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Abstract. Digital signature security is classically defined as an interaction between a signer Ssk , a verifier
Vpk and an attacker A. A submits adaptively to Ssk a sequence of messages m1, . . . ,mq to which Ssk replies
with the signatures U = {σ1, . . . , σq}. Given U , A attempts to produce a forgery, i.e. a pair (m′, σ′) such
that Vpk (m′, σ′) = true and σ′ 6∈ U .

The traditional approach consists in hardening Ssk against a large query bound q. Interestingly, this is one
specific way to prevent A from winning the forgery game. This work explores an alternative option.

Rather than hardening Ssk , we weaken A by preventing him from influencing Ssk ’s input: upon receiving
mi, Ssk will generate a fresh ephemeral signature key-pair (sk i, pk i), use sk i to sign mi, erase sk i, and
output the signature and a certificate on pk i computed using the long-term key sk . In other words, Ssk will
only use his permanent secret sk to sign inputs which are beyond A’s control (namely, freshly generated
public-keys). As the sk i are ephemeral, q = 1 by construction.

We show that this paradigm, called autotomic signatures, transforms weakly secure signature schemes
(secure against generic attacks only) into strongly secure ones (secure against adaptively chosen-message
attacks).

As a by-product of our analysis, we show that blending public key information with the signed message
can significantly increase security.

1 Introduction

The security of cryptographic signatures is traditionally modeled as an interaction between an attacker
A, a signer S and a verifier V. A adaptively submits to S a sequence of messages m1, . . . ,mq to which
S replies with the (corresponding) signatures σ1, . . . , σq.

As the interaction ceases, A attempts to produce a forgery (m′, σ′) such that:1

Vpk (m′, σ′) = true and σ′ 6∈ {σ1, . . . , σq}
The traditional approach consists in endeavoring to harden S against a large query bound q. Namely,
design (S,V) in a way allowing to increase q non-polynomially at wish.

Interestingly, this is only one specific way to prevent A from forging. This paper explores an alternative
approach that prevents A from adaptively influencing S’s input.

The idea is the following: To sign a message mi, S will:

– Generate a fresh ephemeral signature key-pair (sk i, pk i)
– Use sk i to sign mi. Let σi = Ssk i

(mi) be the corresponding signature.
– Erase sk i and output (σi, pki, ci) where ci = Ssk (pki) is a certificate on pk i.

The verifier will check that:

Vpk i
(m,σi) = true and Vpk (pk i, ci) = true

In other words, S will only use sk to sign ”sterilized” input which is beyond A’s control (freshly
generated public-keys). As each ephemeral secret key sk i is used only once, q = 1 by construction.

We show that this paradigm, called autotomic signatures suffices to transform weakly secure signature
schemes (generic attack secure) into strongly secure ones (adaptively chosen-message secure).

Autotomy2 (or self amputation) is the act whereby an animal (S) severs an appendage (sk i, pk i) as
a self-defense mechanism designated to elude a predator’s (A) grasp. The lost body part being re-
generated later (sk i+1, pk i+1). Typically, lizards and geckoes captured by the tail will shed part of the
tail and thus be able to flee. Hence the name chosen for this paradigm.

1 As is customary, we denote by (sk , pk) the key-pair of S.
2 Aυτoτoµία from αυτóς (autós = self) and τ έµνειν (temnein = to cut).
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2 Formal Framework

In [10], Goldwasser, Micali and Rivest defined existential unforgeability against adaptive chosen-
message attacks (EUF-CMA) for digital signatures. EUF-CMA is today’s de facto standard definition
for digital signature security.

[10] define a scenario in which the adversary A, given a target user’s public key pk , is asked to produce
a new message + signature pair (forgery) valid with respect to pk . For doing so, A is granted access to
a signature oracle S (in practice, the legitimate signer himself) responding with signatures to challenge
messages of A’s choosing.

Formally, given a security parameter k, a signature scheme is a set of three algorithms (K,S,V):

– A probabilistic key generation algorithm K, which, on input 1k, outputs a pair (pk , sk) of matching
public and private keys.

– A (generally probabilistic) signing algorithm S, which receives a message m and sk , and outputs
a signature σ = Ssk (m).

– A (generally deterministic) verification algorithm V, which receives a candidate signature σ, a
message m and a public key pk and returns a bit Vpk (m,σ) representing the validity of σ as a
signature of m with respect to pk i.e.:

σ = Ssk (m) ⇒ Vpk (m,σ) = true

Attacks against signature schemes are traditionally classified according to A’s goals and resources.
The most prevalent goals in the literature are:

Total Break = A outputs sk .
Universal Forgery = A signs any message.
Selective Forgery = A signs a message chosen before pk is known.
Existential Forgery = A signs some message.

It is easy to see that:

Total Break⇒ Universal Forgery⇒ Selective Forgery⇒ Existential Forgery

Remark 1. In the above, A should be read as ”an efficient A succeeding with a significant probability”.
The terms ”efficiency” and ”significant probability” admit various formal definitions.

A signature scheme capable of preventing any adversary from generating existential forgeries is called
existentially unforgeable (EUF).

Literature abounds on the resources at A’s command. In this paper we focus on two specific resource
settings: no-message attacks and known-message attacks. In a no-message attack the adversary uses
only pk to produce the forgery, whereas in known-message attacks A is given a list of valid message
+ signature pairs to work with.

Banishing existential forgeries (i.e. EUF-security), removes the lesser form of threat and hence offers
the highest form of security (in other words, A is unable to sign even one, very specific, new message).

Nonetheless, a stronger security notion termed strong unforgeability (SUF)3 [21], was recently defined
for probabilistic signature schemes. In a SUF-secure scheme A cannot even create new signatures of
messages legitimately signed by S.

Finally, constraints on A’s modus operandi categorize known message attacks into three subcases:

3 Also called non-malleability.
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Attack Message choice process

Random-Message Attacks RMA by S
at random

Generic Chosen-Message Attacks GCMA by A
independently of pk and S’s previous answers

Adaptive Chosen-Message Attacks CMA by A
as a function of pk and S’s previous answers

Clearly, CMA is the most stringent modus operandi and CMA⇒ GCMA⇒ RMA.

Restricting A to one signature requires even weaker security definitions integrating one-timeness. We
thus extend GCMA and CMA as follows:

Definition 2 (OTCMA). One-Time-CMA, denoted OTCMA, is a CMA where A is limited to a single
signature query.

Definition 3 (OTGCMA). One-Time-GCMA, denoted OTGCMA, is a GCMA where A is limited to
a single signature query.

2.1 Connection to Related Work

The incorporation of randomness in signed strings is commonly used to upgrade signature security
(e.g. pfdh [5]) or achieve tighter reduction bounds (e.g. pss [2, 14]). Randomness generally allows the
proof’s simulator to generate signatures that do not help the adversary. Autotomic signatures can
be regarded as a variant of this general design methodology where the ephemeral public-key acts as
a randomness source. Note as well that two-stage signatures using ephemeral key-pairs were already
used in the past. Most notably by Groth for designing provably secure group signatures [11, 3] (see as
well [1]). The main contributions of this paper are hence a formalization of the concept, the proof of
generic results and the illustration of the construction with concrete instances.

3 Autotomic Signatures

Consider two signature schemes Σ0 = (K0,S0,V0) and Σ1 = (K1,S1,V1) where Σ1’s message space
contains Σ0’s public key space.

The autotomic scheme Σ = (K,S,V) is formally defined as follows:

– K runs (sk0, pk0)← K0, and sets (sk , pk) = (sk0, pk0).

– Ssk (m):
• runs K1 to get an ephemeral key-pair (sk1, pk1).

• certifies (signs) pk1 using S0sk , signs m using S1
sk1 and erases sk1.

c← S0sk (pk1) and σ ← S1
sk1(m)

• The autotomic signature of m is defined as (pk1, σ, c).
– Vpk (m,σ) verifies the signature by checking that

V1
pk1(m,σ) = true and V0pk (pk1, c) = true

The following theorem, states that the autotomic combination of two weak signature schemes results
in a strong signature scheme:

Theorem 4. If Σ0 is EUF-GCMA secure, and if Σ1 is EUF-OTGCMA secure, then Σ is EUF-CMA se-
cure.

Proof. The proof proceeds in two steps: we reduce an adversary attacking Σ into either an adversary
against Σ0 (inner scheme forgery) or an adversary against Σ1 (outer scheme forgery).

Consider an adversary A contradicting Σ’s EUF-CMA security, given pk = pk0, and q oracle accesses to
Σ. We denote the queries by m1, . . . ,mq and their answers by (pk1i , σi, ci). A succeeded in generating
a new message m and a corresponding forgery (pk ′, σ, c′).

If such a forgery is possible with probability ≥ ε, two events may occur:
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pk ′ 6∈ {pk1
1, . . . pk

1
q} with probability ≥ ε/2. In other words, (m, (pk ′, σ, c′)) is a an inner scheme

forgery. This implies the existence of an adversary contradicting Σ0’s EUF-GCMA security constructed
as follows:

Generate q public-private key-pairs (sk ′i, pk
′
i) for Σ1 and ask (non-adaptively) S0 for the signatures of

all the pk ′i (let σi denote these signatures). This takes place before A sees the public key pk .

Ask the public key pk0 corresponding to Σ0 and set it as the public key of Σ (i.e. pk = pk0). For each
signature query mi by A, we take a pair (sk ′i, pk

′
i) from the above queries list to Σ1, sign mi under

sk ′i using S1 to get σ′i, and output (pk ′i, σi, σ
′
i).

Then, A outputs an inner scheme forgery (m, (pk ′, σ, c′)), for a new pk ′:

V0(pk0, pk ′, σ) = true and V1(pk ′,m, c′) = true

Thus (pk ′, σ) is an existential forgery of Σ0.

pk ′ ∈ {pk1
1, . . . pk

1
q} with probability ≥ ε/2. Here (m, (pk ′, σ, σ′)) is an outer scheme forgery.

This case immediately leads to an adversary against EUF-OTGCMA of Σ1. We will start the security
game of Σ1 later. We first generate a pair of public-private keys (sk0, pk0) for Σ0 and randomly select
an index k such that 1 ≤ k ≤ q.

– For the i-th signing query mi (i 6= k), we generate a public-private key-pair (sk ′i, pk
′
i) for Σ1 and

compute σi = S0(sk0, pk ′i), and σ′i = S1(sk ′i,mi). The signature of mi is thus the triple (pk ′i, σi, σ
′
i).

– For the k-th signing query mk, we start the security game against Σ1: we ask the signature σ′k
of mk, before getting the public key pk ′k. As we get pk ′k, we can certify it σk = S0(sk0, pk ′k). The
signature of mk is thus the triple (pk ′k, σk, σ

′
k).

Finally, A outputs an outer scheme forgery (m, (pk ′, σ, σ′)), where pk ′ = pk ′i for some i:

V0(pk0, pk ′i, σ) = true and V1(pk ′i,m, σ′) = true

with probability 1/q, i = k, and then (m,σ′) is an existential forgery of Σ1 under the challenge key
pk ′k. ut

The above also applies to strong unforgeability:

Theorem 5. If Σ0 is SUF-GCMA secure, and Σ1 is SUF-OTGCMA secure, then Σ is SUF-CMA
secure.

Proof. Consider an adversary A against Σ’s SUF-CMA security: given a public key pk = pk0, and q
accesses to the signing oracle Σ, on messages mi, with answers (pk ′i, σi, σ

′
i), A is able to generate a

new signature (pk ′, σ, σ′) for a message m = mi for some index i (if this is a new message, we can
apply the previous proof).

Two situations can arise, since we assume that such a forgery occurs with probability ≥ ε:

pk ′ 6∈ {pk1
1, . . . pk

1
q} with probability ≥ ε/2. This case immediately leads to an adversary against

EUF-GCMA of Σ0.

Then, the adversary outputs an inner scheme forgery (m, (pk ′, σ, σ′)), for a new pk ′:

V0(pk0, pk ′, σ) = true and V1(pk ′,m, σ′) = true

thus (pk ′, σ) is a strong forgery of Σ0.
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pk ′ 6∈ {pk1
1, . . . pk

1
q} with probability ≥ ε/2. Let i be the index for which pk ′ = pk ′i:

– either ∀i, (m, pk ′) 6= (mi, pk i), then at least (pk ′, σ) or (m,σ′) is a strong forgery;

– or ∃j, (m, pk ′) = (mj , pk
′
j), then at least

• either σ 6= σi, and thus (pk ′, σ) is a strong forgery of Σ0,

• or σ′ 6= σ′i, and thus (m,σ′) is a strong forgery of Σ1.

ut

4 Concrete Instantiations

4.1 Autotomic Chameleon Signatures

[15] introduces the concept of Chameleon Signatures using Chameleon Hash Functions (chf). A chf
can be seen as one-time signature: A chf H uses a public key pk to compute h = Hpk (m, r) and
satisfies the following properties:

Collision-Resistance: Given pk it is hard to find (m1, r1) 6= (m2, r2) such that

Hpk (m1, r1) = Hpk (m2, r2)

Trapdoor: Given a trapdoor information sk , it is easy to compute a second pre-image with a specific
prefix. Formally, given (sk , (m1, r1),m2), one can compute r2 such that Hpk (m1, r1) = Hpk (m2, r2).

Uniformity: When r is uniformly distributed, Hpk (m, r) perfectly (or computationally) hides the
message m.

To see H as a signature scheme (K,S,V), we define:

– K runs the chf’s key generation process, gets skh and pkh, chooses a random message m1, a
random number r1, and computes h = Hpkh

(m1, r1). It sets sk = (skh,m1, r1) and pk = (pkh, h).

– Given a message m, S gets from skh and (m1, r1), the number r such that h = Hpkh
(m1, r1) =

Hpkh
(m, r). The signature simply consists of r, which satisfies h = Hpkh

(m, r).

– The verification of the equality h = Hpkh
(m, r) is the verification algorithm V.

Theorem 6. If H is a chf then the above signature scheme is SUF-OTGCMA secure.

Proof. We are given a public key pkh. A submits first its unique query m to the signing oracle, before
seeing the signing public key. We choose a random r,compute h = Hpkh

(m, r) and set pk = (pkh, h).
Given the uniformity property, h is independent of m, and thus the key pk is uniformly distributed
among the public keys.

The signature of m is thus r, since h = Hpkh
(m, r).

If the adversary is able to forge a new (m′, r′) pair, then h = Hpkh
(m, r) = Hpkh

(m′, r′), which is a
collision, for a given public key pkh only, which is hard to produce4.

Hence, it appears that this can be combined with any SUF-GCMA secure signature scheme to get a
SUF-CMA secure signature scheme.

4 Under the collision-resistance assumption of the hash function family
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4.2 DL-Based Instantiation

Consider the following DLP-based example:

– The functions apply in a group G of prime order q, where g is a generator;

– The keys are: sk = x
R← Zq, pk = y = gx

– The hash function is defined by h = Hpk (m, r) = gmyr

It is clear that finding a collision solves the DLP of y in basis g, but given the discrete logarithm x,
as well as h = gm1yr1 , and a message m2, it is clear that r2 = r1 + (m1 −m2)/x mod q makes that
Hpk (m1, r1) = Hpk (m2, r2). Uniformity is perfect, since y is a generator, and thus yr for a random r
perfectly hides m.

Theorem 7. The above signature scheme is SUF-OTGCMA secure, under the discrete logarithm as-
sumption.

4.3 RSA-Based Instantiation

Consider the following example based on the RSA problem:

– The functions apply in a Zn for an rsa modulus n, with exponent e;

– The keys are: sk = x
R← Zn, pk = y = xe mod n

– The hash function is defined by h = Hpk (m, r) = meyr mod n

It is clear that finding a collision leads to

h = m1
eyr1 = m2

eyr2 ⇒ yr2−r1 = (m1/m2)
e mod n.

If r2− r1 and e are co-prime, then we can extract the e-th root of y. For that to always hold, we need
e = n.

Uniformity is statistical, as soon as y is of order large enough, which holds which overwhelming
probability.

Theorem 8. The above signature scheme is SUF-OTGCMA secure, under the RSAn,n assumption.

5 More Constructions

Since we have two one-time signatures, we now have to look for new signature schemes to combine
with. The list of candidates is

– Schnorr’s signature [20], which is already SUF− CMA in the random oracle model, under the DL
assumption [17]. Without the random oracle, there is no hope to prove anything. Any conversion
from an identification scheme using the Fiat-Shamir [8] paradigm will have the same problem
(all the Schnorr’s variants, such as dsa, and gq signature [12]), because of the simulator of the
zero-knowledge proof system;

– rsa signature [18], which is already SUF− CMA in the random oracle model, under the RSA as-
sumption [2, 4]. Without the random oracle, it is existentially forgeable under no-message attacks.
There is thus no hope to prove anything either;

– ghr signature [9], is a hash-then-invert like signature, also known as Full-Domain Hash, but by
opposition to the rsa case, it can reach a minimal security level without random oracle, we thus
focus on this signature scheme.
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5.1 Gennaro-Halevi-Rabin Signatures

In 1999, Gennaro, Halevi and Rabin [9] proposed a signature scheme, which basically works as follows:

– The key generation process generates an rsa modulus n and a random y ∈ Zn. The public key
consists of the pair (n, y), and the private key in the pair (p, q).

– The signing process, given a message m, first computes e = H(m), so that it is prime to ϕ(n) (we
discuss that later). One then computes d = e−1 mod ϕ(n), and the signature s = yd mod n.

– To verify the signature s with respect to the message m and the public key (n, y), one simply
checks whether y = sH(m) mod n.

In [9], the authors prove the following security result:

Theorem 9. The above signature scheme is SUF-CMA secure, under the Strong RSA assumption, in
the random oracle model.

They also reduced the random oracle requirement to a hash function that is division intractable, plus
some randomness properties:

Definition 10 (Division-Intractability). A hash function H is said division-intractable if it is hard
to find x1, . . . , xq and y such that H(y) divides

∏
H(xi).

However, if H behaves like a random function, Coron and Naccache [6] showed that a 1024-bit hash
function is necessary for a security level similar to rsa-1024, contrarily to the 512-bit size suggested
by the authors.

Modulus. To ascertain that H(m) is invertible modulo ϕ(n), we can choose a strong rsa modulus n
(which means that n = pq, such that both (p − 1)/2 and (q − 1)/2 are prime numbers), and define
H(x) = 2h(x) + 1 to make it odd. H(x) is thus prime to ϕ(n) with overwhelming probability. Then,
we have to choose a hash function with an output length similar to the size of n, which implies a
full-size exponentiation for the verification.

Alternative to Division-Intractability. Another possibility is to define H(m, r) = h(m)||r, where r is
the smallest integer such that H(m, r) is a prime number. This allows to use a very short exponent,
at low cost. Indeed, Cramér’s conjecture says that the bigger gap between 2 consecutive primes p
and p′ is log(p)2. As a consequence, with a 256-bit hash function h, 16 additional bits are enough
to guarantee that a prime will appear in the interval. On average, the gap is log p only, and thus on
average 64 primality tests are enough (since we can safely exclude even numbers). Such a function is
division-intractable in the perfect sense, since such sequences do not exist (all the output numbers are
distinct primes).

5.2 Resistance to Generic Attacks

Note that an efficient way to limit the impact of Coron-Naccache’s attack is to use a hash function
that takes both the message and the public key (or at least some variable part of it) as input. Since
we just want to achieve GCMA security, the adversary cannot prepare the messages to be queried and
then see the exponents it will obtain. The attack has thus to be generic: the adversary first chooses
q messages, when it knows the public key, it learns the q exponents for which it gets the signatures.
It then has to generate a message digest dividing the product of all theses exponents, which is very
unlikely.

Description of our Scheme. We thus suggest the following modification, where the hash function H
just needs to have some uniformity properties and output odd integers only:

– The key generation process first chooses a strong rsa modulus n and a random element y ∈ Zn.
The public key consists of the pair (n, y), and the private key in the pair (p, q).

– The signing process, given a message m, first computes e = H(n,m). One then computes d =
e−1 mod ϕ(n), and the signature s = yd mod n.
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– To verify the signature s with respect to the message m and the public key (n, y), one simply
checks whether y = sH(n,m) mod n.

Since we can limit the number of generic signature requests to say 230, the output length of the hash
function can be reduced to 160 bits. For a 256-bit hash function, we can set the usage limit up to 240,
according to [6].

Security Result. Let us now prove security under division intractability:

Theorem 11. The above signature scheme is SUF-GCMA secure, under the Strong RSA assumption
and the division-intractability of the function H.

Proof. We are given a flexible rsa instance n, y. The adversary first submits its queries m1, . . . ,mq to
the signing oracle, before seeing the signing public key. We thus compute ei = H(n,mi) for i = 1, . . . , q,
and then Y = y

∏
ei mod n. The public key is set to pk = (n, Y ).

The signature of mi is thus si = y
∏

j 6=i ei = Y 1/ei mod n.

If the adversary is able to forge a new pair (m, s), then se = Y = y
∏

ei mod n. Under the division
intractability assumption, e does not divide E =

∏
ei, and thus there exist a, e′ and E′ such that

e = e′a and E = E′a, with e′ 6= 1, and e′ relatively prime to E′. Since we considered a strong rsa
modulus n, with odd exponents, e′ is relatively prime to ϕ(n):

ue′ + vE′ = 1 se
′

= Y = yE
′
.

We set X = svyu, then

Xe′ = se
′vye

′u = yE
′vye

′u = y mod n,

which solves the F-RSA problem.

Combined with the rsa-based chameleon hash function, we obtain a signature scheme that is SUF−
CMA under the Strong RSA assumption.

5.3 A Complete Signature Scheme

We can now describe the complete signature scheme, which relies on the Flexible rsa problem (F-RSA),
and a weaker division-intractability assumption:

– The key generation process chooses a strong rsa modulus n and a random element y ∈ Zn. The
public key consists of the pair (n, y). The private key is the pair (p, q).

– The signing process, given a message m, first generates a random element x ∈ Zn, computes
z = xn mod n, chooses a random r ∈ Zn and computes h = zrmn mod n.

Let e = H(n, h, z) and d = e−1 mod ϕ(n). The signature consists of s = yd mod n, and (z, r).

– To verify the signature (s, z, r) with respect to the message m and the public key (n, y), the verifier
simply checks whether y = sH(n,h,z) mod n, where h = zrmn mod n.

The assumption on the hash function is the following:

Definition 12 (Weak Division-Intractability). A hash function family Hk is q-weak division-
intractable if it is hard to win the following game: the adversary chooses q elements x1, . . . , xq, the
defender chooses a random key k, and the adversary has to find y such that Hk(y) divides

∏
Hk(xi).

We can indeed see the additional input n to the hash function as a key.
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5.4 Keyed Hash Functions

A crucial point raised in the previous analysis is the impact on security caused by including the public
key (or at least a variable part of it) in the hash value. It has already been noticed for hash functions
in general [19, 13], essentially to make the collision-resistance definition formal, since it defines a hash
function family:

Definition 13 (Collision-Resistant Hash Functions (crhf)). A family of functionsHk is collision-
resist if, for a random key k as input, it is hard to find x and y such that Hk(x) = Hk(y).

To compare the above notions of division-intractability and weak division-intractability, let us review
the definition of Universal One-Way Hash Functions [16]:

Definition 14 (Universal One-Way Hash Functions (uowhf)). A family of functions Hk is
universal one-way if, after having chosen x, for a random key k, it is hard to find y such that Hk(x) =
Hk(y).

It is widely believed that the uowhf assumption is much weaker than the crhf assumption. One
should then note that if the public key is inserted into the input of the hash value to be signed, in the
case of generic attacks only, uowhf are basically enough.

Note that the difference between the definitions of crhf and uowhf is similar to the difference
between the definitions of Division-Intractability and Weak Division-Intractability. The latter is thus
much weaker than the former.

Also, in the above scheme, the security result requires Weak Division-Intractability instead of Division-
Intractability if a variable part of the public key is insert in the hash value. The entire public key
would weaken the security result!

5.5 Weak Division-Intractability

To evaluate the size of the output to achieve Weak Division-Intractability, a similar evaluation to [6]
should be performed. We believe that the attack is much more difficult in this case.

6 Acknowledgments

The authors are grateful to Damien Vergnaud and Nigel Smart for their useful comments and sugges-
tions regarding this work.

References

1. G. Ateniese, J. Camenisch, S. Hohenberger, and B. de Medeiros. Practical group signatures without random oracles.
Cryptology ePrint Archive, Report 2005/385, 2005. http://eprint.iacr.org/.

2. M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign with RSA and Rabin. In U. M.
Maurer, editor, Advances in Cryptology – EUROCRYPT’96, volume 1070 of Lecture Notes in Computer Science,
pages 399–416. Springer, May 1996.

3. A. Boldyreva, M. Fischlin, A. Palacio, and B. Warinschi. A closer look at PKI: Security and efficiency. In T. Okamoto
and X. Wang, editors, PKC 2007: 10th International Conference on Theory and Practice of Public Key Cryptography,
volume 4450 of Lecture Notes in Computer Science, pages 458–475. Springer, Apr. 2007.

4. J.-S. Coron. On the exact security of full domain hash. In M. Bellare, editor, Advances in Cryptology – CRYPTO 2000,
volume 1880 of Lecture Notes in Computer Science, pages 229–235. Springer, Aug. 2000.

5. J.-S. Coron. Optimal security proofs for PSS and other signature schemes. In L. R. Knudsen, editor, Advances
in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 272–287. Springer,
Apr. / May 2002.

6. J.-S. Coron and D. Naccache. Security analysis of the Gennaro-Halevi-Rabin signature scheme. In B. Preneel, editor,
Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 91–101.
Springer, May 2000.

7. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. In ACM CCS 99: 6th Conference
on Computer and Communications Security, pages 46–51. ACM Press, Nov. 1999.



10

8. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In A. M.
Odlyzko, editor, Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages
186–194. Springer, Aug. 1987.

9. R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the random oracle. In J. Stern,
editor, Advances in Cryptology – EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages 123–
139. Springer, May 1999.

10. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing, 17(2):281–308, Apr. 1988.

11. J. Groth. Fully anonymous group signatures without random oracles. In K. Kurosawa, editor, Advances in Cryptology
– ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages 164–180. Springer, Dec. 2007.

12. L. C. Guillou and J.-J. Quisquater. A “paradoxical” identity-based signature scheme resulting from zero-knowledge.
In S. Goldwasser, editor, Advances in Cryptology – CRYPTO’88, volume 403 of Lecture Notes in Computer Science,
pages 216–231. Springer, Aug. 1990.

13. A. Joux. Can we settle cryptography’s hash?, 2009. Invited talk at the ACNS ’09 Conference.
14. J. Katz and N. Wang. Efficiency improvements for signature schemes with tight security reductions. In S. Jajodia,

V. Atluri, and T. Jaeger, editors, ACM CCS 03: 10th Conference on Computer and Communications Security, pages
155–164. ACM Press, Oct. 2003.

15. H. Krawczyk and T. Rabin. Chameleon signatures. In ISOC Network and Distributed System Security Symposium
– NDSS 2000. The Internet Society, Feb. 2000.

16. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. In 21st Annual ACM
Symposium on Theory of Computing, pages 33–43. ACM Press, May 1989.

17. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of Cryptology,
13(3):361–396, 2000.

18. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signature and public-key cryptosystems.
Communications of the Association for Computing Machinery, 21(2):120–126, 1978.

19. P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions, implications, and separations for
preimage resistance, second-preimage resistance, and collision resistance. In B. K. Roy and W. Meier, editors, Fast
Software Encryption – FSE 2004, volume 3017 of Lecture Notes in Computer Science, pages 371–388. Springer, Feb.
2004.

20. C.-P. Schnorr. Efficient identification and signatures for smart cards. In G. Brassard, editor, Advances in Cryptology
– CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 239–252. Springer, Aug. 1990.

21. J. Stern, D. Pointcheval, J. Malone-Lee, and N. P. Smart. Flaws in applying proof methodologies to signature
schemes. In M. Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 93–110. Springer, Aug. 2002.

A Standard Definitions

Definition 15 (DL). The Discrete Logarithm problem (DL) in base g in a group G of prime order
q, denoted DLG,g, consists, given y = gx, in computing x mod q.

The DL assumption conjectures the intractability of the DL problem.

Definition 16 (RSA). The rsa problem (RSA) with modulus n and exponent e, denoted RSAn,e,
consists, given y = xe mod n, in computing x mod n.

The RSA assumption conjectures the intractability of the RSA problem.

Definition 17 (F-RSA). The Flexible rsa problem (F-RSA) [7] with modulus n,denoted F-RSAn,
consists, given y mod n, in computing a pair (e, x), for a prime exponent e, such that y = xe mod n.

The Strong RSA assumption conjectures the intractability of the F-RSA problem.


