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Abstract. Password-based authenticated group key exchange allows any group of users in possession
of a low-entropy secret key to establish a common session key even in the presence of adversaries.
In this paper, we propose a new generic construction of password-authenticated group key exchange
protocol from any two-party password-authenticated key exchange with explicit authentication. Our
new construction has several advantages when compared to existing solutions. First, our construction
only assumes a common reference string and does not rely on any idealized models. Second, our scheme
enjoys a simple and intuitive security proof in the universally composable framework and is optimal in
the sense that it allows at most one password test per user instance. Third, our scheme also achieves
a strong notion of security against insiders in that the adversary cannot bias the distribution of the
session key as long as one of the players involved in the protocol is honest. Finally, we show how to
easily extend our protocol to the dynamic case in a way that the costs of establishing a common key
between two existing groups is significantly smaller than computing a common key from scratch.

1 Introduction

Password-authenticated key exchange (PAKE) allows any two parties in possession of a short (i.e.,
low-entropy) secret key to establish a common session key even in the presence of an adversary.
Since its introduction by Bellovin and Merritt [13], PAKE has become an important cryptographic
primitive due to its simplicity and ease of use, which does not rely on expensive public-key infras-
tructures or high-entropy secret keys.

In the universally composable (UC) framework [17], the authors of [19] show how their new
model (based on the ideal functionality FpwKE) relates to previous PAKE models, such as [11]
or [7]. In particular, they show that any protocol that realizes FpwKE is also a secure password-
authenticated key-exchange protocol in the model of [11]. Other works in the UC framework in-
clude [23] and [25], where the authors study static corruptions without random oracles as well.

In this paper, we consider password-authenticated key exchange in the group setting (GPAKE)
where the number of users involved in the computation of a common session key can be large. With
few exceptions (e.g., [1]), most protocols in this setting are built from scratch and are quite complex.
Among these protocols, we can clearly identify two types of protocols: constant-round protocols
(e.g., [8, 14, 5]) and those whose number of communication rounds depends on the number of users
involved in the protocol execution (e.g., [15]). Since constant-round protocols are generally easier
to implement and less susceptible to synchronization problems when the number of user increases,
we focus our attention on these protocols. More precisely, we build upon the works of Abdalla,
Catalano, Chevalier, and Pointcheval [5] and Abdalla, Bohli, González Vasco, and Steinwandt
[1] and propose a new generic compiler which converts any two-party password-authenticated key
exchange protocol into a password-authenticated group key exchange protocol. Like [1], our protocol
relies on a common reference string (CRS) which seems to be a reasonable assumption when one
uses a public software, that is somewhat “trusted”. This is also a necessary assumption for realizing
PAKE schemes in the UC framework as shown by [19]. Like [5], our protocol achieves a strong
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notion of contributiveness in the UC framework. In particular, even if it can control all the network
communications, the adversary cannot bias the key as long as one of the players involved in the
protocol is honest. We indeed assume that all the communications are public, and such a network
can be seen as a (non-reliable) broadcast channel, controlled by the adversary: the latter can
delay, block, alter and/or replay messages. Players thus do not necessarily all receive the same
messages. Since the adversary can block messages, we have to assume timeouts for each round. As
a consequence, denial-of-service attacks are possible, but these are out of the scope of this paper.

Contributions. There are three main contributions in this paper. The first one regards the
optimality of the security, which only allows one password test per subgroup. As mentioned in [5] and
in Barak et al. [9], without any strong authentication mechanisms, which is the case in the password-
based scenario, the adversary can always partition the players into disjoint subgroups and execute
independent sessions of the protocol with each subgroup, playing the role of the other players. As a
result, an adversary can always use each one of these partitions to test the passwords used by each
subgroup. Since this attack is unavoidable, this is the best security guarantee that we can hope for.
In contrast, the protocol in [5] required an additional password test for each user in the group.

The second contribution is the construction itself, which astutely combines several techniques:
it applies the Burmester-Desmedt technique [16] to any secure two-party PAKE achieving (mutual)
explicit authentication in the UC framework. The key idea used by our protocol is that, in addi-
tion to establishing pairwise keys between any pair of users in the ring, each user also chooses an
additional random secret value to be used in the session key generation. In order to achieve the
contributiveness property, our protocol enforces these random secret values to be chosen indepen-
dently so that the final session key will be uniformly distributed as long as one of the players is
honest. In order to prove our protocol secure in the UC framework, we also make use of a particular
randomness extractor, which possesses a type of partial invertibility property which we use in the
proof. The proof of security assumes the existence of a common reference string and does not rely
on any idealized model. We note that UC-secure authenticated group key exchange protocols with
contributiveness were already known [24, 5], but they either relied on idealized models [5] or were
not applicable to the password-based scenario [24].

Our final contribution is to show how to extend our protocol to the dynamic case, with forward-
secrecy, so that the cost of merging two subgroups is relatively small in comparison to generating a
new and independent common group key from scratch. This is because given two subgroups, each
with its own subgroup key, we only need to execute two instances of the PAKE protocol in order to
merge these two groups and generate a new group key. Note that, if one were to compute a common
group key from scratch, the number of PAKE executions would be proportional to the number of
users in the group. Since the PAKE execution is the most computationally expensive part of the
protocol, our new merge protocol significantly improves upon the trivial solution.

2 UC Two-Party PAKE

Notations and Security Model. We denote by k the security parameter. An event is said to be
negligible if it happens with probability less than the inverse of any polynomial in k. If X is a finite

set, x
R← X indicates the process of selecting x uniformly and at random in X (we thus implicitly

assume that X can be sampled efficiently).

Throughout this paper, we assume basic familiarity with the universal composability framework.
The interested reader is referred to [17, 19] for details. The model considered in this paper is the UC
framework with joint state proposed by Canetti and Rabin [20] (the CRS will be in the joint state).
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Given a functionality F , the split functionality sF proceeds as follows:
Initialization:

– Upon receiving (Init, sid) from party Pi, send (Init, sid, Pi) to the adversary.
– Upon receiving a message (Init, sid, Pi, G,H, sidH) from A, where H ⊂ G are sets of party identities, check

that Pi has already sent (Init, sid) and that for all recorded (H ′, sidH′), either H = H ′ and sidH = sidH′ or H
and H ′ are disjoint and sidH 6= sidH′ . If so, record the pair (H, sidH), send (Init, sid, sidH) to Pi, and invoke
a new functionality (F , sidH) denoted as FH on the group G and with set of initially honest parties H.

Computation:

– Upon receiving (Input, sid,m) from party Pi, find the set H such that Pi ∈ H and forward m to FH .
– Upon receiving (Input, sid, Pj , H,m) from A, such that Pj /∈ H, forward m to FH as if coming from Pj (it

will be ignored if Pj 6∈ G for the functionality FH).
– When FH generates an output m for party Pi ∈ H, send m to Pi. If the output is for Pj /∈ H or for the

adversary, send m to the adversary.

Fig. 1. Split Functionality sF

In this paper, we consider adaptive adversaries which are allowed to arbitrarily corrupt players
at any moment during the execution of the protocol, thus getting complete access to their internal
memory. In a real execution of the protocol, this is modeled by letting the adversary A obtain the
password and the internal state of the corrupted player. Moreover, A can arbitrarily modify the
player’s strategy. In an ideal execution of the protocol, the simulator S gets the corrupted player’s
password and has to simulate its internal state in a way that remains consistent to what was already
provided to the environment.

Split Functionalities. Without any strong authentication mechanisms, the adversary can always
partition the players into disjoint subgroups and execute independent sessions of the protocol with
each subgroup, playing the role of the other players. Such an attack is unavoidable since players
cannot distinguish the case in which they interact with each other from the case where they interact
with the adversary. The authors of [9] addressed this issue by proposing a new model based on split
functionalities which guarantees that this attack is the only one available to the adversary.

The split functionality is a generic construction based upon an ideal functionality. The original
definition was for protocols with a fixed set of participants. Since our goal is to deal with dynamic
groups, not known in advance, we let the adversary not only split the honest players into subsets H
in each execution of the protocol, but also specify the players it will control. The functionality will
thus start with the actual list of players in G, where H is the subgroup of the honest players in this
execution. Note that H is the subset of the initially honest players, which can later get corrupted
in case we consider adaptive adversaries. The restriction of the split functionality is to have disjoint
sets H, since it models the fact that the adversary splits the honest players in several concurrent
but independent executions of the protocol. The new description can be found on Figure 1. In the
initialization stage, the adversary adaptively chooses disjoint subsets H of the honest parties (with
a unique session identifier that is fixed for the duration of the protocol) together with the lists
G of the players for each execution. More precisely, the protocol starts with a session identifier
sid. Then, the initialization stage generates some random values which, combined together and
with sid, create the new session identifier sid′, shared by all parties which have received the same
values – that is, the parties of the disjoint subsets. The important point here is that the subsets
create a partition of the declared honest players, thus forbidding communication among the subsets.
During the computation, each subset H activates a separate instance of the functionality F on the
group G. All these functionality instances are independent: The executions of the protocol for each
subset H can only be related in the way the adversary chooses the inputs of the players it controls.
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The parties Pi ∈ H provide their own inputs and receive their own outputs (see the first item of
“computation” in Figure 1), whereas the adversary plays the role of all the parties Pj /∈ H, but
in G (see the second item).

UC 2-PAKE Protocols. Canetti et al. first proposed in [19] the ideal functionality for universally
composable two-party password-based key exchange (2-PAKE), along with the first protocol to
achieve such a level of security. This protocol is based on the Gennaro-Lindell extension of the
KOY protocol [26, 22], and is not known to achieve adaptive security.

Later on, Abdalla et al. proposed in [4] an improvement of the ideal functionality, adding client
authentication, which provides a guarantee to the server that when it accepts a key, the latter is
actually known to the expected client. They also give a protocol realizing this functionality, and
secure against adaptive corruptions, in the random oracle model. More recently, they presented
another protocol in [6], based on the Gennaro-Lindell protocol, secure against adaptive corruptions
in the standard model, but with no explicit authentication.

Mutual Authentication. Our generic compiler from a 2-PAKE to a GPAKE, that we present in
Section 4, achieves security against static (resp. adaptive) adversaries, depending on the level of
security achieved by the underlying 2-PAKE. Furthermore, the 2-PAKE needs to achieve mutual
authentication. For the sake of completeness, we give here the modifications of the ideal functionality
to capture this property: both client authentication and server authentication. Furthermore, to be
compatible with the GPAKE functionality, we use the split functionality model. For the 2-PAKE,
this model is equivalent to the use of TestPwd queries in the functionality. They both allow the
adversary to test the password of a player (a dictionary attack) either by explicitly asking a TestPwd
query, or by playing with this player. More precisely, an adversary willing to test the password of
a player will play on behalf of its partner, with the trial password: If the execution succeeds, the
password is correct. Finally, the 2-PAKE functionality with mutual authentication FMA

PAKE, presented
in Figure 2, is very close to the GPAKE functionality, see Section 3. As in the GPAKE one, we
added the contributiveness property. Note that the protocols mentioned earlier can realize this
functionality given very small modifications.

3 UC Group PAKE

We give here a slightly modified version of the ideal functionality for GPAKE presented in [5], by
suppressing the TestPwd queries, which was left as an open problem in [5], since their protocol
could not be proven without them. Our new functionality thus models the optimal security level:
the adversary can test only one password per subgroup (split functionality). This is the same
improvement as done in another context between [2] and [3]. Furthermore, the players in [5] were
assumed to share the same passwords. We consider here a more general scenario where each user
Pi owns a pair of passwords (pwL

i , pw
R
i ), each one shared with one of his neighbors, Pi−1 and

Pi+1, when players are organized around a ring. This is a quite general scenario since it covers the
case of a unique common password: for each user, we set pwL

i = pwR
i . The ring structure is also

general enough since a centralized case could be converted into a ring, where the center is duplicated
between the users. Recall that thanks to the use of the split functionality, the GPAKE functionality
invoked knows the group of the players, as well as the order among them. The following description
is strongly based on that of [5].

Contributory Protocols. As in [5], we consider a stronger corruption model against insiders
than the one proposed by Katz and Shin in [27]: in the latter model, one allows the adversary to
choose the session key as soon as there is one corruption; as in the former case, in this paper we
consider the notion of contributiveness, which guarantees the distribution of the session keys to be
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The functionality FMA
PAKE is parameterized by a security parameter k, and the parameter t ∈ {1, 2} of the contribu-

tiveness. It maintains a list L initially empty of values of the form ((sid, Pk, Pl, pw, role), ∗) and interacts with an
adversary S and dynamically determined parties Pi and Pj via the following queries:

– Initialization.
Upon receiving a query (NewSession, sid, Pi, pw, role) from Pi ∈ H:

• Send (NewSession, sid, Pi, role) to S.
• If this is the first NewSession query, or if it is the second NewSession query and there exists a

record ((sid, Pj , Pi, pw
′, role), fresh) ∈ L, then record ((sid, Pi, Pj , pw, role), fresh) in L. If it is the sec-

ond NewSession query, record the tuple (sid, ready).

– Key Generation. Upon receiving a message (sid, ok, sk) from S where there exists a recorded tuple (sid, ready),
then, denote by nc the number of corrupted players, and

• If Pi and Pj have the same password and nc < t, choose sk′ ∈ {0, 1}k uniformly at random and store
(sid, sk′). Next, mark the records ((sid, Pi, Pj , pwi, role), ∗) and ((sid, Pj , Pi, pwj , role), ∗) complete.

• If Pi and Pj have the same passwords and nc ≥ t, store (sid, sk). Next, mark both the records
((sid, Pi, Pj , pwi, role), ∗) and ((sid, Pj , Pi, pwj , role), ∗) complete.

• In any other case, store the result (sid, error) and mark the records ((sid, Pi, Pj , pwi, role), ∗) and
((sid, Pj , Pi, pwj , role), ∗) error.

When the key is set, report the result (either error or complete) to S.
– Key Delivery. Upon receiving a message (deliver, b, sid, Pi) from S, then if Pi ∈ H and there is a recorded

tuple (sid, α) where α ∈ {0, 1}k ∪ {error}, send (sid, α) to Pi if b equals yes or (sid, error) if b equals no.
– Player Corruption. If S corrupts Pi ∈ H where there is a recorded tuple ((sid, Pi, Pj , pwi, role), ∗), then

reveal pwi to S. If there also is a recorded tuple (sid, sk), that has not yet been sent to Pi, then send (sid, sk)
to S.

Fig. 2. Functionality FMA
PAKE

random as long as there are enough honest participants in the session: the adversary cannot bias
the distribution unless it controls a large number of players. Namely, this notion formally defines
the difference between a key distribution system and a key agreement protocol. More precisely,
a protocol is said to be (t, n)-contributory if the group consists of n people and if the adversary
cannot bias the key as long as it has corrupted (strictly) less than t players. The authors of [5]
achieved (n/2, n)-contributiveness in an efficient way, and even (n− 1, n)-contributiveness by run-
ning parallel executions of the protocol. We claim that our proposed protocol directly achieves
(n, n)-contributiveness (or full-contributiveness), which means that the adversary cannot bias the
key as long as there is at least one honest player in the group. Note that this definition remains
very general: letting t = 1, we get back to the case in which A can set the key when it controls at
least one player, as in [19].

Ideal Functionality for GPAKE with Mutual Authentication. We assume that every player
owns two passwords (pwL

i , pw
R
i ), and that for all i, pwR

i = pwL
i−1. Our functionality builds upon that

presented in [5]. In particular, note that the functionality is not in charge of providing the passwords
to the participants. Rather we let the environment do this. As already pointed out in [19], such
an approach allows to model, for example, the case where some users may use the same password
for different protocols and, more generally, the case where passwords are chosen according to some
arbitrary distribution (i.e., not necessarily the uniform one). Moreover, notice that allowing the
environment to choose the passwords guarantees forward secrecy, basically for free. More generally,
this approach allows to preserve security1 even in those situations where the password is used (by
the same environment) for other purposes.

1 By “preserved” here we mean that the probability of breaking the scheme is basically the same as the probability
of guessing the password.
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Since we consider the (improved) split functionality model, the functionality is parameterized
by an ordered group Pid = {P1, . . . , Pn}, dynamically defined, consisting of all the players involved
in the execution (be they real players or players controlled by the adversary). Thus, we note that
it is unnecessary to impose that the players give this value Pid when notifying their interest to join
an execution via a NewSession query, as was done in [5]. This additional simplification has some
interest in practice, since the players do not always know the exact number of players involved, but
rather a common characteristic (such as a Facebook group).

We thus denote by n the number of players involved (that is, the size of Pid) and assume that
every player starts a new session of the protocol with input (NewSession, sid, Pi, (pwL

i , pw
R
i )), where

Pi is the identity of the player and (pwL
i , pw

R
i ) its passwords. Once all the players in Pid, sharing

the same sid, have sent their notification message, FGPAKE informs the adversary that it is ready to
start a new session of the protocol.

In principle, after the initialization stage is over, all the players are ready to receive the session
key. However the functionality waits for S to send an “ok” message before proceeding. This allows S
to decide the exact moment when the key should be sent to the players and, in particular, it allows
S to choose the exact moment when corruptions should occur (for instance S may decide to corrupt
some party Pi before the key is sent but after Pi decided to participate to a given session of the
protocol, see [27]). One could imagine to get rid of this query and ask the functionality to generate
the session key when the adversary asks the first delivery query, but it is easier to deal with the
corruptions with the choice made here (which is the same as in [27]). Once the functionality receives
a message (sid, ok, sk) from S, it proceeds to the key generation phase. This is done as in [5], except
that, instead of checking whether the players all share the same passwords, FGPAKE checks whether
the neighbors (the group is assumed to be ordered) share the same password. If all the players
share the same passwords as their neighbors and less than t players are corrupted, FGPAKE chooses
a key sk′ uniformly and at random in the appropriate key space. If all the players share the same
passwords as their neighbors but t or more players are corrupted, then the functionality allows S
to fully determine the key by letting sk′ = sk. In all the remaining cases no key is established.

This definition of the FGPAKE functionality deals with corruptions of players in a way quite
similar to that of FGPAKE in [27], in the sense that if the adversary has corrupted some participants,
it may determine the session key, but here only if there are enough corrupted players. Notice
however that S is given such power only before the key is actually established. Once the key is set,
corruptions allow the adversary to know the key but not to choose it.

In any case, after the key generation, the functionality informs the adversary about the result,
meaning that the adversary is informed on whether a key was actually established or not. In
particular, this means that the adversary is also informed on whether the players use compatible
passwords or not: in practice, the adversary can learn whether the protocol succeeded or not by
simply monitoring its execution (if the players follow the communication or stop it). Finally the
key is sent to the players according to the schedule chosen by S. This is formally modeled by means
of key delivery queries. We assume that, as always in the UC framework, once S asks to deliver the
key to a player, the key is sent immediately.

Notice that, the mutual authentication indeed means that if one of the players terminates with
a session key (not an error), then all players share the key material; but, it doesn’t mean that they
all successfully terminated. Indeed, we cannot assume that all the flows are correctly forwarded by
the adversary: it can modify just one flow, or at least omit to deliver one flow. This attack, called
denial of service, is modeled in the functionality by the key delivery: the adversary can choose
whether it wants the player to receive or not the good key/messages simply with the help of the
keyword b set to yes or no.
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The functionality FGPAKE is parameterized by a security parameter k, and the parameter t of the contributiveness.
It interacts with an adversary S and an ordered set of parties Pid = {P1, . . . , Pn} via the following queries:

– Initialization. Upon receiving (NewSession, sid, Pi, (pw
L
i , pw

R
i )) from player Pi for the first time, record

(sid, Pi, (pw
L
i , pw

R
i )), mark it fresh, and send (sid, Pi) to S.

If there are already n − 1 recorded tuples (sid, Pj , (pw
L
j , pw

R
j )) for players Pj ∈ Pid \ {Pi}, then record

(sid, ready) and send it to S.
– Key Generation. Upon receiving a message (sid, ok, sk) from S where there exists a recorded tuple (sid, ready),

then, denote by nc the number of corrupted players, and
• If for all i, pwR

i = pwL
i+1 and nc < t, choose sk′ ∈ {0, 1}k uniformly at random and store (sid, sk′). Next,

for all Pi ∈ Pid mark the record (sid, Pi, (pw
L
i , pw

R
i )) complete.

• If for all i, pwR
i = pwL

i+1 and nc ≥ t, store (sid, sk). Next, for all Pi ∈ Pid mark (sid, Pi, (pw
L
i , pw

R
i ))

complete.
• In any other case, store (sid, error). For all Pi ∈ Pid mark the record (sid, Pi, (pw

L
i , pw

R
i )) error.

When the key is set, report the result (either error or complete) to S.
– Key Delivery. Upon receiving a message (deliver, b, sid, Pi) from S, then if Pi ∈ Pid and there is a recorded

tuple (sid, α) where α ∈ {0, 1}k ∪ {error}, send (sid, α) to Pi if b equals yes or (sid, error) if b equals no.
– Player Corruption. If S corrupts Pi ∈ Pid where there is a recorded tuple (sid, Pi, (pw

L
i , pw

R
i )), then

reveal (pwL
i , pw

R
i ) to S. If there also is a recorded tuple (sid, sk), that has not yet been sent to Pi, then send

(sid, sk) to S.

Fig. 3. Functionality FGPAKE

4 Scheme

Intuition. The main idea of our protocol is to apply the Burmester-Desmedt technique [16] to
any secure two-party PAKE achieving (mutual) explicit authentication in the UC framework. More
precisely, the players execute such a protocol in flows (2a) and (2b) (see Figure 4) and use the
obtained value in flows (3) and (4) as in a classical Burmester-Desmedt-based protocol.

The split functionality is emulated thanks to the first flow, where the players engage in their
signature verification key, as well as the elements used for the splitting part of the two-party
protocols. They are then (after the dotted line in the figure) partitioned according to the values
they received during this first round.

Finally, the contributiveness is ensured by the following trick: In addition to establishing pairwise
keys between any two pair of neighbors, the players also choose on their own a random secret
value Ki, which will also be used in the session key generation. An important point is that these
values are chosen independently thanks to the commitment between flows (2a) and (2b). This will
ensure the session key to be uniformly distributed as long as at least one player is honest.

Building Blocks. We assume to be given a universally composable two-party password-based
authenticated key exchange with mutual authentication 2PAKE, achieving or not security against
adaptive corruptions. This key exchange is assumed (as defined by the ideal functionality) to give
as output a uniformly distributed random string. Due to the mutual authentication, this protocol
results in an error message in case it does not succeed: Either the two players end with the same
key, or they end with an error. Note, however, that one player can have a key while the other is still
waiting since the adversary can retain a message: This is a denial-of-service attack, since a timeout
will stop the execution of the protocol. Mutual authentication guarantees that the players cannot
end with two different keys.

Let (SKG,Sign,Verify) be a one-time signature scheme, SKG being the signature key generation,
Sign the signing algorithm and Verify the verifying algorithm. Note that we do not require a strong
one-time signature: Here, the adversary is allowed to query the signing oracle at most once, and
should not be able to forge a signature on a new message.
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(1) (VKi, SKi)← SKG
sLi = split2PAKE(ssid;Pi−1, pw

R
i−1;Pi, pw

L
i )

sRi = split2PAKE(ssid;Pi−1, pw
R
i−1;Pi, pw

L
i )

(VKi, s
L
i , s

R
i )

−−−−−−−−−−−→
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

After this point, the session identifier becomes
ssid′ = ssid‖VK1‖sL1 ‖sR1 ‖. . . ‖VKn‖sLn‖sRn .

(2a) executes 2PAKE(ssid′;Pi−1, pw
R
i−1;Pi, pw

L
i ),

obtaining KL
i = KR

i−1 shared with Pi−1
. . .−−−−−−−−−−−→

executes 2PAKE(ssid′;Pi, pw
R
i ;Pi+1, pw

L
i+1),

obtaining KR
i = KL

i+1 shared with Pi+1
. . .−−−−−−−−−−−→

chooses at random Ki
$← {0, 1}k

computes XL
i = KL

i ⊕Ki and XR
i = Ki ⊕KR

i

computes and sends ci = com(ssid′, i,XL
i , X

R
i )

ci−−−−−−−−−−−→

(2b) opens XL
i , X

R
i

XL
i , X

R
i−−−−−−−−−−−→

(3) checks cj = com(ssid′, j,XL
j , X

R
j ) ∀j 6= i and XL

1 ⊕XR
1 ⊕ · · · ⊕XL

n ⊕XR
n = 0

and aborts if one of these values is incorrect

computes KL
j+1 = XR

j ⊕Kj , Kj+1 = XL
j+1 ⊕KL

j+1 ∀j = i, . . . , n+ i− 1 (mod n)
computes sk0‖sk1 = f(K1, . . . ,Kn), Authi = Mac(sk1; ssid′, i, {XL

j , X
R
j }j),

and σi = Sign(SKi; ssid
′, i,Authi, {XL

j , X
R
j }j)

Authi, σi−−−−−−−−−−−→

(4) checks Ver(sk1; ssid′, j, {XL
k , X

R
k }k;Authj)

and Verify(VKj ; ssid
′,Authj , {XL

k , X
R
k }k;σj) ∀j 6= i

If they are correct, then marks the session as complete and sets ski = sk0.
Otherwise, sets ski = error.

Fig. 4. Description of the protocol for player Pi, with index i and passwords pwL
i and pwR

i

Let (Mac,Ver) be a message authentication code scheme, Mac being the authenticating algorithm
and Ver the verifying algorithm. A pseudo-random function could be used, since this is a secure
MAC [10].

As usual, we will need a randomness extractor, in order to generate the final session key, as well
as an authentication key (for the key confirmation round, guaranteed by a Mac computation). But
because of the UC framework, and the definition of the functionality, in the case of a corrupted
player, the adversary will learn all the inputs of the extractor, chosen by the players, and the
session key chosen by the functionality as well. We will thus have to be able to choose the inputs
for the honest players so that they lead to the expected output. We thus use a specific randomness
extractor, with a kind of partial invertibility: we consider a finite field F = Fq. The function

f : (F∗ × . . .× F∗) × (F× . . .× F)→ F
(α1, . . . , αn ; h1, . . . , hn) 7→

∑
αihi

is a randomness extractor from tuples (h1, . . . , hn) ∈ Fn where at least one hi is uniformly dis-
tributed and independent of the others. Since it can be shown as a universal hash function, using
similar techniques to [21], if we consider any distribution Di on Fn, for which the distribution
{hi|(h1, . . . , hn)← Di} is the uniform distribution in F, then the distributions

(α1, . . . , αn, f(α1, . . . , αn;h1, . . . , hn)), (α1, . . . , αn)
$← F∗n, (h1, . . . , hn)← Di

(α1, . . . , αn, U), (α1, . . . , αn)
$← F∗n, U $← F
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are perfectly indistinguishable. The tuple (α1, . . . , αn) is the public key of the randomness extractor,
and it is well-known that it can be fixed in the CRS [28], with a loss of security linear in the
number of queries. Since n might not be fixed in advance, we can use a pseudo-random generator
that generates the sequence α1,. . . , from a key k in the CRS. Anyway, we generically use f as
the variable input-length randomness extractor in the following. As said above, we will have to
invert f to adapt the input of an honest user to the expected session key: for a fixed key, some
fixed inputs Ii = (h1, . . . , ĥi . . . , hn) ∈ Fn−1 (possibly all but one, here hi), and the output U , the
function gi(Ii, U) completes the input so that the output by f is U . With our function f , we have
gi(Ii, U) = (U −

∑
j 6=i αjhj)/αi.

Finally, we will also need a commitment scheme. In addition to being hiding and binding,
we will require it to be extractable, equivocable and non-malleable, such as those of [18, 1, 6].
Even if this latter commitment is only conditionally extractable, this will not matter here since
the commitment will be opened later: The user cannot try to cheat otherwise the protocol stops.
Note that the extractable property allows the simulator to obtain the values committed to by the
adversary, the equivocable property allows him to open his values to something consistent with
them, and the non-malleable property ensures that when A sees a commitment, he is not able to
construct another one with a related distribution. Because of extractability and equivocability, both
the hiding and the binding properties are computational only.

Description of the Protocol. For the sake of completeness, we describe the case where each
player owns two different passwords (pwL

i and pwR
i ), and each pair of neighbors (while the ring

is set) shares a common password (pwR
i = pwL

i+1). The case where the players all share the same
password is easily derived from here, by letting pwL

i = pwR
i . Note that both cases will UC-emulate

the GPAKE functionality presented earlier.

We do not assume that the members of the actual group are known in advance. Then one has
to imagine a system of timeouts after which the participants consider that no one else will notify its
interest in participating to the protocol, and continue the execution. Once the players are known, we
order them using a public pre-determined technique (e.g., the alphabetical order on the first flow).
Then, for the sake of simplicity we rename the players actually participating P1, . . . , Pn according
to this order.

Furthermore, such timeouts will also be useful in Flow (2a) in case a player has aborted earlier,
in order to avoid other players to wait for it indefinitely. After a certain amount of time has elapsed,
the participants should consider that the protocol has failed and abort. Such a synchronization step
is useful for the contributiveness, see later on.

Informally, and omitting the details, the algorithm (see Figure 4) can be described as follows:
First, each player applies SKG to generate a pair (SKi,VKi) of signature keys, and sends the value
VKi. They also engage in two two-party key exchange protocols with each of their neighbors: We
denote split2PAKE the corresponding first flow of this protocol, used for the split functionality. The
players will be split after this round according to the values received. At this point, the session
identifier becomes ssid′ = ssid‖VK1‖sL1 ‖sR1 ‖. . . ‖VKn‖sLn‖sRn (more details follow). We stress that
the round (2a) does not begin until all commitments have been received. In this round, the players
open to the values committed.

In round (2a), the players check the commitments received (and abort if one of them is incorrect).
Next, player Pi chooses at random a bitstring Ki. It also gets involved into two 2PAKE protocols,
with each of its neighbors Pi−1 and Pi+1, and the passwords pwL

i and pwR
i , respectively. This

creates two random strings: KL
i = 2PAKE(ssid′;Pi−1, pw

R
i−1;Pi, pw

L
i ), shared with Pi−1, and KR

i =
2PAKE(ssid′;Pi, pw

R
i ;Pi+1, pw

L
i+1), shared with Pi+1. It finally computes XL

i = KL
i ⊕Ki and XR

i =
Ki ⊕KR

i and commits to these values.
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Pictorially, the situation can be summarized as follows:

Pi−1(pwR
i−1) Pi(pw

L
i ) Pi(pw

R
i ) Pi+1(pwL

i+1)

KR
i−1 = KL

i Ki
$← {0, 1}k KR

i = KL
i+1

XR
i−1 XL

i = KL
i ⊕Ki XR

i = Ki ⊕KR
i XL

i+1

where XR
i−1 = Ki−1 ⊕KR

i−1 = Ki−1 ⊕KL
i and XL

i+1 = KL
i+1 ⊕Ki+1 = KR

i ⊕Ki+1.

Once Pi has received all these commitments (again, we stress that no player begins this round
before having received all the commitments previously sent), it opens to the values committed
(round (2b)).

In round (3), the players check the commitments received (and abort if one of them is incorrect).
Next, player Pi iteratively computes all the Kj ’s required to compute the session keys sk0‖sk1 and
the key confirmation Authi = Mac(sk1; ssid

′, i, {XL
j , X

R
j }j). It also signs this authenticator along

with all the commitments received in the previous flow.

Finally, in round (4), after having checked the authenticators and the signatures, the players
mark their session as complete (or abort if one of these values is incorrect) and set their session key
ski = sk0.

Remarks. As soon as a value received by a player Pi doesn’t match with the expected value,
it aborts, setting the key ski = error. In particular, every player Pi checks the commitments
cj = com(ssid′, j,XL

j , X
R
j ), the signatures σj = Sign(SKj ; ssid

′,Authj , {XL
k , X

R
k }k), and finally the

key confirmations Authj = Mac(sk1; ssid
′, j, {XL

k , X
R
k }k). This enables the protocol to achieve mu-

tual authentication.

The protocol also realizes the split functionality due to the two following facts: First, the players
are partitioned according to the values VKj and split2PAKE they received during the first round
(i.e., before the dotted line in Figure 4). All the VKi are shared among them and their session
identifier becomes ssid′ = ssid‖VK1‖sL1 ‖sR1 ‖. . . ‖VKn‖sLn‖sRn . Furthermore, in round 3, the signature
added to the authentication flow prevents the adversary from being able to change an XL

i or XR
i

to another value. Since the session identifier ssid′ is included in all the commitments, and in the
latter signature, only players in the same subset can accept and conclude with a common key.

Then, the contributory property is ensured by the following trick: At the beginning of each flow,
the players wait until they have received all the other values of the previous flow before sending
their new one. This is particularly important between (2a) and (2b). Thanks to the commitments
sent in this flow, it is impossible for a player to compute its values XL

i and XR
i once it has seen the

others: Every player has to commit its values at the same time as the others, and cannot make them
depend on the other values sent by the players (recall that the commitment is non-malleable). This
disables it from being able to bias the key (more details can be found in the proof, see Appendix A).

Finally we point out that, in our proof of security, we don’t need to assume that the players
erase any ephemeral value before the end of the computation of the session key.

Our Main Theorem. Let ŝFGPAKE be the multi-session extension of the split functionality
sFGPAKE.

Theorem 1 Assuming that the protocol 2PAKE is a universally composable two-party password-
based authenticated key exchange with mutual authentication secure against adaptive ( resp. static)
corruptions, (SKG,Sign,Verify) a one-time signature scheme, com a non-malleable, extractable and
equivocable commitment scheme, (Mac,Ver) a message authentication code scheme, and f a ran-

domness extractor as defined earlier, the protocol presented in Figure 4 securely realizes ŝFGPAKE

in the CRS model, in the presence of adaptive ( resp. static) adversaries, and is fully-contributory.
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5 Functionality for Merging two Groups or Joining a Member to a Group

We present in this section the functionalities to join a member (or a group of members) to a group
already constituted. We assume the existence of a “host”, that is, a member of the former group
inviting the new player, and a “guest”, which is the invited player, or a particular player in the
invited group. These two players are assumed to share a common password.

Two cases may happen: Either we ask the whole group to participate, or only the host and the
guest. We describe the former case, highlighting later on the (small) differences with the latter one.
In any case, all the participants (the guest, the host, and the members of the former group) receive
the new key.

The functionality comes with two variants: the forward-secure one, and the non-forward-secure
one. In the latter case, the players not only receive the new key, but also the old key of the former
group. This captures the fact that the invited players can learn the former session key of the
first group (and the hosts can learn the former key of the second group), and thus the message
exchanged before their invitation to join the group. Everything else works roughly as in the GPAKE
functionality. Note that we consider the split functionality model and that no TestPwd is allowed
to the adversary in this functionality.

Merging two Groups. n+m players, with forward secrecy. In this variant, all the players
participate, that is all the members of the former groups P1, . . . , Pn and P ′1, . . . , P

′
m (including a

host in the first group and a guest in the second one). The group Pid is thus of size n+m.
The model proposes (t, n+m)-contributiveness (t ∈ {1, n+m}), which means that the adversary

can bias the key if it corrupts at least t persons. Otherwise, the new key is completely unpredictable.
The players first begin by noticing their interest in participating to an execution, by sending

a NewSession query: the guest mentions the host inviting it, the former key of its group and the
password it uses. The host mentions the same elements. The members of both groups mention the
old key of their former group. When all of them have sent their queries, the functionality notifies
the adversary that the players are ready to receive their key. As in the GPAKE functionality, the
adversary is granted the right to choose the key if it has corrupted t or more players. Otherwise,
the functionality chooses it at random. Similarly, once the key is set, the functionality waits for the
adversary to deliver the new key to all the players, either active or passive. This functionality is
described Figure 5.

n+m players, without forward secrecy. Everything works as before, except that the func-
tionality also sends the former keys of both groups to all the players.

2 players, with forward secrecy. In this variant, only the two players host and guest partic-
ipate in the join phase: the other members of the group only act passively (they learn in the end
the new session key). The NewSession queries for the members is suppressed, and the last query of
the initialization phase is modified as follows:
• If there are two recorded tuples (sid, P ′j , guest, pw

′, sk′j) and (sid, Pi, host, pw, ski), then record
the tuple (sid,Pid, ready) and send it to S.
Furthermore, in the key generation phase, the parameter of the contributiveness is now t ∈ {1, 2}

(the adversary can corrupt the host or the guest). Everything remains as before.

2 players, without forward secrecy. Everything works as in the previous case, except that
the functionality also sends the former keys to all the players, and not only the new one.

Adding a single member. The variants (2 or n+ 1 players, with or without forward secrecy) of
the functionality capturing the join of a single player to a group (P1, . . . , Pn) can be easily deduced
from those described above. The main difference is that we get rid of the key of the former second
group in the NewSession-query of the invited person: (NewSession, sid, P ′, guest, pw′).
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The functionality FGPAKEmerge is parameterized by a security parameter k, and the parameter t of the contribu-
tiveness. It interacts with an adversary S and a set of parties Pid = {P1, . . . , Pn, P

′
1, . . . , P

′
m} via the following

queries:

– Initialization.

• Upon receiving a message (NewSession, sid, P ′j , guest, pw
′, sk′j) from player P ′j for the first time, record

(sid, P ′j , guest, pw
′, sk′j), mark it fresh, and send (sid, P ′j , guest) to S. Ignore any subsequent query of the

form (NewSession, sid, ∗, guest, ∗, ∗).
• Upon receiving a message (NewSession, sid, Pi, host, pw, ski) from player Pi for the first time, record

(sid, Pi, host, pw, ski), mark it fresh, and send (sid, Pi, host) to S. Ignore any subsequent query of the
form (NewSession, sid, ∗, host, ∗, ∗).

• Upon receiving (NewSession, sid, Qj ,member, keyj) from player Qj = Pj or Qj = P ′j for the first time,
with key = sk or key = sk′, record (sid, Qj ,member, keyj), mark it fresh, and send (sid, Qj ,member) to S.

• If there are already |Pid| − 2 recorded tuples of the form (sid, Qk,member, keyk) and two recorded tuples
(sid, P ′j , guest, pw

′, sk′j) and (sid, Pi, host, pw, ski), then record (sid,Pid, ready) and send it to S.

– Key Generation. Upon receiving a message (sid,Pid, ok, sk) from S where there exists a recorded tuple
(sid,Pid, ready),

• If all Pj ∈ Pid have the same key, as well as all P ′j ∈ Pid, the host and the guest share the same pw, and
strictly less than t layers have been corrupted among the active players, choose sk′ ∈ {0, 1}k uniformly
at random and store (sid,Pid, sk′). Next, for all Qj ∈ Pid mark the record (sid, Qj , ∗, ∗) or (sid, Qj , ∗, ∗, ∗)
complete.

• If all Pj ∈ Pid have the same key, as well as all P ′j ∈ Pid, the host and the guest share the same pw, but
more than t players are corrupted, store (sid,Pid, sk). Next, for all Qj ∈ Pid mark the record (sid, Pj , ∗, ∗)
or (sid, Pj , ∗, ∗, ∗) complete.

• In any other case, store (sid,Pid, error). For all Qj ∈ Pid mark the record (sid, Qj , ∗, ∗) or (sid, Qj , ∗, ∗, ∗)
error.

When the key is set, report the result (either error or complete) to S.
– Key Delivery. Upon receiving a message (deliver, b, sid, Qj) from S, then if Qj ∈ Pid and there is a recorded

tuple (sid,Pid, α) where α ∈ {0, 1}k ∪ {error}, send (sid,Pid, α) to Qi if b equals yes or (sid,Pid, error) if b
equals no.

– Player Corruption. If S corrupts Qj ∈ Pid where there is a recorded tuple (sid, Qj , ∗, ∗, pw) of role guest or
host, then reveal pw to S. If there also is a recorded (sid,Pid, sk), that has not yet been sent to Qj , then send
(sid,Pid, sk) to S.

Fig. 5. Functionality FGPAKEmerge

6 Merging two Groups

Since the case in which a single user joins an existing group is a particular case of merging two
groups, we concentrate on the latter more general case. LetG = {P1, . . . , Pn} andG′ = {P ′1, . . . , P ′m}
be two groups which have already created two group session keys via the protocol described in
Section 4. Using the same notations, we assume that each player Pk in G has kept in memory its
own private value Kk as well as all the public values {XL

1 , X
R
1 , . . . , X

L
n , X

R
n }. Similarly, assume

that each player P ′` in G′ has kept in memory its own private value K ′` as well as all the public
values {X ′L1 , X ′R1 , . . . , X ′Lm , X

′R
m }.

In other words, we ask each player to keep in memory all the values necessary to the computation
of the group’s session key. Remarkably, note that they only have to keep a single private value; All
the other values are public, and can be kept publicly in a single place accessible to the players.

The goal of our dynamic merge protocol is to allow the computation of a joint group session key
between G and G′, without asking the whole new group G ∪ G′ to start a key-exchange protocol
from scratch. In addition, the protocol we describe here has two nice properties: First, it does not
increase the memory requirements of each player. Second, it is done in such a way that the situation
of each player after the merge protocol is the same as its situation before it. That way, future join
or merge protocols can easily take place iteratively without any change.
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For sake of simplicity, we first describe a basic version of our protocol, in which only one
representative of each group participates in the new exchange of messages between the two groups.
Clearly, this version is not fully contributory since only two participants take place in the protocol.
We then show how to extend it into a fully contributory protocol, in which all n+m participants
will take part in the message exchange.

Basic Version. Let Pi and P ′j denote the particular members of G and G′ that are acting as the
representative of these groups. Only these two participants will take part in the merge protocol.
In order to construct a session key for the new group, these two players are assumed to share a
common password, denoted as pw for Pi and pw′ for P ′j . The situation is summarized in Figure 6,
where the upper part (1) represents the former second group, with the values computed during the
execution of the GPAKE protocol, and the lower part (2) represents the former first group, with
the values computed during the execution of the GPAKE protocol. The hatched lines represent the
abandoned “links”. Indeed, both Pi and P ′j will erase their values Ki and K ′j and create two new
connections between them, thus creating the new group

G′′ = {P1, . . . , Pi−1, Pi, P
′
j , P

′
j+1, . . . , P

′
m, P

′
1, . . . , P

′
j−1, P

′
j , Pi, Pi+1, . . . , Pn}

These connections are represented vertically in the middle part (2) of the figure. We stress that
during the merge protocol, no value is computed in parts (1) and (2). The core of the protocol is
part (3).

The protocol is described in Figures 7 and 8 with the notations of Figure 6. Informally, the
merge protocol consists in the execution of a simplified GPAKE protocol with the whole group G”,
but the interesting point is that only Pi and P ′j participate and exchange messages, executing two
2PAKE protocols, instead of the n+m−1 that would be necessary for an execution from scratch with
this new group. Merging two groups is thus much more efficient. The two executions are performed
once for the left part of (3) in Figure 6, and once for the right part. For Pi and P ′j , the steps are
similar to those of a normal GPAKE protocol execution. Additionnaly, Pi and P ′j have to broadcast

the necessary (old) values XL
k , X

R
k and X ′Ll , X

′R
l to the other members of each subgroup, to enable

them derive the new key. These other players only participate passively, listening to broadcasts so
as to learn the values needed to compute the new key of the merged group.

This merge protocol is thus only partially contributory since Pi and P ′j are the only players
participating and exchanging messages. Furthermore, it is not forward-secure since the players of
both groups become able to compute the former key of the other group thanks to the values broad-
casted by Pi and P ′j . Also note that we could simplify this protocol by merging the commitments,
signatures and MACs, doing only one for each player. But we chose to keep the protocol symmet-
ric, the values x̃ representing roughly the unnecessary values (of the vanishing players, see the next
paragraph) and the values x representing roughly the needed values.

We claim that after this execution, the players will find themselves in a similar situation than
after a normal GPAKE protocol. For the moment, this is not the case since Pi and P ′j appear twice
in the ring (see Figure 6). For both of them, we have to get rid of one instance of the player. To
this aim, once this protocol is executed, Pi “vanishes” on the left part of (3) in Figure 6, letting

the player Pi−1 with a new value XR
i−1 equal to XR

i−1⊕ X̃L
i and the player P ′j with a new value X ′Lj

equal to X ′Lj ⊕ X̃R
i . The new 2PAKE-value shared between them is K̃i. The same thing happens

on the right part of (3) in Figure 6: P ′j vanishes, letting the player P ′j−1 with the new value X ′Rj−1

equal to X ′Rj−1 ⊕ X̃ ′Lj and Pi with the new value XL
i equal to X̃ ′Rj ⊕ XL

i . The new 2PAKE-value

shared between them is K̃ ′j . This way, it is as if the players Pi and P ′j had only participated once in
the new protocol: Pi between P ′j−1 and Pi+1, and P ′j between Pi−1 and P ′j+1. Finally, we will only
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(1)



(3)



(2)



X ′Rj+1(=K′j+1⊕K′Rj+1) (K′Lj−1⊕K′j−1=)X ′Lj−1

pw′Rj+1 P
′
j+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P ′j−1 pw′Lj−1

K′j+1
(K′

j
⊕K′Rj =)X ′Rj

/////////////////(K′j⊕K′Rj =)X ′Rj
pw′Rj

X̃ ′Lj (=K′Lj ⊕K̃′
j
)

/////////////////X ′Lj (=K′Lj ⊕K′j)

pw′Lj

K′j−1

pw′Lj+1 P
′
j+1 K′Lj+1 = K′Rj P ′j ////////K′j///// P

′
j K′Lj = K′Rj−1 P ′j−1 pw′Rj−1

X ′Lj+1(=K′Lj+1⊕K′j+1)

(K′L
j
⊕K′

j
=)X ′Lj

K′j K̃′j

X̃ ′Rj (=K̃′
j
⊕K′R

j
)

(K′j−1⊕K′Rj−1=)X ′Rj−1

pw′Lj P ′j P ′j p̃w′Rj

(2PAKE(ssid;Pi,p̃w
R
i

,P ′j ,pw
′L
j

)=)K′Lj = KR
i K′Rj = KL

i (=2PAKE(ssid;Pi,pw
L
i

,P ′j ,p̃w
′R
j

))

p̃wR
i Pi Pi pwL

i

XR
i−1(=Ki−1⊕KR

i−1)

(K̃i⊕KR
i

=)X̃R
i−1

K̃i Ki

XL
i (=KL

i
⊕Ki)

(KL
i+1⊕Ki+1=)XL

i+1

pwR
i−1 Pi−1 KR

i−1 = KL
i Pi ///////////Ki Pi KR

i = KL
i+1 Pi+1 pwL

i+1

Ki−1

pwL
i

///////////////(KL
i ⊕Ki=)XL

i

(KL
i ⊕K̃i=)X̃L

i

pw′Lj
////////////////XR

i (=Ki⊕KR
i )

XR
i (=Ki⊕KR

i )
Ki+1

pwL
i−1 Pi−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pi+1 pwR

i+1

XL
i−1(=KL

i−1⊕Ki−1) (Ki+1⊕KR
i+1=)XR

i+1

Fig. 6. Merging two Groups: (1) represents the former group (P ′1, P
′
2, . . . , P

′
m); (2) represents the former group

(P1, P2, . . . , Pn); (3) is the proper merge protocol, between the inviter Pi and the invited P ′j .

need to keep the following values: K ′j secretly for P ′j , Ki secretly for Pi, and XR
i−1 = XR

i−1 ⊕ X̃L
i ,

X ′Lj = X ′Lj ⊕ X̃R
i , X ′Rj−1 = X ′Rj−1 ⊕ X̃ ′Lj and XL

i = X̃ ′Rj ⊕XL
i publicly. The values of the rest of the

group remain unchanged. This will allow to do another join of merge iteratively. Pictorially, this
leads to the new following situation:

– The left part of (3) in Figure 6 without Pi becomes

Pi−1(pwR
i−1) P ′j(pw′Lj ) P ′j(pw′Rj ) P ′j+1(pw′Lj+1)

K̃i K′j K′Rj = K′Lj+1

XR
i−1 ⊕ X̃L

i = Ki−1 ⊕ K̃i X ′Lj ⊕ X̃R
i = K̃i ⊕K′j X ′Rj X ′Lj+1

with K̃i,K ′j
$← {0, 1}k, X ′Rj = K ′j ⊕K ′Rj and X ′Lj+1 = K ′Lj+1 ⊕K ′j+1.
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– The right part of (3) in Figure 6 without P ′j (with K̃ ′j ,Ki
$← {0, 1}k, XR

i = Ki ⊕ KR
i and

XL
i+1 = KL

i+1 ⊕Ki+1) becomes:

P ′j−1(pw′Rj−1) Pi(pwL
i ) Pi(pw

R
i ) Pi+1(pwL

i+1)

K̃′j Ki KR
i = KL

i+1

X ′Rj−1 ⊕ X̃ ′Rj = K′j−1 ⊕ K̃′j XL
i ⊕ X̃ ′Rj = Ki ⊕ K̃′j XR

i XL
i+1

– Again, all the other values of the rest of the group remain unchanged.

Forward-Secure Fully-Contributory Protocol. The scheme presented in the previous section
does not provide forward secrecy since the players in one group learn enough information to compute
the previous key of the other group. It is also not fully contributory because Pi and P ′j are the
only players to actively participate in the merge protocol: they have full control over the value of
the new group session key. In order to achieve these goals, we make two significant changes to the
above protocol.

In order to guarantee full contributiveness, we will require that all the players of each group
(except for the host Pi and the guest P ′j , which will keep behaving as before) use new fresh val-
ues Kk and K ′l when computing the new group session key. Since all the parties need to learn the
values chosen by the other parties in a secure way, this change will require additional rounds of
communication in the merge protocol (but no additional executions of the 2PAKE protocol). More
precisely, we modify the protocol of Figures 7 and 8 so that all the players of each group participate
in the later phases of the protocol.

– All the players send flows (1a) and (1c).

– In (2a), all the players choose a random Kk or K ′l , compute the values XL
k , X

R
k or X ′Ll , X

′R
l

and commit to them.

– In (2b), all the players open their commitments. Note that the host and the guest no longer
need to broadcast the values XL

k , X
R
k or X ′Ll , X

′R
l since they are now sent by the other players.

– Every player participates in (3) and (4).

In order to achieve forward security, we will change the way in which we compute the values
KL

i and KR
i in step (2a) of original GPAKE protocol in Figure 4 and in the merge protocol in

Figure 7. Instead of setting the output of the 2PAKE protocol to be KL
i and KR

i in Figures 4 and 7,
we will first use these outputs as the initial seed or state of a forward-secure stateful pseudorandom
generator [12] and then use this state to generate the actual values KL

i and KR
i as well as the next

state. More precisely, let GEN be a stateful generator and let GEN:next be the next step algorithm,
which on input the current state, outputs a pseudorandom bit string along with the next state
(please refer to [12] for the precise definitions). In step (2a) of Figures 4 and 7, we first set the
output of the two executions of 2PAKE protocol to StLi and StRi . Next, we run GEN:next on input
StLi and StRi to obtain KL

i and KR
i , respectively, and the updated values of StLi and StRi . After

the update, the previous values of StLi and StRi should be securely deleted.

Since the change above also applies to the original GPAKE protocol in Figure 4, it is important
to say that the latter will remain secure as long as GEN meets the standard security notion for a
stateful generator, which guarantees that its output will look random as long as its input state is
chosen uniformly at random. Moreover, if GEN is also forward-secure, then the new merge protocol
will also be forward secure if we assume that erasures are possible. This is because, after the
deletion of the previous states, all the values generated by GEN will look random and independent
of each other to any party who does not know the value of these previous states. As a result, it is
straight-forward to adapt the proof of Theorem 1 to prove the following theorem:
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Theorem 2 Assuming that 2PAKE is a universally composable two-party password-based authen-
ticated key exchange secure against adaptive ( resp. static) corruptions, (SKG,Sign,Verify) is a one-
time signature scheme, com is a non-malleable, extractable and equivocable commitment scheme,
(Mac,Ver) is a message authentication code scheme, GEN is a forward-secure pseudorandom gen-
erator, and f is a randomness extractor as defined earlier, the protocol presented in Figure 7 and 8
with the modifications proposed above securely realizes ŝFGPAKEjoin in the standard model, in the
presence of adaptive ( resp. static) adversaries, and is fully-contributory, assuming secure erasures.

7 Implementation Considerations
The protocols that have been described above were designed for their security properties, and for
the quality of the proof of security. When it comes to practical implementations, some additional
considerations have to be made.

Definition of the Group. We will consider a use case where the participants to the GPAKE are
already members of a chat room, which is the communication means used to broadcast messages.
The protocol has to be resistant to the fact that some members of the chat room are idle and will
not participate to the GPAKE, and also that some members of the chat room might have difficulties
to participate because of connectivity issues: this is thus a nice property the functionality (granted
the split functionality) does not need to know the list of participants in advance.

Therefore, instead of ending the initialization phase when a number n of participants is reached
(as in previous protocols), we end the initialization phase at the initiative of any of the participants
or a timeout. From a practical point of view, it means that in the algorithm of Figure 4, going to
step (2a) does not need that all commitments are received, on the opposite, these commitments
will be used to dynamically define the group after a certain time, possibly defined by a timeout:
the members of the chat room that have sent their commitments.

Another practical issue is the ordering on the ring, which defines the neighbors of each partici-
pant. Since the group is not known in advance, this ordering will be defined from the commitments
sent in (1): e.g., the alphabetical order.

Authentication within the Group. As explained in the description of the protocol, is accepted
as a member of the group anyone that shares a password with another member of the group.
This is the best authentication that can be achieved for a GPAKE because a unique shared key
is generated for the group. But after the protocol execution, each user owns a pair (SKi, V Ki) of
signing/verification key. It can be used by each participant to sign his/her own messages, to avoid
that one participant impersonates another. But then, a (multi-time) signature scheme has to be
used, with some formatting constraint to avoid collisions between the use for the GPAKE protocol
and the signature of a message.

Removal of one Participant. This protocol provides the functionality of adding members to
the group, but does not provide the functionality of removing members. Indeed, while there is a
possibility of telling two participants apart (cf. previous paragraph) there is no possibility of truly
authenticating a participant. Only the alias (the signing keys) is known.

A functionality that could be implemented is the ban of a participant identified by his/her alias,
e.g., because this participant has sent inappropriate messages. However, because all the random Ki

are known at step (3), it is necessary to generate new random values that are not known by the
banned participant. Therefore, the recommended way to remove one participant from a group is to
start again the GPAKE protocol with shared passwords that are not known by this participant.
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A Proof of Theorem 1

A.1 Idea of the Proof

We only prove here the adaptive case, the static case being the same, and easier because one does
not need to take care of the corruptions.

We need to construct, for any real-world adversary A (interacting with real parties running
the protocol), an ideal-world adversary S (interacting with dummy parties and the functionality

ŝFGPAKE) such that no environment Z can distinguish between an execution with A in the real
world and S in the ideal world with non-negligible probability.

We assume the existence of a simulator SPAKE (interacting with dummy parties and the func-

tionality ŝF
MA

PAKE) such that, for any real-world adversary A (interacting with real parties running
the protocol), no environment Z can distinguish between an execution of 2PAKE with A in the real
world and SPAKE in the ideal world with non-negligible probability.

We incrementally define a sequence of games starting from the one describing a real execution of
the protocol in the real world, and ending up with game G7 which we prove to be indistinguishable
with respect to the ideal experiment. The key point will be G5. G0 is the real-world game. In G1,
we start by simulating the CRS, allowing the simulator to know the extractability trapdoor for the
commitments. Then, in G2, he can thus extract the values XL

j ’s and XR
j ’s committed to by the

adversary in Step (2a). In G3, S completely simulates the CRS, knowing also the equivocability
trapdoor for the commitments. From this moment on, he simulates all the commitments and makes
them become equivocable. The commitment remains binding and is also hiding. In G4, S rejects
non-oracle-generated signed authenticators sent by players still honest. In G5, S deals with the
case where the players remain honest up to the beginning of the protocol 2PAKE. In this case, he
uses the simulator SPAKE to simulate 2PAKE without using the passwords of the players. As a side
note, S does not need these passwords anymore for the all simulation. In G6, S deals with the case
where there have been some corruptions before the beginning of the protocol 2PAKE. Finally, we
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show that G7, in which we only replace the hybrid queries by the real ones, is indistinguishable
from the ideal game.

To this aim, we first describe four hybrid queries that are going to be used in the games. The
PAKESamePwd and GPAKESamePwd queries check if the players share the same password, without
disclosing it. The PAKEDelivery and GPAKEDelivery queries provide the player with the session key.
In some games, the simulator has actually access to the honest players, and thus to their passwords
(and always knows the passwords committed by the adversary for corrupted users granted the ideal
tweakable cipher). In such a case, these queries can be easily implemented by letting S look at these
passwords. When the players are entirely simulated, S will replace the queries above with the Key
Generation and Key Delivery queries to the ideal functionalities.

Following [19], we say that a flow is oracle-generated if it was sent by an honest player (our
simulation) and arrives without any alteration to the player it was meant to. We say it is non-oracle-
generated otherwise, that is either if it was sent by an honest player and modified by the adversary,
or if it was sent by a corrupted player or a player impersonated by the adversary: in all these cases,
we say that the sender is an attacked player. In brief, our simulation controls the random coins of
oracle-generated flows, whereas the adversary may control them in non-oracle-generated flows.

Note that since we consider the split functionality, the players have been partitioned in sets
according to what they received during the very first flows (1a) and (1b). In the following, we
can thus assume that all the players have received the same (1a) (and the same (1b) for each pair
participating in the same 2PAKE), under the binding property of the commitment. Oracle-generated
flows (1a) have been sent by players that will be considered honest in this session, whereas non-
oracle-generated flows have been sent by the adversary, the corresponding players are thus assumed
corrupted from the beginning of the session, since the adversary has chosen the password. Note
that a player considered honest in the whole protocol can be considered corrupted in at least one
of the 2PAKE protocols it participates to: In such a case, the (honest) player will abort after the
2PAKE, being unable to compute its values XL

i and XR
i (at least one of the values KL

i and KR
i

have been computed by the adversary and are thus unknown to the player).
Finally, note that if (2a) is oracle-generated, then (2b) must be oracle-generated also with

overwhelming probability, due to the commitment, as above. As a result, we set ski = error whenever
an inconsistency is noted by a player (incorrect commitment opening, or invalid signature). The
latter then aborts its execution.

Adaptive Corruptions. Most of the values will be chosen at random during the simulation.
As soon as a player gets corrupted, the simulator recovers its password, and has to provide the
adversary with all the internal state of the player in a consistent way with respect to the view of the
adversary, and even the environment. This is simplified with the use of a 2PAKE providing mutual
authentication: This way, either a couple of players end with a shared key, or they end with an
error. In the latter case, all the players abort the GPAKE protocol.

A.2 Description of the Simulator

Simulator: Session Initialization. The aim of the first flows (1a) and (1b) is to create the
subsets H of players involved in the same protocol execution (see the split functionality, Section 2
and Figure 1).

More precisely, in flow (1a), S chooses the values (SKi,VKi) on behalf of the honest players
at random, then computes and sends the commitments ci to A. The environment initializes a
session for each honest (dummy) player, which is modeled by the Init queries sent to the split
functionality sFGPAKE. From this point, the players Pi are ordered according to some order on their
index i. For sake of simplicity, we denote them as P1, . . . , Pn in all the remaining.
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The adversary (from the view of the ci of the honest players) makes his decision about the
subgroups he wants to make for the GPAKE protocol: he sends ci on behalf of the players he wants
to impersonate (they will become corrupted from the beginning of the session). We then define the
H sets according to the received {cj}: the honest players that have received the same {cj} (possibly
modified by the adversary) are in the same subgroup H. The simulator forwards these sets H (which
make a partition of all the players) along with the total group to the split functionality. The latter
then initializes ideal functionalities with sidH , for each subgroup H: all the players in the same
session received and thus use the same {cj}. We can then focus on a specific session ssid′ = sidH
for some set H.

The environment gets back this split, via the dummy players, and then sends the NewSession
queries on behalf of the latter, according to the appropriate sidH . The simulator has to do the same
on behalf of the players impersonated by A, but he still does not their password: This is the aim
of flow (1b).

Next, in flow (1b), S asks SPAKE to send the first flow of the 2PAKE protocol on behalf of the
honest players (those which have not been impersonated by the adversary in the first flow). The
environment then initializes a session for each honest (dummy) player, which is modeled by the Init
queries sent to the split functionality sFMA

PAKE. From the view of this flow, the adversary chooses the
subgroups (of size 1 or 2) he wants to make for the 2PAKE protocol, and sends this flow on behalf of
the players he wants to impersonate (they will become corrupted from the beginning of the session).
We then define the H ′ sets according to the received messages. The simulator forwards these sets H ′

(which make a partition of all the players) along with the total group to the corresponding instances
of the sFMA

PAKE functionality. They then initializes ideal functionalities FMA
PAKE with sidH .

The environment gets back this split, via the dummy players, and then sends the NewSes-
sion queries on behalf of the latter, according to the appropriate sidH . More precisely, if Z has
sent the following NewSession query for Pi to FMA

PAKE, (NewSession, sidH , Pi, (pw
L
i , pw

R
i )), he sends

(NewSession, sidH′ , Pi, pw
L
i ) and (NewSession, sidH′′ , Pi, pw

R
i ) to the 2PAKE ideal functionalities cor-

responding respectively to its left or right neighbor.

The simulator asks SPAKE to send such NewSession queries on behalf of the players impersonated
by A, and he also asks him to construct from them the NewSession query to send the the GPAKE
functionality. More precisely, from (NewSession, sidH′ , Pi, pw

L
i ) and (NewSession, sidH′′ , Pi, pw

R
i ),

SPAKE constructs (NewSession, sidH , Pi, (pw
L
i , pw

R
i )) and hands it to S, who can now send it to

the GPAKEfunctionality.

Note that if a player is considered honest for the GPAKE execution and dishonest for at leat one
2PAKE execution, it will fail to learn one of its subkeys, say KL

i , and thus abort during flow (2a).
Furthermore, the adversary will player on behalf of any player considered dishonest for the GPAKE
execution, so that it will necessarily be considered dishonest for the 2PAKE executions. We can
thus suppose that the status of the player (honest or corrupted) is the same in both protocols.

Simulator: Main Idea. In a nutshell, the simulation of the remaining of the protocol will either
be random or dealt with with the help of SPAKE. First, the simulator chooses at random the first
flow of the protocol, computes honestly the commitment, and he asks SPAKE to choose at random
the second one. Then, he relies on SPAKE again in order to simulate the protocol 2PAKE and learns
from it whether the passwords of the players are compatible (they all receive session keys shared
with their neighbors) or not (they receive an error) – recall that we assume mutual authentication
for the 2PAKE protocol. It would be possible to get rid of this assumption, but the proof would
need TesTPwd queries, such as in [5]. He aborts if one of these protocols fails. Otherwise, he chooses
values Ki and KL

i at random, and sets KR
i = KL

i+1.
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The key point of the simulation consists in sending coherent XL
i ’s and XR

i ’s, whose values
completely determine the session key. To this aim, we consider two cases. First, if the players are
all honest, everything is done honestly. Next, if there are some corrupted players, we will need that
the commitments are simulated using the extractability and equivocability trapdoors. This way, the
simulator learns the values XL

i and XR
i sent by the corrupted players and asks for a GPAKEDelivery

key, giving him its value (through a corrupted player). Since there is at least one honest player in
the execution, he can thus modify his value Ki, thus modifying also XL

i and XR
i , and equivocating

the commitment, in order to remain consistent with the commitment already sent. It would be
possible to get rid of the equivocability property, but we chose not to impose the simulator to play
last. In case of corruption, S learns the password, and can give everything in a consistent way to
the adversary. If a player was corrupted before sending the XL

i ’s and XR
i ’s, the values sent to the

adversary will give him the correct session key. And if no player was corrupted before, they will
give him a random session key. This exactly corresponds to the way the functionality deals with
corruptions.

If a session aborts or terminates, S reports it to A. If the session terminates with a session key
sk, then S makes a Key Delivery call to F̂GPAKE , specifying the session key. But recall that unless
enough players are corrupted, F̂GPAKE will ignore the key specified by S, and thus we do not have
to bother with the key in these cases.

A.3 Description of the Games

Game G0: Game G0 is the real game.

Game G1: From this game on, we allow the simulator to program the common reference string,
allowing it to know the extractability trapdoor for the commitment scheme.

Game G2: This game is almost the same as the previous one. The only difference is that S always
extracts the values XL

i ’s and XR
i ’s committed to by the adversary (without taking advantage of

the knowledge for the moment) whenever the latter has corrupted one of the parties. We allow
the simulator to abort whenever this extraction fails (this happens when the adversary generates a
commitment which is valid for two or more values). Due to the binding property of the commitment,
the probability that the adversary achieves such a thing is negligible. This shows that G2 and G1

are indistinguishable. Note that this reduction is linear in the length of the password.

Game G3: In this game, S now totally programs the CRS. Since it is indistinguishable, this does
not change anything compared to the previous game. However, S now knows the equivocability
trapdoor of the commitment scheme and simulate the commitments such that they are both ex-
tractable and equivocable. Note that since the commitment is hiding, this does not change the view
of an environment. In addition, the commitment remains binding (even if the adversary as access
to equivocable commitments). Finally, G3 and G2 are indistinguishable.

Game G4: In this game, we reject any signed-authenticator that is non-oracle-generated whereas
the player is still honest: the adversary does not know the signing key, and thus cannot correctly
sign the authenticator. One can easily show that a difference between G1 and G2 would lead to an
attack against the one-time signature scheme.

Game G5: In this game, we formally modify the way we simulate the honest players. The simulator
does not know their passwords anymore. In round 1, S generates honestly a pair (SKi,VKi) of
signature and verification keys, and computes honestly the associated commitment ci. He then
runs the simulator SPAKE, asking him to generate the messages sent in flows (1b). He finally opens
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honestly the commitments, checks them, and aborts if one of them is incorrect. Any corruption
up to this moment can be dealt with easily, with the help of SPAKE for the 2PAKE part, and by
giving the honestly-computed values for the rest. We now face two cases: If all the flows were
oracle-generated up this moment, we require S to simulate the end of the execution of the protocol
on behalf of all the players. Otherwise, he simply follows the protocol as above (we show in the
following game how to deal with this case.

At the beginning of (2a), before executing the 2PAKE protocols, the players are thus all supposed
honest. S asks SPAKE to simulate these executions on behalf of all the players. In particular, he
asks PAKESamePwd queries, learning whether the 2PAKE succeeded or not. In the latter case, the
players abort the game (soon followed by the other players, when the latter will not receive some
c′j ’s values). If the 2PAKE succeeded, we face two cases.

If there was no corruption during the 2PAKE protocols, the simulator chooses at random the
values Ki and KL

i on behalf of each player, setting KR
i = KL

i+1. The computation of the commit-
ments c′i is then done honestly. If there was a corruption during the 2PAKE protocols, S learns
the password of the player concerned and forwards the corruption query as well as the password
to SPAKE, who deals with this corruption, handing to S enough information to provide A with
consistent data. Note that SPAKE has to deal with two corruptions, since each GPAKE player plays
into two different 2PAKE executions. S then asks two PAKEDelivery queries for this player, learn-
ing KL

i and KR
i . He sets KL

i+1 = KR
i and everything continues honestly as before. Note that

the non-malleability of the commitments ensures that the distribution of the XL
i ’s and XR

i ’s is
independent. We then again face two cases.

If a corruption occurs before (2b), S recovers the password of the player, and provides the
adversary with the values Ki and KL

i chosen at random (these values are indistinguishable). In
this case (or if a corruption had already occurred before), then the simulator extracts all the values
XL

j ’s and XR
j ’s from the adversary’s commitments. He asks a query GPAKEDelivery for a corrupted

player and learns the session key sk0 (since there is at least one honest player, the adversary cannot
set the key). As we assume at least one player, say Pi0 , is honest, S can change its value Ki0 , using
gi0({Ki, i 6= i0}, sk0‖sk1) for a random sk1, so that the random extraction leads to sk0 as session
key and sk1 as MAC key. Note that the probability that the players obtain the same sk1 without
having the same sk0 is negligible. He then equivocates the commitments sent, in order that they
correspond to the new values XL

i0
and XR

i0
he has to open to in the next flow. Everything else is

computed honestly. This way, if a player gets corrupted afterwards (even Pi0), S will be able to
give consistent data to the adversary. Finally, in round (4), S sets b to no for the players receiving
a non-oracle-generated flow in round (3), and to yes for the others.

Otherwise, if no corruption occurs before (2b), S has no means to learn the key: He thus asks
all the GPAKEDelivery queries for the players (giving him no information) and executes everything
honestly. A corruption is dealt with as before, except that the data given to the adversary will not
lead to the key chosen by the functionality, but this corresponds exactly to the corruption query of
the functionality: Since the key has been sent to the player (thanks to the GPAKEDelivery query),
the adversary does not learn it. Finally, G5 and G4 are indistinguishable.

Game G6: In this game, we consider the case where some corruptions occurred before the 2PAKE
protocols. Such a case is easily dealt with as the case where corruptions occur during the 2PAKE
protocols, as we showed in the previous game. Thus, this game is indistinguishable from G5.

Game G7: This game is almost the same as the previous one, except that we formalize the behav-
ior of the simulator by introducing the queries to the functionality, in place of the PAKESamePwd,
PAKEDelivery, GPAKESamePwd and GPAKEDelivery-queries. More precisely, we only replace the
hybrid queries with their ideal equivalents. Informally, S behaves not according to the messages
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sent, but to the messages received (probably modified by the adversary). In round 1, S (using
SPAKE) sends random values (honestly committed to) on behalf of each non-corrupted player. For
round 2 and round 3, see games G5 and G6. In round 4, S sets b to no for the players receiving a
non-oracle generated flow in round 3, and to yes for the others. If a session aborts or terminates,
then S reports it to A. We now show that G7 is indistinguishable from the ideal game. Say that
the players have matching sessions if they share the same ssid′ (which implies that they share the
same VKi and due to the use of the split functionality).

It is clear that players sharing compatible password will obtain a random key, both in G7

(from G5) and IWE (except for players receiving non-oracle generated flows, modeled by the
bit b). This key will be not chosen by the adversary unless all players are corrupted (since there
will always be an honest player, whose Ki is unpredictable). Finally, if the players do not share
compatible passwords, they will receive an error, thanks to the mutual authentication of 2PAKE.
Now, we need to show that two players will receive the same key in G7 if and only if it happens
in IWE.

This is clearly the case for players with matching session (with or without the same password).
This follows from G5 in the real world, and from the NewSession queries mentioning the same group
of players in the ideal world. Finally, consider the case of players with no matching sessions. It is
clear that in G7 the session keys of those players will be independent because they are not set in
any of the games. In IWE, the only way that they receive matching keys is that the functionality
receives two NewSession queries with the same ssid′ and a group where all players share the same
passwords.
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(1a) (ṼKi, S̃Ki)← SKG (VK′j ,SK′j)← SKG

(VKi,SKi)← SKG (ṼK′j , S̃K′j)← SKG

c̃i = com(ssid, i, ṼKi) c′j = com(ssid, j,VK′j)

ci = com(ssid, i,VKi)
c̃i, ci−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−
c′j , c̃

′
j

c̃′j = com(ssid, j, ṼK′j)

(1b) s̃Ri = split2PAKE(ssid;Pi, p̃wR
i ;P ′j , pw

′L
j ) s′Lj = split2PAKE(ssid;P ′j , pw

′L
j ;Pi, p̃wR

i )

sLi = split2PAKE(ssid;Pi, pwL
i ;P ′j , p̃w

′R
j )

sLi , s̃
R
i−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−

s′Lj , s̃
′R
j

s̃′Rj = split2PAKE(ssid;P ′j , p̃w
′R
j ;Pi, pwL

i )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

After this point, the session identifier becomes ssid′ = ssid‖c̃i‖ci‖sLi ‖s̃Ri ‖s′Lj ‖s̃′Rj ‖c′j‖c̃′j .

(1c) opens ṼKi,VKi

ṼKi,VKi−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−
VK′j , ṼK′j

opens VK′j , ṼK′j

(2a) checks c′j = com(ssid, j,VK′j) checks c̃i = com(ssid, i, ṼKi)

and c̃′j = com(ssid, j, ṼK′j) and ci = com(ssid, i,VKi)

and aborts if it is incorrect and aborts if it is incorrect

computes KR
i

2PAKE(ssid′;Pi, p̃w
R
i ;P ′j , pw

′L
j )

−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−− computes K′Lj

K̃i
$← {0, 1}k K′j

$← {0, 1}k

X̃R
i = K̃i ⊕KR

i X ′Lj = K′Lj ⊕K′j
X̃L

i = KL
i ⊕ K̃i X ′Rj = K′j ⊕K

′R
j

computes KL
i

2PAKE(ssid′;Pi, pw
L
i ;P ′j , p̃w

′R
j )

−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−− computes K′Rj

Ki
$← {0, 1}k K̃′j

$← {0, 1}k

XL
i = KL

i ⊕Ki X̃ ′Rj = K̃′j ⊕K′Rj
XR

i = Ki ⊕KR
i X̃ ′Lj = K′Lj ⊕ K̃′j

C̃i = com(ssid′, i, X̃L
i , X̃

R
i ) C′j = com(ssid′, j,X ′Lj , X ′Rj )

Ci = com(ssid′, i,XL
i , X

R
i )

C̃i, Ci−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−
C′j , C̃

′
j

C̃′j = com(ssid′, j, X̃ ′Lj , X̃ ′Rj )

(2b) opens X̃L
i , X̃

R
i , X

L
i , X

R
i

X̃L
i , X̃

R
i , X

L
i , X

R
i−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−

X ′Lj , X ′Rj , X̃ ′Lj , X̃ ′Rj

opens X ′Lj , X ′Rj , X̃ ′Lj , X̃ ′Rj

sends the XL
k , X

R
k

{XL
k , X

R
k }k−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−

{X ′Ll , X ′Rl }l
sends the X ′Ll , X ′Rl

Fig. 7. Description of the protocol for merging the group P1, . . . , Pn, represented by Pi with password pw, and the
group P ′1, . . . , P

′
m, represented by P ′j with password pw′ (first part)
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(3) checks C′j = com(ssid′, j,X ′Lj , X ′Rj ) checks C̃i = com(ssid′, i, X̃L
i , X̃

R
i )

and C̃′j = com(ssid′, j, X̃ ′Lj , X̃ ′Rj ) and Ci = com(ssid′, i,XL
i , X

R
i )

and aborts if it is incorrect and aborts if it is incorrect

computes K′j = X ′Lj ⊕KR
i computes K̃i = X̃R

i ⊕K′Lj
computes K̃′j = X̃ ′Rj ⊕KL

i computes Ki = XL
i ⊕K′Rj

and all the K′l iteratively and all the Kk iteratively

sk0‖sk1 = f(Ki, K̃i,K′j , K̃
′
j , {Kk}, {K′l}) sk0‖sk1 = f(Ki, K̃i,K′j , K̃

′
j , {Kk}, {K′l})

Ãuthi = Mac(sk1; ssid′, i, X̃L
i , X̃

R
i ), Auth′j = Mac(sk1; ssid′, j,X ′Lj , X ′Rj ),

Authi = Mac(sk1; ssid′, i,XL
i , X

R
i ), Ãuth′j = Mac(sk1; ssid′, j, X̃ ′Lj , X̃ ′Rj ),

σ̃i = Sign(S̃Ki; ssid
′, Ãuthi, C̃i, C′j) σ′j = Sign(SK′j ; ssid

′,Auth′j , C̃i, C′j)

σi = Sign(SKi; ssid
′,Authi, Ci, C̃′j)

Ãuthi, σ̃i,Authi, σi−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−
Auth′j , σ

′
j , Ãuth

′
j , σ̃
′
j

σ̃′j = Sign(S̃K′j ; ssid
′, Ãuth′j , Ci, C̃′j)

(4) checks Ver(sk1; ssid′, j,X ′Lj , X ′Rj ;Auth′j),

Verify(VK′j ; ssid
′,Auth′j , C̃i, C′j ;σ

′
j),

Ver(sk1; ssid′, j, X̃ ′Lj , X̃ ′Rj ; Ãuth′j)

and Verify(ṼK′j ; ssid
′, Ãuth′j , Ci, C̃′j ; σ̃

′
j)

If they are correct, then marks the session
as complete and sets ski = sk0.
Otherwise, sets ski = error.

checks Ver(sk1; ssid′, i, X̃L
i , X̃

R
i ; Ãuthi),

Verify(ṼKi; ssid
′, Ãuthi, C̃i, C′j ; σ̃i)

Ver(sk1; ssid′, i,XL
i , X

R
i ;Authi)

Verify(VKi; ssid
′,Authi, Ci, C̃′j ;σi),

If they are correct, then marks the
session as complete and sets ski = sk0.
Otherwise, sets ski = error.

Fig. 8. Description of the protocol for merging the group P1, . . . , Pn, represented by Pi with password pw, and the
group P ′1, . . . , P

′
m, represented by P ′j with password pw′ (second part)


