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Abstract A broadcast encryption system generally involves three kinds of entities: the group manager that deals
with the membership, the encryptor that encrypts the data to the registered users according to a specific policy
(the target set), and the users that decrypt the data if they are authorized by the policy. Public-key broadcast
encryption can be seen as removing this special role of encryptor, by allowing anybody to send encrypted data.
In this paper, we go a step further in the decentralization process, by removing the group manager: the initial
setup of the group, as well as the addition of further members to the system, do not require any central authority.
Our construction makes black-box use of well-known primitives and can be considered as an extension to the
subset-cover framework. It allows for efficient concrete instantiations, with parameter sizes that match those of the
subset-cover constructions, while at the same time achieving the highest security level in the standard model under
the DDH assumption.

1 Introduction

Broadcast encryption (BE), introduced by Fiat and Naor [FN94] in 1993, allows a sender to securely send
private messages to a subset of users, the target set. In 2001, Naor, Naor, and Lotspiech (NNL [NNL01])
introduced the subset-cover framework, where for any target set, the sender can find a partition of the user
set, encrypt a session key using the keys associated to each subset in the partition, and finally encrypt the
content using the session key. The ciphertext length of the subset-difference (SD) version of NNL depends
linearly on the number of users in the revoked set, which was considered to be efficient enough for use in
the AACS DRM standard [AAC09]. We generalize the subset-cover framework of NNL to deal with both
public-key encryption and dynamic changes of the registered user sets. We furthermore remove the need for
trusted authorities by eliminating the group manager, who typically interacts with users to distribute keys at
the setup phase or when users join the system. Our approach makes use of group key exchange with subgroup
keys [Man09, ACMP10], a primitive that simultaneously distributes different keys to certain subsets of the
user group and applies well to the subset-cover framework if one can assign keys for the subgroups involved
in the subset cover.

We first instantiate our construction with the Diffie-Hellman key agreement for the key generation and the
ElGamal encryption for the public-key encryption, which leads to quite an efficient scheme. The complete-
subtree (CS) tree construction resembles the tree-based group key agreement in [KPT04], with the exception
that we also create key pairs for internal nodes, and we go beyond their scheme in our construction of SD
trees. We then show how our scheme can be extended to achieve the strongest security notion by using
Cramer-Shoup encryption, which allows adaptive corruptions and chosen-ciphertext attacks, in the standard
model, under the DDH assumption. In addition, we consider various criteria of efficiency: ciphertext size,
private part and public part of the decryption keys, number of rounds for the key generation, etc. Thanks
to the modularity of our approach, we can use any appropriate group key exchange with subgroup keys: our
initial technique iteratively uses the two-party Diffie-Hellman key exchange in a binary tree, which requires a
logarithmic number of rounds; we can replace it by logarithmically many parallel executions of the Burmester-
Desmedt group key exchange protocol [BD05], which reduces the number of rounds to two. Besides allowing
members to join the system, we also sketch how groups could merge at low cost, and how to permanently
revoke some users, but we cannot elaborate on this due to space constraints. Our scheme thus achieves a
maximum of functionality and security under minimal assumptions, while still being reasonably efficient.
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Related Work. Dodis and Fazio [DF03a] already constructed a public-key version of the subset-cover frame-
work using IBE for the Complete-Subtree (CS) structure and HIBE of depth logN for the Subset-Difference
(SD) structure. They retain the same efficiency, using (H)IBE keys instead of symmetric keys, and achieve
generalized CCA security. In the same year, Dodis and Fazio presented a dynamic, IND-CCA-secure BE
scheme [DF03b], where the adversary may corrupt users before the challenge phase. IND-CPA-security un-
der adaptive corruption was first achieved by Boneh and Waters [BW06], who presented a fully-collusion
resistant trace-and-revoke scheme. More recently, Gentry and Waters [GW09] described another adaptively
IND-CPA-secure scheme. For both schemes, there is no obvious way to make them IND-CCA-secure in the
standard model.

Delerablée [Del08] constructed selectively IND-CPA-secure ID-based BE, which allows adding users after
the setup. The only existing dynamic BE scheme was developed by Delerablée, Paillier, and Pointcheval
[DPP07]. However, their scheme does not provide forward-secrecy, i. e. a new user can decrypt all ciphertexts
sent before he joined. Because our scheme provides forward-secrecy, we have to relax their definition of
“dynamic”. Forward-security has been considered by Yao, Fazio, Dodis, and Lysyanskaya [YFDL04], first for
HIBE and then by extension for BE. Their notion of forward-security refers to security of ciphertexts against
later corruption of users, which means that user keys must evolve so that previously sent messages remain
secure. This is distinct from our notion of forward-secrecy, where we only require that newly joined users
cannot decrypt previously sent ciphertexts. However, when a user gets corrupted, messages this user received
prior to corruption can be read by the adversary, since the adversary gets the same power as the user. The
scheme in [YFDL04] is IND-CCA-secure, but the adversary is more restricted in corrupting users after the
challenge phase than in our setting.

Broadcast encryption without a central authority replaces the traditional setup with a group key ex-
change process that can be an interactive protocol. It was proposed under the name “contributory broadcast
encryption” (CBE) in [WQZ+11], along with a semi-adaptively IND-CPA-secure scheme that is not dynamic.
A possible application of this could be communication in a social network, where some private information
is meant to be read only be a subset of a user’s acquaintances, and the network is either peer-to-peer or the
service provider is not trusted. The first steps toward subgroup key exchange were done by Manulis [Man09],
who extended a group key exchange (GKE) protocol to allow any two users to compute a common key after
the initial phase in which the group key is computed. Following this work, Abdalla et al. [ACMP10] general-
ized this approach to allow the computation of session keys for arbitrary subsets. We use such a group key
exchange protocol with subgroup keys to derive asymmetric encryption keys for subsets. Something similar
has been done under the name of “asymmetric group key agreement” (ASGKA) [WMS+09]. In [WMS+09],
ASGKA is defined in a way that guarantees only that the keys held by the participants are good for use
with a specific encryption scheme. We want to generalize this requirement so that at the end of the protocol
run, each user has some randomness, which can thereafter be used for any key generation, and namely to
generate key pairs for any key encapsulation mechanism. Since this randomness is shared between various
subgroups, we call the scheme we use for the setup “subgroup key exchange” (SKE). Kurnio, Safavi-Naini,
and Wang [KSNW03] explicitly consider sponsorship of group candidates by existing members. In our scheme,
because of the tree structure, each user can act as a sponsor, and only one sponsor is required for a candidate
to join the user set.

Contributions and Organization. In section 2, we define decentralized dynamic broadcast encryption and
subgroup key exchange, a building block we use in our construction that may be of independent interest.
We extend the security notions of adaptive IND-CPA and IND-CCA from [PPS11] to our case. We describe a
black-box construction of decentralized dynamic broadcast encryption using the subset-cover framework in
section 3 and prove the security of the construction, assuming that the building blocks are secure. In section 4,
we construct a subgroup key exchange protocol based on any secure two-party key exchange protocol. We
give two concrete instantiations using our methodology in section 5, that provide keys for subgroups in the
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CS and SD structures. Combined with the Cramer-Shoup encryption scheme, this gives us a decentralized
dynamic broadcast encryption schemes which additionally achieves the highest security level (fully adaptive
IND-CCA-security) in the standard model under the DDH-assumption.

2 Definitions

In the following, we describe some generic constructions for broadcast encryption that make use of standard
definitions of well-known primitives. We briefly review the notations here, but provide full definitions in the
Appendix A.

A public-key encryption scheme is defined by a tuple of four algorithms PKE = (Setup,KeyGen,Encrypt,Decrypt).
A two-party key exchange protocol is a tuple of two algorithms/protocols KE = (Setup,CommonKey). Note
that CommonKey is an interactive protocol, but we expect it to be one-round only for the efficiency of our con-
structions. A message authentication code is a tuple of three algorithmsMAC = (KeyGen,GenMac,VerifMac).
A pseudo-random generator is a function F : X → Y with |X| ≤ |Y |.

2.1 Decentralized Broadcast Encryption

Let us start with the main protocol we want to build: a broadcast encryption scheme, which aims at encrypting
a message for a group of users, with a fine-grained selection of the target group. As in [FN94], broadcast
encryption generally involves a group manager, that deals with the membership of the users, and an encryptor
that specifies the target group (a subgroup of the registered members) for a ciphertext. The encryptor is
either a specific person in case of secret-key broadcast encryption, or anybody in case of public-key broadcast
encryption. The group manager is either involved once only, at the setup phase, in static schemes, or at any
time a new member wants to join the system, in dynamic schemes [DPP07]. The latter dynamic situation is
the most realistic, but makes the group manager quite sensitive, for both security and availability. Our goal
is to get rid of such a centralized system.

We thus extend the dynamic broadcast encryption setting [DPP07] so that the membership management
can be decentralized. At the same time, we would like to keep everything as small as possible.

1. The ciphertext size should be as small as possible: the ciphertext has to contain the target group structure,
and so cannot be smaller than the representation of this structure, which can either be encoded on N
bits, where N is the total number of users, and each bit tells whether a user is in the target group or not,
or on r logN bits (resp. s logN bits), where r (resp. s) is the number of revoked users (resp. included
users) among the N registered users. This is sometimes considered independently from the ciphertext, in
the header, but anyway both the target set and the encrypted data have to be sent. Our goal is to make
the global length as small as possible.

2. When a new user joins the system, it should have minimal impact on other users’ secret information and
the public information: no impact at all on the keys as in [DPP07] is of course optimal, but when one
wants to achieve forward secrecy, it is not possible: some of the keys have to be modified. We will try to
keep the impact as small as possible too.

Since we want to avoid any centralized group manager, we will also focus on public-key broadcast encryption,
in which a public key is enough to target any subgroup at the encryption time. In addition, instead of
encrypting a message, our schemes will generate an encapsulation (or key header) and session keys to be used
with any symmetric encryption scheme [Sho00].

Definition 1 (Decentralized Dynamic Broadcast Encapsulation). A decentralized dynamic broadcast
encapsulation scheme is a tuple of five algorithms or protocols DBE = (Setup, KeyGen, Join, Encaps,Decaps):

– Setup(1k), where k is the security parameter, generates the global parameters param of the system.
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Expind−acca−b
DBE,A (k)

QC ← ∅; QD ← ∅;
param← Setup(1k);
(state, U)← A(SETUP; param);
(EK,Reg, τ)← OExecute(U);

(state, S)← AOJoin(·),OCorrupt(·),ODecaps(·,·,·)(state;EK,Reg, τ);
(H,K)← Encaps(EK,Reg, S);

Kb ← K; K1−b
$← K;

b′ ← AOJoin(·),OCorrupt(·),ODecaps(·,·,·)(state;H,K0,K1);
if ∃i ∈ S, (i, S,H) ∈ QD or i ∈ QC ;
then return 0
else return b′;

OExecute(U)
(EK,Reg)← KeyGen(param, U);
return EK,Reg, τ ;

OJoin(v)
(EK,Reg)← Join(v, U,Reg,EK);
return EK,Reg, τ ;

OCorrupt(u)
QC ← QC ∪ {u}; return dku;

ODecaps(u, S,H)
QD ← QD ∪ {(u, S,H)};
K ← Decaps(dku, S,H);
return K;

Figure 1: DBE : Key Indistinguishability (IND-ACCA)

– KeyGen(param, U) is an interactive protocol between the users in the set U . After the protocol run,
it returns the public encryption key EK and a list Reg of the registered users with additional public
information. Each user u ∈ U eventually gets a secret decryption key dku.

– Join(v, {u(dku)}u∈U ,Reg,EK) is an interactive protocol run between a user v and the set of users U ,
described in Reg. Each user takes as input his secret key and/or some random coins, the list Reg, and
the encryption key EK. After the protocol, Reg and EK are updated, and each user (including v) has a
secret decryption key.

– Encaps(EK,Reg, S) takes as input the encryption key EK, the user register Reg, and a target set S. It
outputs a key header H and a session key K ∈ {0, 1}k.

– Decaps(dku, S,H) takes as input the target set S and a user decryption key dku together with a key
header H. If dku corresponds to a recipient user, it outputs the session key K, else it outputs the error
symbol ⊥.

The correctness requirement is that for all N , any target set S ⊂ UN = [1, N ] and for any u ∈ UN , if u ∈ S
then the decapsulation algorithm gives back the key. A decentralized scheme requires that no authority is
involved in the KeyGen and Join protocols.

Security Notions A general overview of the security notions for broadcast encryption has been done in [PPS11].
We extend the strongest one to the decentralized setting. The adversary is still given unlimited access to the
Join oracle (dynamic), the Corrupt oracle (adaptive) and Decaps oracle (chosen-ciphertext security). For the
group key generation, the definition from [PPS11] models passive adversaries only, since they only receive
the public keys. Since in our case this group key generation may be an interactive protocol, we make it more
explicit with a Execute-oracle that outputs the public transcript of the full run of this protocol. The security
game for DBE is presented in figure 1: the restriction for the adversary is not to ask for the decapsulation of
the challenge ciphertext (which includes the target set S) nor corrupt any user in the target set.

The adversary can ask once the generation of the group structure with a single call to OExecute on a
group U of its choice, from which it gets the transcript τ , the encryption key EK and the register Reg. It can
thereafter make as many calls it wants to OJoin, to add a user to the structure Reg, which updates EK. The
adversary also gets the transcript τ of this interactive protocol. At any time, the adversary can also corrupt a
user with a key pair, calling OCorrupt and getting back all the secret information of the user, and decapsulate
a ciphertext H, calling ODecaps in the name of a user u.

The main security goal of an encryption scheme (or an encapsulation scheme) is the indistinguishability of
a challenge ciphertext: at some point, the adversary thus gets a challenge (H,K0,K1), where H encapsulates
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either K0 or K1 for a target set S chosen by the adversary. It has to guess which key is actually encapsulated.
Of course, there are the natural restrictions, which are controlled granted the lists QC and QD:

– (S,H) has not been asked to the decapsulation oracle for a user u in S
– none of the users in S have been corrupted

A dynamic broadcast encapsulation scheme is (t,N, qC , qD, ε)-IND-ACCA-secure (security against adap-
tive corruption and chosen-ciphertext attacks) if in the security game presented in figure 1, the advantage
Advind−acca

DBE (k, t,N, qC , qD), of any t-time adversary A creating at most N users (OJoin oracle), corrupting
at most qC of them (OCorrupt oracle), and asking for at most qD decapsulation queries (ODecaps oracle), is
bounded by ε.

Advind−acca
DBE (k, t,N, qC , qD) = max

A
{Pr[Expind−acca−1

DBE,A (k) = 1]− Pr[Expind−acca−0
DBE,A (k) = 1]}.

This definition includes IND-ACPA (for adaptive chosen-plaintext attacks) when qD = 0.

Remark 2 (Forward-secrecy). This definition includes forward-secrecy against new users, i. e. a new user
cannot decrypt ciphertexts that were created before he joined. For a definition without forward secrecy, the
adversary is prohibited from corrupting users that joined after the challenge phase.

2.2 Subgroup Key Exchange

The novelty of our definition is the decentralized key generation procedure, that should also generate keys
for certain subgroups in order to be able to broadcast to any target set. This is thus in the same vein as
the notion of group key exchange with on-demand computation of subgroup keys (GKE+S) from [ACMP10],
that allows some subgroups of users to run a protocol to establish keys between them. But we extend this
definition by allowing for keys of some subgroups to be computed during the first protocol run that establishes
the global key, without any additional interaction.

Since we want to remain independent of the encryption scheme to be used with the session key, we require
that for each subgroup a proto-key is computed, whose entropy can be used as input to a PKE key-pair
generation, or to generate a symmetric encryption key.

Definition 3 (Dynamic S-Subgroup Key Exchange Protocol). For a collection S : N → P(N) of
subsets of the user set, where for any N , S(N) ∈ P(N), a dynamic S-subgroup key exchange protocol SKE
is a tuple of three algorithms and interactive protocols:

– Setup(1k), where k is the security parameter, generates the global parameters param of the system;
– KeyGen(param, U) is an interactive protocol run between all users in U . It outputs a register Reg that

contains a description of U and the subsets for which keys were established according to S, and for each
user u ∈ U a secret usku that contains the proto-keys ptS for all the sub-groups S containing u.

– Join(v, U,Reg) is an interactive protocol run between user v and the group of users U . It outputs an
updated register Reg and for user v and some of the users in U a new secret usku that contains the
proto-keys ptS of all the subgroups S they are part of.

We require that all the users u ∈ U that run KeyGen(param, U) receive the same register Reg and compute
matching proto-keys for the subsets they have in common. The same is required of Join.

For the security definition, we extend the definition given in [ACMP10], which seems to be most applicable to
our case. Since the protocol is dynamic, the user set can change over time. As in the previous section, we stick
to passive adversaries. This is a way of modularizing protocol construction, as passively secure protocols can
be made secure against active adversaries using constructions such as [KY07], with additional authentication
mechanisms.
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Expind−b
SKE,A(k)

Reg← ∅; QT ← ∅;
param← Setup(1k);
(state, U)← A(param);
(EK,Reg, τ)← OExecute(U);

b′ ← AOJoin(·),OTest(·,·)(state;EK,Reg, τ);
return b′;

OExecute(U)
t← 0;
Reg← KeyGen(param, U);
return Reg, τ ;

OTest(t, S)
if ∃(t′,K) ∧ t ≡S t

′ ∧ (t′, S,K) ∈ QT

then return K;
else if b = 0 then K ← ptS(t);

else K
$←− K;

QT ← QT ∪ {(t, S,K)};
return K;

OJoin(v)
t← t+ 1;
Reg← Join(v, U,Reg);
return Reg, τ ;

Figure 2: SKE : Key Indistinguishability (IND)

The adversary can ask once the generation of the group structure with a unique call to OExecute, at time
t = 0, on a group U of its choice from which it gets the transcript τ and the register Reg. It can thereafter
make as many calls as it wants to OJoin, to add a user to the structure Reg. Each query increases the time
index t. The adversary also gets the transcripts τ of these interactive protocols.

The main security goal of key exchange is the indistinguishability of the keys, and their independence.
Hence, we use the stronger notion proposed in [AFP05], similar to the Real-or-Random [BDJR97] for encryp-
tion. The adversary has access to many OTest(t, S) queries, that are either answered by the real keys or by
truly random and independent keys. Note that according to the protocol, some keys may remain unchanged
even when the time period evolves. We even hope to have as many keys as possible that do not evolve, since
we want that not too many users are impacted by a new member in the system. We thus say that two pairs
(t1, S) and (t2, S) are equivalent (denoted by t1 ≡S t2) if S is unchanged between the time periods and
therefore they should have the same key. For such equivalent pairs, the same random key is output. We do
not provide direct access to a OReveal oracle, which returns the secret key of a user, because as explained
in [AFP05], having access to many OTest queries annihilates the advantage provided by OReveal queries.

A subgroup key exchange scheme is said to be (t,N, qT , ε)-IND-secure if, in the security game presented
in figure 2, the advantage Advind

SKE(k, t,N, qT ) of any t-time adversary A creating at most N users (the final
size of the set U), testing at most qT keys is bounded by ε.

Advind
SKE(k, t,N, qT ) = max

A
{Pr[Expind−1

SKE,A(k) = 1]− Pr[Expind−0
SKE,A(k) = 1]}.

3 Generic Decentralized Broadcast Encryption

As already remarked, in the first definition of dynamic broadcast encryption schemes [DPP07], it is required
that the existing users are not affected by a join: their decryption keys should not be modified. Only the
encryption key could be modified. This constraint is actually achieved by their scheme, but this is possible
because the scheme is not forward-secure: a new user can decrypt all ciphertexts that were sent before he
joined (since he cannot be in any revoked set).

To achieve forward-secrecy, we have to relax their definition and allow updates of the user decryption
keys. Namely, updates of the decryption keys are necessary for forward-secrecy in the subset-cover frame-
work [NNL01], because some keys are shared by several users. With an appropriate subset-cover structure,
it can reach asymptotically optimal overall ciphertext size. On the other hand, the naive scheme, where each
user has a single key specific to him, can be made dynamic without decryption key updates, but has cipher-
texts whose length is linear in the number of users. As soon as keys are shared between users, forward-secrecy
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makes it necessary to update these shared keys. Hence our relaxation of the model. However, we require these
updates of existing keys to be made via public channels.

3.1 Generic Public-Key Subset Cover

A subset-cover structure SC = {Si}i∈I is a set of subsets Si of a user set U such that for any subset S ⊂ U
there is a subset L ⊂ I such that S can be partitioned as S =

⋃
i∈L Si. In particular, this implies that for all

users u ∈ U , {u} ∈ SC. In [NNL01], a secret key is assigned to each set Si, so a message can be encrypted to
any subset S ⊂ U by finding the cover L of S. Then a session key is encrypted under all the keys associated
to the selected subsets. All the other users are then implicitly revoked, since they cannot decrypt the session
key. Because of the partition property, a user in S is in one subset Si only. Efficiency will thereafter depend
on the subset-cover structure.

We extend this framework in three directions:

1. First, we transfer this approach to the public-key world. Each Si is assigned a key pair of some PKE
scheme by some key assignment procedure. This means that the assignment of keys to the subsets depends
on the PKE scheme used as well as the assignment procedure. For example, for a subset-cover structure
SC and a PKE PKE , we can use the key assignment that assigns each subset with a key pair drawn
independently at random by the trusted center.

2. Second, we replace the trusted center by an interactive protocol, a subgroup key exchange.
3. Third, we allow for the addition of users, hence using a dynamic subgroup key exchange to generate the

keys for a dynamic subset-cover structure.

We first deal with a dynamic subset-cover structure, assuming a subgroup key exchange as a black box.
Thereafter, we will consider concrete structures and efficient subgroup key exchanges.

3.2 Dynamic Subset-Cover

We define a dynamic subset-cover as a sequence of subset-covers {SCi} for i ≥ 0 users, where each SCi
contains subsets Sj . These subsets never change, so instead of adding a user to a subset, we remove the old
one and add a new one. This also means that the same subset Sj can occur in different time periods (the
time period changes each time a new user joins). We start with SC0 = ∅ and an empty user set U0 = ∅, and
then have Un+1 = Un ∪ {un+1}. From the definition, it is clear that |Un| = n, and w.l.o.g. Un = [1, n].

For subset-cover based dynamic broadcast encryption, we will have to generate the keys for all the subsets
that are involved in SCn. The following property will optimize efficiency, in the sense that a minimal number
of existing users will be impacted by a new member.

Definition 4 (Splitting Property). We say that a dynamic subset cover SC has the splitting property, if
the subset cover at time n+ 1 is composed of subsets that either were part of the subset cover at time n, or
contain the new user. SCn+1 = SC′n+1 ∪ SC′′n+1, where SC′n+1 ⊂ SCn and Si ∈ SC′′n+1 ⇒ un+1 ∈ Si.

With this property, if a subset changes, it is either removed, or it contains un+1. Then only sets with the new
user need new key generation, which is a minimal requirement anyway.

3.3 SC-based Decentralized Dynamic Broadcast Encryption

We first assume we have a dynamic subgroup key exchange SKE that is compatible with our dynamic subset-
cover structure. It means that for any n, the subgroup key exchange provides keys for all the subsets S in SCn.
We will later instantiate such a dynamic subgroup key exchange for some dynamic subset-cover structures.

Let us recall that the SC-based broadcast encryption [NNL01] consists in encrypting the same message
under the keys of all the subsets that cover the target set. Since one of our goals is to achieve the highest
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security level, adaptive chosen-ciphertext security, any modification of the description of the target set or one
of the ciphertexts in the list should make the global ciphertext invalid, otherwise the scheme is somewhat
malleable, and thus insecure against chosen-ciphertext attacks. We will add a MAC to bind the target header
and the ciphertexts together. A similar approach has been used by [BK05,DK05]. Instead of a master secret
key, our scheme needs only a public register Reg to keep track of the users currently enrolled in the system
and their public keys.

We first present in details our construction, and then state the security of the construction. It is important
to remember that the subgroup key exchange scheme is only assumed to be passively secure, meaning that
the protocol requires authenticated channels. This can be achieved in several ways that we will not discuss
here. Because the subset cover is a fixed part of the protocol and defines the subsets for each number of users,
and we assume that the number of users in the system is always known, the number of a new user and the
subsets he belongs to can be computed deterministically by all users. Meta-issues like trust between users
and how they should agree on which users to allow into the group are beyond the scope of this paper.

Definition 5 (dBE). Let PKE be a PKE, MAC a MAC, F : K → R a pseudo-random generator, SC a
dynamic subset-cover, and SKE a dynamic subgroup key exchange compatible with SC with keys in K. Our
Broadcast Encryption Scheme is defined as follows.

– Setup(1k):
1. Run PKE .Setup(1k) to get paramPKE ;
2. Run SKE .Setup(1k) to get paramSKE ;
3. Publish param = (paramPKE , paramSKE).

– KeyGen(param, Un), for some integer n:
1. Run SKE .KeyGen(paramSKE , Un) to get Reg; Each user u ∈ Un gets as output of the protocol the

proto-keys ptS for all subsets S he belongs to according to SC. The decryption key dku consists of
all these ptS .

2. He computes (dkS , ekS)← PKE .KeyGen(paramPKE ;F(ptS)), where we use the PRG to generate from
the proto-key the random coins of the key generation algorithm;

3. All the encryption keys ekS are published as EK;
4. The decryption keys dkS can be either stored in dku for users u ∈ S, or deleted since they can be

recomputed;
– Join(v, {u(dku)}u∈Un ,Reg,EK):

1. Run SKE .Join(v, {u(dku)}u∈Un ,Reg) to get the new Reg;
2. Each user u does as above to compute dkS , ekS and dku. Note that granted the splitting properties,

only dkS , and thus ekS , for S that contain v are affected;
– Encaps(EK,Reg, S):

1. From the target set S, generate the partition L with S = ∪LSi;
2. Generate a session key Ke and a MAC key Km;
3. For each subset i ∈ L, generate ci = PKE .Encrypt(ekSi ,Ke||Km);
4. Compute σ =MAC.GenMac(Km, S||(ci)i∈L);
5. Output Ke and H = ((ci)i∈L, σ).

– Decaps(dku, S,H):
1. If u ∈ S, then there is a unique i such that u ∈ Si, and then dku allows to derive dk = dkSi ;
2. Extract Ke||Km = PKE .Decrypt(dk, ci);
3. Check if σ is a valid MAC under key Km;
4. In case of validity, output Ke, otherwise output ⊥.

The scheme is a correct dynamic broadcast encryption scheme, because of the correctness of the basic prim-
itives PKE , MAC and F , but also SKE .
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Theorem 6. Let us consider the scheme BEPKE,MAC,F ,SKE from definition 5. We define LN to be the total
number of distinct subsets over all time periods and `N to be the maximal number of subsets necessary to cover
any authorized target set S in SCi for any i. If PKE is an IND-CCA-secure PKE,MAC is a SUF-CMA-secure
MAC, SKE is a IND-secure SKE, and F is a pseudo-random generator, then this scheme is a forward-secure
IND-ACCA-secure BE scheme:

Advind−acca
DBE (k, t,N, qC , qD) ≤ 2Advind

SKE(k, t, LN , LN ) + 3`NLNAdvind−cca
PKE (k, t, qD)

+ 2LNAdvprg
F (k, t) + 2Succsuf−cma

MAC (k, t, 1, qD).

The variables LN and `N depend on the type of subset cover used in the scheme. For CS, LN is less than
N logN (since at most logN sets change in each of the at most N steps), and `N is r log N

r , which is bounded
by N/2 (the worst-case ciphertext length). For SD, we have LN ≤ N log2N and `N = 2r − 1. The complete
security proof can be found in the Appendix B.

4 Tree-based Subgroup Key Exchange

In this section, we define two subgroup key exchange protocols compatible with the efficient tree-based
methods defined in [NNL01]. The tree-based methods are special cases in the subset-cover framework, where
the users are organized as leaves in a binary tree, and the subsets Si can be described in terms of subtrees of
this tree.

Complete Subtree. We first review the static complete subtree (CS) structure for N users {u0, . . . , uN−1}.
For simplicity, we assume N = 2d, but the description can be generalized to any N . All the users are leaves
of the tree, and can be seen as singletons S2d+i = {ui}, for i = 0, . . . , 2d − 1. Then, for i = 2d − 1 to 1,
Si = S2i ∪ S2i+1 which contains all the leaves below the node with index i.

Subset Difference. The subset difference (SD) method uses subsets Si,j = Si \ Sj , where Si, Sj are defined
as in the CS method, and Sj is a subtree of Si. All sets Si from the CS tree are also contained in the SD
method, because Si = Sparent(i),sibling(i); S0 is included as a special set.

4.1 Static Tree Construction

Let us show how such subset-cover structures naturally give rise to subgroup key exchange protocols. The
main tools for our construction of the subgroup key exchange are two primitives: a 2-party key exchange
protocol KE that outputs keys in KKE and a pseudo-random generator G : KKE → K×RKE .

Two users start from random coins in RKE , and run a key exchange protocol KE .CommonKey in order to
derive a secret value ck for the subset represented by the node in the tree that is their parent. This common
key ck is used as the seed for the PRG G to derive the two secret keys, the proto-key pt ∈ K and the random
coins r ∈ RKE for the next key exchange at the level above. Internal nodes thus involve “virtual” users. In
summary, the tree is constructed by executing KE .CommonKey, then computing G, at each level from the
bottom up. We derive generic instantiations of the complete subtree (CS) and subset difference (SD) methods
on binary trees described in [NNL01].

CS Tree. We define the neighbour of user u with identifier i to be the user u′ with identifier i + 1 if i ≡ 0
mod 2, i − 1 else and its parent to be the user w with identifier bi/2c. At round r, each (virtual) user u
created in round r− 1 has a uniquely defined neighbour u′ and a parent w. If he does not, the protocol run is
completed: we are either at the root of the tree, or the tree is not complete. The users u and u′ have random
coins ru and ru′ , which they use to run the KE protocol, resulting in a common key ckw. From this common
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key, they derive the proto-key of node w and the randomness for the virtual user w to participate in the next
round of key exchanges. The user with the smaller identifier then plays the role of the virtual user w in the
next round. As a consequence, for N users, there are logN rounds. Round r involves N/2r−1 (virtual) users.

– KeyGen(Un): In round r, for r = 1, . . . , log n, the users u, u′ with parent w at level (log n− r) proceed as
follows:
1. ckw ← KE .CommonKey(u, u′);
2. (ptw, rw)← G(ckw);

3. If u < u′, set u
def
= w;

A similar construction is possible for the more efficient SD scheme. Due to lack of space, we present this
construction in the Appendix D.

4.2 Dynamic Tree Construction

Dynamic CS. We define a join procedure for the CS tree described above. We go from SCn to SCn+1 by
taking the leaf u′ with the lowest distance to the root, and if there are several with that property, the one
with the lowest index. We then replace it with an inner node w, to which we append both the leaf u′ and
the new user v. We note that the user identifiers will not be in the same order as the node numbers in the
tree.Then we replace the subsets Sj where j is an ancestor of the new user with the new subsets. This ensures
that our dynamic CS scheme is forward-secure and has the splitting property of definition 4. The CS key
assignment is done as follows.

First the new user v derives a common key cw with its sibling u′. From this common key, he derives
the proto-key of node w and the randomness for the virtual user w to participate in the next round of key
exchanges. The user with the smaller identifier then plays the role of w in the next round. This procedure is
repeated until the keys of all ancestors of v are recomputed.

– Join(v, Un) In the first round, set u
def
= v. In round r, for r = 1, . . . , log(n+ 1), the user u with neighbour

u′ and parent w at level (log(n+ 1)− r) proceeds as follows:
1. ckw ← KE .CommonKey(u, u′);
2. (ptw, rw)← G(ckw);

3. set u
def
= w, u′

def
= neighbour(w), w

def
= parent(w);

A similar construction is possible for the more efficient SD scheme. Due to lack of space, we present this
construction in the Appendix D. We state exactly the security of the dynamic CS construction. Because of
the similarities in the construction, a similar result can be obtained for SD.

Theorem 7. Let KE be an IND-secure KE scheme with session keys in KKE , and G : KKE → K×RKE be a
PRG. Then our dynamic CS construction of a SKE is IND-secure and

Advind
SKE(k, t,N, qT ) ≤ (N logN)

(
Advind

KE(k, t) + Advprg
G (k, t)

)
.

The full proof can be found in the Appendix C.

4.3 Efficiency Properties

One of the main advantages of the NNL constructions [NNL01] is the efficient revocation with small ciphertext
lengths (O(r logN/r) for CS, O(2r − 1) for SD) which is immediately inherited in our public-key scheme.
The decryption key is the same length for CS, where each user has to store logN keys only, and longer
(O(N logN) for SD), where we cannot use the same key derivation.
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In our scheme, for many instantiations of the 2-party key exchange, the private part of the decryption key
can even be constant-size: each user keeps his secret random coins ri, which is enough to iteratively generate
all the private information from the public transcript of the key exchange protocols (stored in Reg or in the
public key). Then, granted the key exchange scheme and logN public keys, each user can iteratively compute
the decryption keys along the path to the root of the tree, and it is in this sense that the user random coins
“contain” the keys used to decrypt, as required by the decapsulation algorithm.

Permanent Revocation. Because the length of the ciphertext for SC schemes depends on the number of
revoked users, it is desirable to be able to completely remove users from a group. To permanently remove a
user at leaf 2i, we remove it and its sibling leaf 2i + 1 and simply move the user at 2i + 1 to be at node i
which becomes a leaf. The keys of the user now at i remain the same as his own key before (at node 2i+ 1)
and we thus have to update the keys of all subsets in which the revoked user was a member. Concerning the
security, it is easy to see that the user 2i, not having the key of the user 2i+ 1, can not learn anything about
the updated keys, and this ensures the forward secrecy.

The only problem we face is that we need to keep the tree balanced. Fortunately, our constructions allow
a re-organization of the tree in a very efficient manner. Indeed, the tree could be maintained to be an AVL
tree at low cost [AVL62]. Whenever a user leaves the system and makes the tree unbalanced, by using logN
rotations, we can re-balance the tree. Note that a rotation needs logN update operations at worst, so the
total cost for a re-balancing is just log2N update operations at worst.

Merging Groups. Instead of joining a single user, we can also efficiently merge two existing groups by executing
the key exchange protocol for their root nodes. This will allow every user in the two groups to compute the
keys of the new root node.

5 Concrete Instantiations

We now give two instantiations of our scheme. The first one is probably the simplest possible case, and
achieves IND-ACPA-security under the DDH-assumption. We use the Diffie-Hellman protocol [DH76] as our
KE (where the users publish gx and gy from their random coins x and y, and get gxy as common key) and
ElGamal [ElG85] as the PKE where ek = gdk, for a random scalar dk). A similar idea can be found in [KPT04],
where the authors use a group key exchange protocol on a DH-tree. Because the random coin spaces of both
protocols are identical, when we run both in the same group G of order q (scalars in Zq), if we only want
to prove IND-ACPA-security, we can identify dk with the random coins for the key exchange, and thus ek is
part of the transcript of the key exchange protocol, leaving us with a single key pair for both schemes. There
are several alternatives for the PRG, the simplest one being a hash function modeled by a random oracle, to
extract dk ∈ Zq from the proto-key pt ∈ G. But we can avoid it, and even any computational assumption, by
using a deterministic randomness extractor, as described in [CFGP06, Th. 7], that is a bijection and thus a
perfect generator(see definition 14):

Definition 8. If p = 2q + 1, and G is defined as the sub-group of the squares in Z∗p, then ord(G) = q and f
is a bijection from G onto Zq: f(x) = x (if x ≤ q) or p− x (if x > q).

The second instantiation is more involved. To achieve IND-ACCA-security, we use Cramer-Shoup en-
cryption [CS98] as our PKE. Because the keys in Cramer-Shoup are larger, our KE is a 3-to-8 parallel
Diffie-Hellman, where we use public and private keys consisting of three elements each to generate a shared
key consisting of eight elements, which allows us to generate additional pseudo-randomness in each step. Our
PRG is an embedding function G8 → Z3

q ×Z5
q that applies the above function f to all components. The first

part in Z3
q will be used again as random coins for the key exchange, whereas the second part in Z5

q leads to
the Cramer-Shoup decryption key. To counter malleability of our scheme, we also need a SUF-CMA-secure
MAC scheme. As the first scheme, this one relies only on the DDH assumption.



12

When using the Cramer-Shoup PKE, the decryption key of node i is the tuple dki = (vi, wi, xi, yi, zi),
the corresponding encryption key eki is (Xi, Yi, Hi) = (gxihvi , gyihwi , gzi). We need to generate more pseudo-
randomness than before, so we define a new key exchange that is essentially a parallel Diffie-Hellman.

Definition 9 (3-8-DHKE). We define a modified Diffie-Hellman key exchange scheme.

– User i draws ai, bi, ci
$← Zq, and sends (Ai, Bi, Ci) = (gai , gbi , gci);

– User j draws aj , bj , cj
$← Zq, and sends (Aj , Bj , Cj) = (gaj , gbj , gcj );

– Then ck = (A
aj
i , A

bj
i , A

cj
i , B

aj
i , B

bj
i , B

cj
i , C

aj
i , C

bj
i ).

This easily defines the CommonKey protocol. Its key indistinguishability follows from the following theorem.

Theorem 10 (3-8-DDH). Under the DDH assumption, it is infeasible to distinguish the 14-tuple
(ga, gb, gc, ga

′
, gb
′
, gc
′
, gaa

′
, gab

′
, gac

′
, gba

′
, gbb

′
, gbc

′
, gca

′
, gcb

′
) from a random 14-tuple even when given g, and

Adv3−8−ddh(k, t) ≤ 8 ·Advddh(k, t+ 11τexp), where τexp is the time for an exponentiation.

Proof. We define tuple T0 to be the tuple as defined above, Ti as the same tuple with all “combined” elements
up to the i-th one replaced by a random element. T8 is therefore a tuple of 14 random elements. Given a
distinguisher A between Ti and Ti+1, we construct a solver B for DDH as follows. Let (X,Y, Z) = (gx, gy, gz)
be a DDH challenge tuple. Let gde

′
be the i + 1-st combined element. B chooses a tuple Ti and replaces gd

with X, ge
′

with Y , and gde
′

with Y . All other combined elements can be constructed because at least one
exponent is known, which takes 11 exponentiations (11τexp) time. If z = xy, T ′ = Ti, else T ′ = Ti+1 and the
theorem follows.

As a PRG we use the PRG of definition 8 on each component of the common key. This gives us all the
components we need to construct an IND-ACCA-secure BE scheme, whose security is based only on the
DDH-assumption. (The DDH-assumption implies the existence of OWF, which is sufficient for MACs.)

Constant-Round Key Generation. While this construction achieves constant-size secrets for the users and
requires very little interaction during the Join-procedure, it requires a logarithmic number of rounds for the
subgroup key exchange protocol to complete. The Burmester-Desmedt group key exchange protocol [BD05]
is, like the above scheme, passively secure in the standard model under the DDH assumption [KY07]. It
requires only two rounds, and several instances could be run in parallel to compute keys for all subsets in two
rounds. This would however require interaction between all the users each time a new users wants to join.
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A Definitions

Definition 11 (Encryption Scheme). A public-key encryption scheme is a 4-tuple of algorithms PKE =
(Setup,KeyGen,Encrypt,Decrypt):

– Setup(1k), where k is the security parameter, generates the global parameters param of the system;
– KeyGen(param; r) generates a pair of keys, the public (encryption) key ek and the associated private

(decryption) key dk, using the random coins r (we may omit r when the notation is obvious);
– Encrypt(ek,m; r) produces a ciphertext c on the input message m and the public key ek, using the random

coins r (we may omit r when the notation is obvious);
– Decrypt(dk, c) decrypts the ciphertext c under the private key dk. It outputs the plaintext, or ⊥ if the

ciphertext is invalid.

We require that Decrypt(dk,Encrypt(ek,m)) = m if (ek, dk)← KeyGen(param) for some parameters.

Such an encryption scheme is said to be (t, qD, ε)-IND-CCA-secure (semantic security against chosen-ciphertext
attacks) if in the security game presented in figure 3, the advantage, denoted Advind−cca

PKE (k, t, qD), of any t-time
adversary A asking at most qD decryption queries to the ODecrypt oracle is bounded by ε:

Advind−cca
PKE (k, t, qD) = max

A
{Pr[Expind−cca−1

PKE,A (k) = 1]− Pr[Expind−cca−0
PKE,A (k) = 1]}.

This definition includes IND-CPA (for Chosen-Plaintext Attacks) when qD = 0.

Expind−cca−b
PKE,A (k)

param← Setup(1k);
QD ← ∅, (ek, dk)← KeyGen(param);

(state,m0,m1)← AODecrypt(·)(FIND; param, ek);
c∗ ← Encrypt(ek,mb);

b′ ← AODecrypt(GUESS, state; c∗);
if c∗ ∈ QD then return 0;
else return b′;

ODecrypt(c)
QD ← QD ∪ {c};
m← Decrypt(dk, c);
return m;

Figure 3: PKE : Semantic Security against Chosen-Ciphertext Attacks (IND-CCA)

Definition 12 (Two-Party Key Exchange). A two-party key exchange protocol is a 2-tuple KE =
(Setup,CommonKey):

– Setup(1k), where k is the security parameter, generates the global parameters param of the system;
– CommonKey(u, v) is an interactive protocol between two users u and v. Both take as private input their

random coins, and obtain a common key ck.

We require that users u and v that run CommonKey(u, v) both get the same ck.

For the sake of clarity, we might omit param in the rest of the paper, but global parameters are always implicit
for all the primitives. Such a key exchange scheme is said to be (t, ε)-IND-secure (semantic security or key
indistinguishability) if in the security game presented in figure 4, the advantage Advind

KE(k, t) of any t-time
adversary A is bounded by ε, where the adversary gets the transcript τ of the communications between u
and v during the execution of CommonKey:

Advind
KE(k, t) = max

A
{Pr[Expind−1

KE,A (k) = 1]− Pr[Expind−0
KE,A (k) = 1]}.
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Expind−b
KE,A(k)

param← Setup(1k);

(K, τ)← CommonKey(u, v); Kb ← K; K1−b
$← K;

b′ ← A(τ,K0,K1);
return b′;

Figure 4: KE : Key Indistinguishability (IND)

In our construction, we will need two additional classical primitives: a message authentication code and
pseudo-random functions.

Definition 13 (Message Authentication Code). A message authentication code is a 3-tuple of algo-
rithms MAC = (KeyGen,GenMac,VerifMac):

– KeyGen(1k), where k is the security parameter, generates a secret key sk
$← Km.

– GenMac(sk,m) takes as input the secret key and a message, and generates the MAC value σ.
– VerifMac(sk,m, σ) takes as input the secret key, the message and the alleged signature. It checks the

validity of the signature and returns 1 if it is valid, 0 else.

In the following, we will require the strong unforgeability of a one-time MAC: even after one MAC gener-
ation query, the adversary cannot generate a new valid pair, even for the already authenticated message.
This strong unforgeability is formalized in the security game presented in figure 5, where the adversary
wins if it successfully verifies a pair that has not been generated by the authentication algorithm. Such

Expsuf−cma
MAC,A(k)

sk← KeyGen(1k);
QS ← ∅; QV ← ∅;
AOGenMac(·),OVerifMac(·,·)(1k);
if ∃(m,σ) ∈ QV , (m,σ) 6∈ QS then return 1;
else return 0;

OGenMac(m)
σ ← GenMac(sk,m);
QS ← QS ∪ {(m,σ)}
return σ;

OVerifMac(m,σ)
c = VerifMac(sk,m, σ);
if c = 1 then QV ← QV ∪ {(m,σ)};
return c;

Figure 5: MAC: Unforgeability (SUF-CMA)

a message authentication code is said to be (t, qM , qV , ε)-SUF-CMA-secure (strong existential unforgeabil-
ity against chosen-message attacks) if in the security game presented in figure 5, the success probability
Succsuf−cma

MAC (k, t, qM , qV ) of any t-time adversary A, asking at most qM MAC values (OGenMac oracle) and
qV verifications (OVerifMac oracle) is bounded by ε:

Succsuf−cma
MAC (k, t, qM , qV ) = max

A
{Pr[Expsuf−cma

MAC,A (k) = 1]}.

This definition includes one-time MAC when qM = 1.
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Definition 14 (Pseudo-Random Generator). A generator F : X → Y is (t, ε)-pseudo-random if the
advantage, denoted Advprg

F (k, t), of any t-time adversary A is bounded by ε:

Advprg
F (k, t) = max

A
{Pr[A(y) = 1 | y $← Y ]− Pr[A(F(x)) = 1 |x $← X]}.

In the following, Y may be the product of two sets Y1× Y2. We will then parse F(x) = (f1(x), f2(x)). If F is
a bijection (which implies that the PRG is not expanding), then F is a perfect generator, with ε = 0 and no
computational assumption.

B Proof of Theorem 6

We assume that A is an adversary against the IND-ACCA security game. We define a sequence of games, G0,
. . . , G9, where G0 is the IND-ACCA experiment with b = 0 and G9 is the IND-ACCA experiment with b = 1.
Let ` be the number of components in a challenge ciphertext (the size of the partition L∗ of the challenge
target set S∗). By definition, ` is not greater than `N .

Game G0: This is the IND-ACCA-Experiment with b = 0. We just recall the generation of the challenge
ciphertext (the Encaps oracle), and the simulation of the ODecaps oracle:

Setup(1k):

1. Run PKE .Setup(1k) to get paramPKE ;
2. Run SKE .Setup(1k) to get paramSKE ;
3. Publish param = (paramPKE , paramSKE).

KeyGen(param, Un):

1. All the proto-keys ptS , for all the subsets S in SCn, are generated using the SKE .KeyGen
protocol;

2. Each user u ∈ Un gets the proto-keys for all subsets S he belongs to.
The decryption key dku consists of all these ptS ;

3. He computes (dkS , ekS) ← PKE .KeyGen(paramPKE ;F(ptS)), where we use the PRG to
generate the random coins of the key generation algorithm;

4. The adversary receives the transcript of the execution of the SKE .KeyGen protocol.

Join(v, {u(dku)}u∈Un ,Reg,EK): similar to KeyGen

Encaps(EK,Reg,S∗):

1. From the target set S∗, generate a partition S∗ = ∪L∗Si, we assume of size `;
2. Generate two session keys K0

e and K1
e , as well as a MAC key K0

m;
3. For each subset i ∈ L∗, generate c∗i = PKE .Encrypt(ekSi ,K0

e ||K0
m);

4. Then, compute σ∗ =MAC.GenMac(K0
m, S

∗||(c∗i )i∈L∗);
5. Outputs K0

e , K1
e and H∗ = ((c∗i )i∈L∗ , σ

∗).
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ODecaps(u, S,H):

1. If u is in S, then there is a unique i such that u ∈ Si, and then dku allows to derive dkSi ;
2. Extract Ke||Km = PKE .Decrypt(dkSi , ci);
3. If i ∈ L∗ and ci = c∗i , check if σ is a valid MAC under key Km;
4. Else, check if σ is a valid MAC under key Km;
5. In case of validity, output Ke, otherwise output ⊥.

Game G1: We first replace all the proto-keys by random keys: we thus apply the key indistinguishability
of the SKE scheme:

KeyGen(param, Un):

1. All the proto-keys ptS are drawn independently at random for all subsets S;

The difference between G1 and G0 is bounded by

Pr
1

[A → 1]− Pr
0

[A → 1] ≤ Advind
SKE(k, t, LN , LN ).

Game G2: We now replace all PKE keys by random keys: we thus apply the pseudo-randomness of the
PRG F :

KeyGen(param, Un):

3. Each user gets (dkS , ekS)← PKE .KeyGen(paramPKE ; rS), where rS are random coins, for
all subsets S he belongs to;

Using a classical hybrid proof, the difference between G2 and G1 is bounded by

Pr
2

[A → 1]− Pr
1

[A → 1] ≤ LN ×Advprg
F (k, t).

Game G3: We introduce an additional MAC key that will be used later in the sub-ciphertexts:

Encaps(EK,Reg, S∗):

2. Generate two session keys K0
e and K1

e , as well as two MAC keys K0
m and K1

m;

G3 and G2 are perfectly indistinguishable:

Pr
3

[A → 1] = Pr
2

[A → 1].

Game G4: We now use the additional MAC key K1
m in the challenge sub-ciphertexts, but still use K0

m for
the MAC computation:

Encaps(EK,Reg, S∗):

3. For each subset i ∈ L∗, generate c∗i = PKE .Encrypt(eki,K0
e ||K1

m);
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Lemma 15. The difference between G4 and G3 is bounded by

Pr
4

[A → 1]− Pr
3

[A → 1] ≤ `× LN ×Advind−cca
PKE (k, t, qD).

Game G5: In this game, we reject decryption queries that should decrypt a sub-ciphertext from the challenge
ciphertext.

ODecaps(u, S,H = ((ci)i∈L, σ)):

3. If i ∈ L∗ and ci = c∗i , output ⊥;

Lemma 16. The difference between G5 and G4 is bounded by

Pr
5

[A → 1]− Pr
4

[A → 1] ≤ Succsuf−cma
MAC (k, t, 1, qD).

Game G6: We define the game G6 as the game G5, but we encapsulate K1
e instead of K0

e :

Encaps(EK,Reg, S∗):

3. For each subset i ∈ L∗, generate c∗i = PKE .Encrypt(ekSi ,K1
e ||K1

m);

Lemma 17. The difference between G6 and G5 is bounded by

Pr
6

[A → 1]− Pr
5

[A → 1] ≤ `× LN ×Advind−cca
PKE (k, t, qD).

Game G7: Previous game is similar to G5, but with K1
e in the challenge ciphertext. We now go back, as in

game G4: we check MAC values of sub-ciphertexts of the challenge ciphertext under K0
m:

ODecaps(u, S,H):

3. If i ∈ L∗ and ci = c∗i , check if σ is a valid MAC under key K0
m.

Since we have the same gap as from G4 to G5:

Pr
7

[A → 1]− Pr
6

[A → 1] ≤ Succsuf−cma
MAC (k, t, 1, qD).

Game G8: We eventually change back the use of the MAC key K0
m in the challenge sub-ciphertexts:

Encaps(EK,Reg, S∗):

3. For each subset i ∈ L∗, generate c∗i = PKE .Encrypt(ekSi ,K1
e ||K0

m);

Since we have the same gap as from G3 to G4:

Pr
8

[A → 1]− Pr
7

[A → 1] ≤ `× LN ×Advind−cca
PKE (k, t, qD).

We do not use anymore the key K1
m: this is exactly the IND-ACCA security game with b = 1, except for the

generation of the encryption keys.

Game G9: We now change back the generation of the encryption keys, using the SKE protocol and the
PRG:

Pr
9

[A → 1]− Pr
8

[A → 1] ≤ Advind
SKE(k, t, LN , LN ) + LN ×Advprg

F (k, t).
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If we sum up all the gaps, we obtain:

Pr
1

[A → 1]− Pr
0

[A → 1] ≤ Advind
SKE(k, t, LN , LN )

Pr
2

[A → 1]− Pr
1

[A → 1] ≤ LN ×Advprg
F (k, t)

Pr
4

[A → 1]− Pr
2

[A → 1] ≤ `× LN ×Advind−cca
PKE (k, t, qD)

Pr
5

[A → 1]− Pr
4

[A → 1] ≤ Succsuf−cma
MAC (k, t, 1, qD)

Pr
6

[A → 1]− Pr
5

[A → 1] ≤ `× LN ×Advind−cca
E (k, t, qD)

Pr
7

[A → 1]− Pr
6

[A → 1] ≤ Succsuf−cma
MAC (k, t, 1, qD)

Pr
8

[A → 1]− Pr
7

[A → 1] ≤ `× LN ×Advind−cca
PKE (k, t, qD)

Pr
9

[A → 1]− Pr
8

[A → 1] ≤ Advind
SKE(k, t, LN , LN ) + LN ×Advprg

F (k, t)

And this concludes the proof, since ` ≤ `N .

Proof of Lemma 15. Let ` be the size of the partition L∗. In order to so show that the adversary cannot
detect whether we use the same MAC key that is part of the ciphertext or not, we proceed by another
sequence of hybrid games: We define the game Gj (for j = 0, . . . , `), in which the j-first sub-ciphertexts c∗i
are defined as in G4, that is c∗i = PKE .Encrypt(eki,K0

e ||K1
m), and the next ones are defined as in G3, that is

c∗i = PKE .Encrypt(ekSi ,K0
e ||K0

m). It is clear that G0 = G3, whereas G` = G4.
For any J ∈ [0, `], let us play the following game against the IND-CCA challenger of the PKE encryption

scheme:

– Setup/KeyGen:
1. We receive the challenge public key ek;
2. We randomly choose one subset I ∈ [1, LN ] (we bet it will correspond to the J-th ciphertext in the

target partition L∗. This guess is correct with probability 1/LN , otherwise we abort the game and
make B output 0);

3. We generate all the pairs (dkSi , ekSi) at random, except for i = I, where ekSI
= ek;

– Encaps(EK,Reg, S∗):
1. From the target set S∗, generate a partition S∗ = ∪L∗Si, we assume of size `;
2. If our guess at setup time was correct, the J-th element in L∗ is I;
3. Generate two session keys K0

e and K1
e , as well as two MAC keys K0

m and K1
m;

4. For the J − 1-first elements i ∈ L∗, generate c∗i = PKE .Encrypt(ekSi ,K0
e ||K1

m);
5. For the J-th element i ∈ L∗, assumed to be I, ask to the IND-CCA-challenger on the two plaintexts
K0

e ||K0
m and K0

e ||K1
m, and set c∗I to be the answer, according to the internal bit b of the IND-CCA

challenger;
6. For the next elements i ∈ L∗, generate c∗i = PKE .Encrypt(ekSi ,K0

e ||K0
m);

7. Then, compute σ∗ =MAC.GenMac(K0
m, S

∗||(c∗i )i∈L∗);
8. Output K0

e , K1
e and H∗ = ((c∗i )i∈L∗ , σ

∗).
– OCorrupt Queries: Since we condition on the good choice for I, we can answer all the OCorrupt queries

by outputting the corresponding decryption keys (they cannot be for I, otherwise the challenge target
set would contain corrupted players);

– ODecaps Queries:
1. If this is for a player that lies in a set Si 6∈ SI , we can easily decrypt ci;
2. If this is for a player that lies in SI ,
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• either cI 6= c∗I , and then we can ask the decryption query to the decryption oracle
• or cI = c∗I , then check the MAC value with K0

m. If it is valid, output K0
e , otherwise output ⊥.

Our adversary B against IND-CCA simply forwards the output b′ of A (or outputs zero in case of abort):

Pr[B → 1|b = 0]− Pr[B → 1|b = 1] = Pr[B → 1 ∧ I|b = 0]− Pr[B → 1 ∧ I|b = 1]

+ Pr[B → 1 ∧ ¬I|b = 0]− Pr[B → 1 ∧ ¬I|b = 1]

=
1

LN
× (Pr[B → 1|b = 0 ∧ I]− Pr[B → 1|b = 1 ∧ I])

=
1

LN
× (Pr[A → 1|b = 0 ∧ I]− Pr[A → 1|b = 1 ∧ I]) .

In the RHS, the output is independent of the correct guess of I, whereas the LHS is bounded by the best
advantage against IND-CCA within time t:

1

LN
× |Pr[A → 1|b = 0]− Pr[A → 1|b = 1]| ≤ Advind−cca

PKE (k, t, qD).

Furthermore, the above game with b = 0 is exactly GJ−1, whereas with b = 1 this is GJ :∣∣∣∣ Pr
GJ−1

[A → 1]− Pr
GJ

[A → 1]

∣∣∣∣ ≤ LN ×Advind−cca
PKE (k, t, qD).

This concludes the proof.

Proof of Lemma 16. In order to show that the adversary cannot detect whether we reject a valid MAC
under the unknown key K0

m, we use the following game against the MAC: more precisely, we play the SUF-CMA
security game against the MAC, using the challenge MAC key sk as the unknown K0

m key. All the other keys
are known to the simulator. The MAC generation oracle OGenMac is called for the challenge MAC value by
the Encaps oracle, and the MAC verification oracle OVerifMac is called in case of a challenge sub-ciphertext in
a decapsulation ODecaps oracle query. A valid MAC value asked to OVerifMac is a forgery, otherwise it should
be a reject. Hence, the probability that a valid MAC value is refused is bounded by Succsuf−cma

MAC (k, t, 1, qD).

Proof of Lemma 17. Let ` be the size of the partition L∗. In order to so show that the adversary can-
not detect whether we encrypt K0

e or K1
e , we proceed as for the proof of Lemma 15, by a sequence of

hybrid games: We define the game Gj (for j = 0, . . . , `), in which the j-first sub-ciphertexts c∗i are de-
fined as in G6, that is c∗i = PKE .Encrypt(eki,K1

e ||K1
m), and the next ones are defined as in G5, that is

c∗i = PKE .Encrypt(eki,K0
e ||K1

m). It is clear that G0 = G5, whereas G` = G6. Exactly the same analysis as
in the proof of Lemma 15 leads to the result. The trick comes from the simulation of ODecaps Queries, in
which we output ⊥ in case a sub-ciphertext of the challenge ciphertext is involved. We do not have to care
whether this is K0

e or K1
e .

C Proof of Theorem 7

Let A be an adversary against the IND-security of our CS construction SKE that invokes at most N users,
among them, the user set UM that runs the KeyGen protocol (where M = |UM | denotes its size) and T users
that join once at a time, in T time steps. Since in each of the T time periods at most logN nodes are updated,
at most N logN keys will be generated overall (for M = 1). Game Expind−0

SKE,A(k) is the experiment where all

keys are generated as usual. This will be our initial game. Game Expind−1
SKE,A(k) is the experiment where all
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keys are chosen uniformly at random. This will be our final game. To go from the first game to the final one,
we define intermediate games, in which we first replace the session keys that are produced by the two-player
key exchange protocols by random keys, and then we replace the proto-keys by random keys.

Game G0: This is the initial game, that appears in the experiment where b = 0.

KeyGen(UM ): In round r, for r = logM, . . . , 1, the simulator executes the following steps for
each node w at level (logM − r) of the tree with children u, u′:

1. ckw ← KE .CommonKey(u, u′);
2. (ptw, rw)← G(ckw);

3. If u < u′, set u
def
= w.

Join(v, Un) In the first round, set u = v. In round r, for r = log(n+ 1), . . . , 1, the simulator
executes the following steps for user u with neighbour u′ and parent w at level (log(n+1)−r):

1. ckw ← KE .CommonKey(u, u′);
2. (ptw, rw)← G(ckw);

3. set u
def
= w, u′

def
= neighbour(w), w

def
= parent(w);

Game G1: We replace all KE session keys on level 1 of the tree with random keys.

KeyGen(UM ): In round 1, the simulator executes the following steps for each node w at level
1 of the tree with children u, u′:

1. ckw ← KE .CommonKey(u, u′); ckw
$←− KKE ;

With a classical hybrid proof, where we successively replace all the real keys by random keys in the M/2
two-party key exchanges, we get that the difference between G1 and G0 is bounded by

Pr
1

[A → 1]− Pr
0

[A → 1] ≤ M

2
Advind

KE(k, t).

Game G2: We replace all proto-keys on level 1 of the tree with random keys.

KeyGen(UM ): In round 1, the simulator executes the following steps for each node w at level
1 of the tree with children u, u′:

2. (ptw, rw)
$←− K×RKE ;

With a classical hybrid proof, where we successively replace all the real values by random values in the M/2
key derivations, we get that the difference between G2 and G1 is bounded by

Pr
2

[A → 1]− Pr
1

[A → 1] ≤ M

2
Advprg

G (k, t).

Game G3: We replace all proto-keys in the initial tree with random keys.
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KeyGen(UM ): In round r, the simulator executes the following steps for each node w at level
r of the tree with children u, u′:

1. ckw ← KE .CommonKey(u, u′); ckw
$←− KKE ;

2. (ptj , rj)
$←− K×RKE ;

By applying iteratively the 2 previous hops at level 2 on M/22 pairs, and at level 3 on M/23 pairs, etc, we
get that the difference between G3 and G2 is bounded by

Pr
3

[A → 1]− Pr
2

[A → 1] ≤ (
M

2
− 1)

(
Advind

KE(k, t) + Advprg
G (k, t)

)
.

Game G4: We replace all proto-keys created during joins with random keys. The result is a protocol where
all proto-keys are drawn independently at random, which describes the experiment with b = 1.

Join(v, Un)

1. ckw ← KE .CommonKey(u, u′); ckw
$←− KKE ;

2. (ptj , rj)
$←− K×RKE ;

Lemma 18. The difference between G4 and G3 is bounded by

Pr
4

[A → 1]− Pr
3

[A → 1] ≤ (T logN)
(

Advind
KE(k, t) + Advprg

G (k, t)
)
.

In summary, we have

Pr
3

[A → 1]− Pr
0

[A → 1] ≤ (M − 1)
(

Advind
KE(k, t) + Advprg

G (k, t)
)

Pr
4

[A → 1]− Pr
3

[A → 1] ≤ (T logN)
(

Advind
KE(k, t) + Advprg

G (k, t)
)
.

Because M + T = N , we obtain

Advind
SKE(k, t,N, qT ) ≤ (N logN)

(
Advind

KE(k, t) + Advprg
G (k, t)

)
.

Note that this is independent of qT , because we change all the keys.

Proof of Lemma 18. Let G0 be the game G3, GT be the game G4. We define T − 1 intermediate hybrid
games Gj (j = 1 . . . T − 1), in which we replace all session keys and proto-keys computed during the first j
joins with random keys. We proceed as in the previous proofs and obtain

Pr
j

[A → 1]− Pr
j−1

[A → 1] ≤ logN ·
(

Advind
KE(k, t) + Advprg

G (k, t)
)
.
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Figure 6: SD Key Assignment for Sj/4,j

D Constructions for the Subset Difference Method

SD Tree. We can modify the construction of the above CS tree to obtain keys for any subset Si,j = Si \ Sj ,
when Sj ⊂ Si: To exclude all leaves below node j (w.l.o.g. j ≡ 0 mod 4 ), we skip the key exchange between
j and j+1 and directly compute a common key ckj/2+1,j+1 between j/2+1 (j’s uncle) and j+1 (j’s sibling).
Basically, we identify the public key of j + 1 with that of Sj/2,j . After applying G, we have the two key pairs
for Sj/4,j , which we treat as being at node j/4. We then continue with KE .CommonKey and G as normal up
to node i, to get Si,j . This allows us to construct an SD tree in much the same way as a CS tree, except that
we “omit” one node in the computation of the key (see figure 6). Each node i at depth ` (2` ≤ i < 2`+1)
contains 2d−`+1− 4 blocks of keys that can be computed iteratively, excluding all the possible subtrees, from
depth `+ 2 (4 of them) to d (2d−` of them).

We define the neighbour and parent of user i as for the CS scheme, and the neighbour of (i, j) to be the
neighbour of i. At round r, each user (i, j) created in round r − 1 has a uniquely defined neighbour i′ (if he
does not, the protocol run is completed). They both have random coins ri and ri′ :

– If j 6= i′, it runs cki/2,j ← KE .CommonKey((i, j)(ri), i
′(ri′)) and sets (pti/2, ri/2,j) ← G(ci/2,j) to derive

the information for the node (i/2, j).
– If j = i′, it runs cki/2 ← KE .CommonKey((i, j)(ri), i

′(ri′)) and sets (pti/2, ri/2) ← G(ci/2) to derive the
information for the node i/2.

If i < i′, it plays the role of the virtual user i/2 in the next round.

Dynamic SD. To join a user, we go from SCn to SCn+1 by appending the new user as described for CS. Then
we replace those subsets Si,j that contain the new user with the new subsets.

We show that our dynamic SD scheme has the splitting property of definition 4. All Si,j for which i is
not an ancestor of the new node are unchanged. All Si,j for which i, but not j is an ancestor of the new node
contain the new user. All Si,j for which i is an ancestor of the new node and j is a true ancestor of the new
node are unchanged as well. All Si,j for which i is an ancestor and j is the new node correspond to full subtrees
Sparent(i),sibling(i) in the old subset cover. The key assignment for SD is similar to the CS key assignment, but
we cannot identify nodes and subsets, and must “jump” the omitted subtree in the computation (figure 6).


	

