a function f , and a set V , and not the decryption
itself.

This paves the way for securing machine learning processes, that only require computations
on aggregated data, but nowadays can only work if the data is accessible in clear. Specifically,
our concrete scheme (Section 4) targets the inner-product class of functions, that is at the basis
of the support vector machine class of algorithms, very famous in machine learning.

Hence, a concrete scenario would be that the owner of a sensitive database encrypts it using
our scheme, then hands the encrypted database to its analytics contractor. This one can, with
the help of the oblivious helper server located in the cloud, compute the necessary inner products
(which list is anyway restricted by the owner of the database that gave some functional keys
only) needed to train its algorithm, and then answer classifying queries. The privacy of each
entry in the database remains protected, as the helper will prevent any attempt at asking too
many queries on a single ciphertext. And the queries remain oblivious to the helper.

Several improvements could be made to increase efficiency and/or privacy. Notably, the helper
could be distributed among several players, while maintaining verifiability. This can easily be

14

done using Shamir secret sharing [Sha79] on pure decryption queries, but it proves tricky for
decryption test, as our construction relies strongly on the random power the helper adds to limit
the leakage of information, which cannot be easily synchronized between several helpers.

Acknowledgments

This work was supported in part by the European Research Council (ERC) under the European
Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 –
CryptoCloud).

References

ABDP15. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional encryption schemes for
inner products. In PKC 2015, LNCS 9020, pages 733–751. Springer, Heidelberg, March / April 2015.

ABDP16. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Better security for functional encryption for
inner product evaluations. Cryptology ePrint Archive, Report 2016/011, 2016. http://eprint.iacr.
org/2016/011.

ALS15. S. Agrawal, B. Libert, and D. Stehle. Fully secure functional encryption for inner products, from
standard assumptions. Cryptology ePrint Archive, Report 2015/608, 2015. http://eprint.iacr.
org/2015/608.

ALS16. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner products, from
standard assumptions. In CRYPTO 2016, Part III, LNCS 9816, pages 333–362. Springer, Heidelberg,
August 2016.

BCP14. E. Boyle, K.-M. Chung, and R. Pass. On extractability obfuscation. In TCC 2014, LNCS 8349, pages
52–73. Springer, Heidelberg, February 2014.

BDPR98. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-
key encryption schemes. In CRYPTO’98, LNCS 1462, pages 26–45. Springer, Heidelberg, August
1998.

BG12. S. Bayer and J. Groth. Efficient zero-knowledge argument for correctness of a shuffle. In EURO-
CRYPT 2012, LNCS 7237, pages 263–280. Springer, Heidelberg, April 2012.

BJK15. A. Bishop, A. Jain, and L. Kowalczyk. Function-hiding inner product encryption. In ASI-
ACRYPT 2015, Part I, LNCS 9452, pages 470–491. Springer, Heidelberg, November / December
2015.

BR93. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In ACM CCS 93, pages 62–73. ACM Press, November 1993.

BSW11. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In TCC 2011,
LNCS 6597, pages 253–273. Springer, Heidelberg, March 2011.

CL04. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps.
In CRYPTO 2004, LNCS 3152, pages 56–72. Springer, Heidelberg, August 2004.

CS97. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups (extended abstract).
In CRYPTO’97, LNCS 1294, pages 410–424. Springer, Heidelberg, August 1997.

ElG84. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
CRYPTO’84, LNCS 196, pages 10–18. Springer, Heidelberg, August 1984.

GGH+13. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability
obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer
Society Press, October 2013.

GGHZ16. S. Garg, C. Gentry, S. Halevi, and M. Zhandry. Functional encryption without obfuscation. In
TCC 2016-A, Part II, LNCS 9563, pages 480–511. Springer, Heidelberg, January 2016.

GPS08. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete Applied
Mathematics, 156(16):3113–3121, 2008.

HDO+98. M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf. Support vector machines. IEEE
Intelligent Systems and their Applications, 13(4):18–28, 1998.

JDM00. A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern recognition: A review. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(1):4–37, 2000.

LRSW99. A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In SAC 1999, LNCS 1758,
pages 184–199. Springer, Heidelberg, August 1999.

O’N10. A. O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556,
2010. http://eprint.iacr.org/2010/556.

PS96. D. Pointcheval and J. Stern. Security proofs for signature schemes. In EUROCRYPT’96, LNCS 1070,
pages 387–398. Springer, Heidelberg, May 1996.

http://eprint.iacr.org/2016/011
http://eprint.iacr.org/2016/011
http://eprint.iacr.org/2015/608
http://eprint.iacr.org/2015/608
http://eprint.iacr.org/2010/556

15

PS00. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal
of Cryptology, 13(3):361–396, 2000.

PS16. D. Pointcheval and O. Sanders. Short randomizable signatures. In CT-RSA 2016, LNCS 9610, pages
111–126. Springer, Heidelberg, February / March 2016.

Sch90a. C.-P. Schnorr. Efficient identification and signatures for smart cards. In CRYPTO’89, LNCS 435,
pages 239–252. Springer, Heidelberg, August 1990.

Sch90b. C.-P. Schnorr. Efficient identification and signatures for smart cards (abstract) (rump session). In
EUROCRYPT’89, LNCS 434, pages 688–689. Springer, Heidelberg, April 1990.

Sch91. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174,
1991.

Sha79. A. Shamir. How to share a secret. Communications of the Association for Computing Machinery,
22(11):612–613, November 1979.

SS02. B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regularization, opti-
mization, and beyond. MIT press, 2002.

SW05. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In EUROCRYPT 2005, LNCS 3494,
pages 457–473. Springer, Heidelberg, May 2005.

Wat15. B. Waters. A punctured programming approach to adaptively secure functional encryption. In
CRYPTO 2015, Part II, LNCS 9216, pages 678–697. Springer, Heidelberg, August 2015.

A Proof of Data Privacy

The proof is inspired from [ALS15,ALS16]. Since skH is known to the adversary:

Game G0: This is the initial game, where the adversary, and thus the simulator, knows all the
secret keys and random coins. The simulator encrypts m =mb for a random bit b $← {0, 1}
(the same in all this experiment) and random r

$← Zp, α $← Z`p:

C0 = grs , C ′0 = grt , Ci = pkHαi · gmi · hri , Di = gαi

and the adversary outputs its guess b′ for b:

Advind(A) = AdvindG0
(A).

Game G1: The simulator modifies the generation of the challenge ciphertext, with a Diffie-
Hellman pair (A = grs , B = grt):

C0 = A, C ′0 = B,

Ci = pkHαi · gmi ·Asi ·Bti , Di = gαi .

This does not change Ci since hi = gsis g
ti
t :

AdvindG0
(A) = AdvindG1

(A).

Game G2: The simulator does the same, but with a random pair (A,B)
$← G2:

C0 = A, C ′0 = B,

Ci = pkHαi · gmi ·Asi ·Bti , Di = gαi .

Under the DDH in G, this change cannot be detected by the adversary. Hence:

AdvindG1
(A) ≤ AdvindG2

(A) + AdvDDH(A).

We will now specifically analyze G2, and show that the adversary has no information at
all about b in this game: even a more powerful adversary, A∗, able to compute discrete
logarithms (and therefore knowing α), cannot learn anything about b.
Indeed, the only information the adversary gets on the tuple (b, s, t) is:
– from the public key (hi)i: a = s+ zt, where gt = gzs and hi = gais ;
– from the functional keys skf : bf = f · s mod p and b′f = f · t mod p.

16

From Ci/pkHαi = gcis , it also knows c = um+ rs+ z′rt mod p, where g = gus , A = grs and
B = Az

′ , with z′ 6= z mod p (with overwhelming probability, B 6= Az).
However, the restriction on the key derivation queries is that for each f , f ·m0 = f ·m1:
if we denote µ = mb −m1−b in Z`p, we know that f · µ = 0 mod p. We can now define
t′ = t + u/r(z′ − z) × µ. With exactly, the same probability, the simulator could have
used t′ and s′ = a − zt′ = s − uz/r(z′ − z) × µ: the public key would have been the
same and the functional keys too (since they have been provided for functions f such that
f · µ = 0 mod p), and the challenge ciphertext could then be seen as with c = um+ rs′ +
uz/(z′−z)×µ+z′rt′−uz′/(z′−z)×µ = u(m−µ)+rs′+z′rt′. It corresponds to a ciphertext
of mb − µ =mb − (mb −m1−b) =m1−b. This shows that the view of the adversary would
have been exactly the same with (1− b, s′, t′), as with (b, s, t). And so, it does not leak any
information about b. Which means that:

AdvindG2
(A) ≤ AdvindG2

(A∗) = 0

Eventually, the best advantage an adversary can get against the data privacy security notion
within time t is bounded by the advantage one can get within time t against the DDH
problem in G.

Hence:

Advind(A) ≤ AdvDDH(A) ut

	Introduction
	Functional Encryption Model
	Description
	Security Model

	Building Blocks
	ElGamal Encryption Scheme
	Non-Interactive Zero-Knowledge Proofs
	Randomizable Signatures

	Our Protocol
	Computational Assumptions
	Description
	Decryption
	Communication Complexity
	Security Analysis
	Test of Interval

	Proof of Data Privacy

