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Abstract Authenticated Key Exchange protocols enable several parties to establish a shared cryptographically
strong key over an insecure network using various authentication means, such as strong cryptographic keys or
short (i.e., low-entropy) common secrets. The latter example is definitely the most interesting in practice, since no
additional device is required, but just a human-memorable password, for authenticating the players.
After the seminal work by Bellovin and Merritt, many settings and security notions have been defined, and many
protocols have been proposed, in the two-user setting and in the group setting.

1 Introduction

Key exchange protocols are cryptographic primitives used to provide several users (two or more), communi-
cating over a public unreliable channel, with a secure session key. This thus allows establishment of virtual
secure channels over insecure networks, which is one of the main practical applications of cryptography. Bel-
lare and Rogaway gave the first foundations in [13, 14], but password-based authentication required more
work: in this setting, where the authentication means is a short secret chosen from a small set of possible
values (a four-digit pin, for example), the brute-force method which consists in trying all the possible values
in the dictionary succeeds after a rather small number of attempts. This attack is called on-line dictionary
attack and is unavoidable. But its damages can be limited by a policy that invalidates or blocks the use of a
password if a certain number of failed attempts has occurred, unless failures are undetectable [27].

This paper presents a brief survey on Password-based Authenticated Key Exchange (PAKE) protocols,
with a presentation of some security models in Section 2, and relations to practice. Section 3 deals with some
practical constructions.

2 Security Models

Bellare, Pointcheval and Rogaway [12], and Boyko, MacKenzie and Patel [16] first formalized security of
Password-based Authenticated Key Exchange, in two different frameworks.

2.1 Game-based Security

The former model [12], the so-called Find-then-Guess scenario, is in the indistinguishability-based framework
where an adversary should not be able to get an advantage significantly greater than qS/N (or at most
O(qS)/N for some technicality reasons) in distinguishing a random session key from a real session key, if qS is
the number of active attacks and N the size of the dictionary. It has thereafter been improved to the Real-or-
Random scenario [7]. More precisely, the adversary is given access to oracles: Execute-queries model passive
attacks, Send-queries model active attacks, Corrupt-queries model corruptions with the leakage of long-term
secrets, Reveal-queries model bad uses of session keys and thus the leakage of ephemeral secrets, and Test-
queries model the semantic security of the session key with a real or random answer. In the Find-then-Guess
scenario, only one Test-query can be asked, whereas in the Real-or-Random scenario many Test-queries can be
asked with either always-real or always-random answers. The latter is clearly at least as strong as the former.
But while both scenarios were known to be equivalent for encryption schemes [11], a linear loss in the number
of Test-queries makes them quite different for PAKE, where the advantage should remain in O(qs)/N , whatever
the number of Test-queries. We have then showed [7] that in this Real-or-Random scenario, Reveal-queries
are not useful anymore, hence simplifying the security games.
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The functionality FPAKE is parameterized by a security parameter k. It interacts with an adversary S and a set of parties
P1,. . . ,Pn via the following queries:

– Pi asks for a (NewSession, sid, Pi, Pj, pw): Send (NewSession, sid, Pi, Pj) to S. If this is the first NewSession-query, or
if this is the second NewSession-query and there is a record (Pj , Pi, pw

′), then record (Pi, Pj , pw) and mark this record
fresh.

– S asks for a (TestPwd, sid, Pi, pw
′): If there is a record of the form (Pi, Pj , pw) which is fresh, then do:

• If pw = pw ′, mark the record compromised and reply with “correct guess”;
• If pw 6= pw ′, mark the record interrupted and reply with “wrong guess”.

– S asks for a (NewKey, sid, Pi, sk): If there is a record of the form (Pi, Pj , pw), and this is the first NewKey-query for Pi,
then:
• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk) to player Pi;
• If this record is fresh, and there is a record (Pj , Pi, pw

′) with pw ′ = pw , and a key sk ′ was sent to Pj , and (Pj , Pi, pw)
was fresh at the time, then output (sid, sk ′) to Pi;

• In any other case, pick a new random key sk ′ of length k and send (sid, sk ′) to Pi.
Either way, mark the record (Pi, Pj , pw) as completed.

Figure 1. The PAKE Ideal Functionality FPAKE

2.2 Simulation-based Security

The latter model [16] is in the simulation-based framework, with an ideal functionality in which the adversary
is allowed to check one password per session. This models on-line dictionary attacks. Excepted this test instance
password, no information is leaked about the passwords and the session keys.

2.3 Universal Composability

In both above models, one formalized the fact that, with an active attack, the adversary can basically test
one password, whereas passive eavesdropping does not (computationally) leak any information. The goal
is essentially to rule out off-line dictionary attacks in which the adversary makes some active and passive
attacks, and then makes an off-line brute-force attack on the dictionary. On-line brute-force attacks, which
are unavoidable, should be the only possible way to have some information about the session keys, and thus
many interactions with a real player are required.

However, there were still some limitations on the password distributions and for composition with other
protocols, which were overcome by Canetti, Halevi, Katz, Lindell and MacKenzie [24]. They indeed provided
an ideal functionality in the Universally Composable (UC) security framework [23], see Figure 1. This func-
tionality also models on-line dictionary attacks with a TestPwd-query that can be asked once to each user
in sessions. An important property is that passwords are chosen by the environment which then hands them
to the parties as inputs. This guarantees security even in the case where two honest players execute the
protocol with two different passwords: the environment can emulate any distribution, mistypes of passwords
and related passwords. Also note that allowing the environment to choose the passwords guarantees forward
secrecy. This functionality mimics quite well some concrete requirements, but still, some leakage of informa-
tion is not modeled, and could be exploited by a real-life adversary, whereas the ideal functionality does not
allow it to the ideal-world adversary.

Explicit Authentication. With the above functionality, if neither party is corrupted, then they both end up
with a uniformly-distributed session key, either the same key if the passwords are the same (success), or
independent keys if the passwords are different (failure). Furthermore, the adversary learns nothing about
the keys and the passwords, and even nothing about the status of the session (success or failure), but the
users either. Explicit authentication, or mutual authentication modeled in [5], provides the players with a
session key if and only if the passwords are the same, informing the adversary of success or not. This is an
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interesting additional feature, which is also more relevant in practice. In the real life, the adversary anyway
learns whether the protocol succeeded or not, since in the latter case the communication stops.

Combined with the split functionality [10], it also allows to remove the TestPwd-query since the NewKey-
query would reveal to the adversary whether the passwords are the same or not, by leaking the success or
failure status. The split functionality allows the adversary to split a session between users Alice and Bob into
two sessions, one between Alice and the adversary trying to impersonate Bob, and a second one between Bob
and the adversary trying to impersonate Alice. When the adversary plays with Alice, in case of success, this
means it has guessed Alice’s password, which is similar to the TestPwd-query.

Contributiveness. In the FPAKE functionality, if one party is corrupted, or if the adversary successfully guessed
the player’s password, the adversary is granted the right to fully determine the session key. Note that as soon
as a party is corrupted, the adversary anyway learns the key, so one can think that nothing is lost by allowing it
to fully determine it. But this is precisely the difference between key agreement and key distribution protocols.

In case of groups, this makes a huge difference. Hence the more recent functionality proposed by Abdalla,
Catalano, Chevalier and Pointcheval [4] which provides the contributiveness property to Group Password-
based Authenticated Key Exchange (GPAKE), see Figure 2. PAKE is a particular case of GPAKE with groups
of size 2. The latter property allows the adversary to fully determine the session key only if it has corrupted
enough players, more than a threshold. This threshold can even be maximal: as soon as a player is honest, if
a common key is generated, it is uniformly distributed in an unpredictable way. This means that no player
has a more important role, and so there is no player to corrupt in priority for the adversary. As explained
above, and as done in [5], one can even remove TestPwd-queries, allowing the adversary to split the group
into several subgroups, with sub-session-IDs, where the adversary plays the role of the other users.

The functionality FGPAKE is parameterized by a security parameter k, and the parameter t of the contributiveness. It interacts
with an adversary S and a set of parties P1, . . . , Pn via the following queries:

– Pi asks for a (NewSession, sid,Pid, Pi, pw i): If this is the first NewSession-query for Pi, where Pid is a set of at least two
distinct identities containing Pi, record (sid,Pid, Pi, pw i), mark it fresh, and send (sid,Pid, Pi) to S. Ignore any subsequent
NewSession-queries with a different Pid set. If all the players involved in Pid have submitted their NewSession-queries,
then record (sid,Pid, ready) and send it to S.

– S asks for a (TestPwd, sid,Pid, Pi, pw
′): If there exists a record of the form (sid,Pid, Pi, pw i) which is fresh:

• If pw i = pw ′, mark the record compromised and reply with “correct guess”;
• If pw i 6= pw ′, mark the record interrupted and reply with “wrong guess”.

– S asks for a (NewKey, sid,Pid, sk): If there is a record of the form (sid,Pid, ready), then, denote by nc the number of
corrupted players, and
• If all Pi ∈ Pid have the same passwords and nc < t, choose sk ′ ∈ {0, 1}k uniformly at random and store (sid,Pid, sk ′).
• If all Pi ∈ Pid have the same passwords but nc ≥ t, store (sid,Pid, sk).

In both cases, for all Pi ∈ Pid, mark the record (sid,Pid, Pi, pw i) completed. In any other case, store (sid,Pid, error), and
for all Pi ∈ Pid, mark the record (sid,Pid, Pi, pw i) error. When the key is set, report the result (either error or completed)
to S.

– S asks for a (SendKey, b, sid,Pid, Pi): If Pi ∈ Pid and there is a recorded tuple (sid,Pid, α) where α ∈ {0, 1}k ∪ {error},
send (sid,Pid, α) to Pi if b = 1 or (sid,Pid, error) if b = 0.

– S asks for a (Corrupt, sid,Pid, Pi): If there is a recorded tuple (sid,Pid, Pi, pw i), then reveal pw i to S. If there also is a
recorded tuple (sid,Pid, sk), that has not yet been sent to Pi, then send (sid,Pid, sk) to S.

Figure 2. The Contributory GPAKE Ideal Functionality FGPAKE
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Figure 3. Encrypted Key Exchange

3 Constructions

3.1 Two-Party Password-based Authenticated Key Exchange

Bellovin and Merritt [15] proposed the first scheme, the so-called Encrypted Key Exchange (EKE), see
Figure 3 for a sketch of the protocol, where E is assumed to be an encryption scheme onto the group G,
sometimes modeled as an ideal cipher. A first security analysis has been provided in the indistinguishability-
based framework, in the ideal-cipher model [12], followed by several proofs of variations [8, 18, 19], trying to
reduce the need of ideal models but still keeping the initial efficiency of EKE. EKE has also been studied in
the simulation-based framework, in the random-oracle model [16], followed by studies in the UC framework [3]
with security against adaptive corruptions, but still in ideal models. Our “simple PAKE” protocols [8] are
definitely the most efficient, with a random oracle only for extracting the session key, with a security analysis
in the Find-then-Guess scenario, under the CDH assumption.

Katz, Ostrovsky and Yung [33] proposed the first practical scheme, but still less efficient than above
schemes, in the standard model with a common reference string, followed by a generalization from Gennaro
and Lindell (GL) [28, 29], using the power of smooth-projective hash functions [26], in the Find-then-Guess
scenario. Many variations [6,24,31,34,35] have thereafter been proposed, to get security in the UC framework,
to improve round efficiency, or to rely on new assumptions.

Whereas the huge majority of the protocols rely on Diffie-Hellman assumptions, some efficient schemes
have also been proposed on factoring-related assumptions [25,30,36,37]. Besides the Secure Remote Password
(SRP) protocol [39] and the Simple Password Exponential Key Exchange (SPEKE) protocol [32] that have
been standardized, EKE-like and GL-like schemes are the two main streams, with security analyses in the
UC framework.

3.2 Group Password-based Authenticated Key Exchange

For groups, while the first proposals were extensions of the group Diffie-Hellman key exchange [17, 20, 38],
the Burmester and Desmedt construction [21, 22] became more appropriate, because of its constant number
of rounds, independently of the size of the group. Several group password-based authenticated key exchange
protocols have then been proposed [1, 2, 5, 9], essentially combining a two-party PAKE with the Burmester
and Desmedt methodology.
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