
This is the full version of the extended abstract which appears in
Proceedings of ACNS ’11 - 9th International Conference on Applied Cryptography and Network Security
(7 june 2011– 10 june 2011, Malaga, Spain)
J. Lopez and G. Tsudik Eds. Springer-Verlag, LNCS 6715, pages 377–394.

Security Notions for Broadcast Encryption

ACNS ’11 Best Student Paper Award

Duong Hieu Phan1,2, David Pointcheval2, and Mario Strefler2

1LAGA, University of Paris 8
2ENS / CNRS / INRIA

Abstract. This paper clarifies the relationships between security notions for broadcast encryption. In
the past, each new scheme came with its own definition of security, which makes them hard to compare.
We thus define a set of notions, as done for signature and encryption, for which we prove implications
and separations, and relate the existing notions to the ones in our framework. We find some interesting
relationships between the various notions, especially in the way they define the receiver set of the challenge
message. In addition, we define a security notion that is stronger than all previous ones, and give an
example of a scheme that fulfills this notion.

Keywords: Broadcast Encryption, Adaptive Security, Security Models

Version history

– 2011-05-10: Removed claim that [DPP07] fulfills the TargC-definition. Adapted table 2.
– 2011-12-10: Added comment in section 3.2 about the inclusion of the id header S in the winning

condition of the security game. Fixed example scheme to include S in the MAC.

1 Introduction

Broadcast encryption (BE) is a cryptographic primitive that was first described by Fiat and Naor
in [FN94]. It provides a content holder the ability to publish the content to a specific subset of the
registered users. This is used in practice by copyright protection mechanisms for digital media such as
DVDs, so that if the keys for a series of DVD players become known, this series will not be able to play
DVDs produced after the series is revoked [NNL01]. But while work on the related topic of multi-cast
encryption progressed, BE did not receive much attention until the last decade, when Naor, Naor, and
Lotspiech presented their (symmetric-key) subset-cover framework along with a security model and a
security analysis [NNL01]. Since then, many BE schemes have been proposed, but for each scheme the
security proof was done in a new security model. Because of these various and often ad-hoc security
models, it is hard to compare the merits of these schemes, as it is not always clear how the security
notions relate to each other.

Gentry and Waters [GW09], for example, defined a security notion they call “adaptive”, because
the adversary can corrupt users adaptively before the challenge phase. But there is a notion that is
“even more”adaptive, where the adversary can still corrupt users after the challenge phase. The goal of
this paper is thus to provide a better picture of the meaningful security models for BE, and to compare
them. In particular, we investigate whether the various adaptive notions of corruption coincide or not.

Related Work. The first scheme to come with a security argument was the subset-cover framework
introduced by Naor, Naor, and Lotspiech [NNL01]. The framework uses symmetric keys, where the
sender and the receivers share some secrets, so the security proof relies on assumptions about the
symmetric primitives (one-way functions and block ciphers). Dodis and Fazio [DF03] presented the
first CCA2-secure public-key Trace and Revoke (TR) scheme along with a security model covering
CCA2 and generalized CCA2. When one considers possible corruption after the target ciphertext has
been sent, one has to deal with forward-security. This was done by Yao, Fazio, Dodis, and Lysyan-
skaya [YFDL04] who first considered forward-security for HIBE and then by extension for BE. Boneh,
Gentry, and Waters [BGW05] designed a fully collusion-resistant BE scheme and proposed a secu-
rity model for it, where the adversary can corrupt all the users, except the target users. Thereafter,
Boneh and Waters [BW06] presented a fully collusion-resistant TR scheme secure against adaptive
attacks. Delerablée, Paillier, and Pointcheval [DPP07] also presented a fully collusion-secure dynamic

2

BE scheme (DBE) and presented a new matching security model. More recently, Gentry and Wa-
ters [GW09] defined two additional security notions they call “semi-static” and “adaptive”, as well as
a generic transformation from a semi-static secure scheme into an adaptively secure scheme, and then
a semi-static secure scheme to which they later apply the transformation.

Contribution. As shown above, many security notions were proposed in the literature. In this paper,
we define a more systematic security model for broadcast encryption schemes, and construct a generic
security framework for BE. We take into account, as usual in the“provable security framework”, oracles
to model the means available to the adversary, such as the possibility to join new users, to corrupt
users, and to decrypt messages. It is worth noting that small details can have a high impact. For
example, the choice of the set of users to which the challenge message is sent also plays a role in
how the models relate to each other. We investigate the relationships between the different notions,
and find that in some cases, two notions are equivalent or separated depending on the availability of
some oracles or the collusion-resistance of a BE scheme. After describing the relationships between
notions in our framework, we have a closer look at the security models and the schemes proposed in
the literature, and discuss where they are in our framework, which then helps to compare them.

Our results are relevant for existing BE schemes. From the proof found in [GW09], it is clear that
the two-key transformation actually achieves the stronger 2-adaptive-security level.

Organization. In section 2 we provide a formal definition of broadcast encryption, or more precisely key
encapsulation, and specify some terminology. In section 3 we define our security framework. Section 4
relates the different security notions to each other. In section 5 we embed the existing security models
from the literature into our framework. In section 6, we describe which security notions have been
achieved by existing protocols and describe an (inefficient) protocol that achieves the strongest notion.

2 Definitions

Broadcast encryption (BE) schemes enable the sender of a message to specify a subset of the registered
(the target set or privileged set), who will be able to decrypt the ciphertext sent to all users via a
broadcast channel. The complement of the target set (in the set of the registered users) is called the
revoked set. To accomplish user revocation when sending a message, a BE generally generates three
parts: the Id Header, that is a bit-string that unambiguously identifies the target set/revoked set;
the Key Header, that encapsulates a session key for the privileged users; and the Message Body, that
contains the payload encrypted under the session key.

Since for all the schemes, the Id Header and the Message Body are similar, in this paper, we will
focus on the Key Header part only, which can be seen as a key encapsulation mechanism (KEM).
Furthermore, when no more information is given, we will consider a public-key key encapsulation
system with possibly stateful decoders: encryption key is public, the decryption keys of the users
can evolve, but the updates will be global and sent on a public channel, and ephemeral keys are
distributed to be used together with symmetric encryption (DEM: Data Encapsulation Mechanism).
We will nevertheless sometimes make remarks about alternative cases.

Definition 1 (Dynamic Broadcast Encapsulation). A dynamic broadcast encapsulation scheme
is a tuple of algorithms DBE = (Setup, Join,Encaps,Decaps):

– Setup(1k), where k is the security parameter, generates the global parameters param of the system
(omitted in the following); and returns a master secret key MSK and an encryption key EK. It also
initiates an empty list Reg. If the scheme is asymmetric, EK is public, otherwise it can be seen as
a part of the MSK.

– Join(MSK,Reg, id) takes as input the master secret key, the list Reg, and a user identifier id. If
id ∈ UI (where UI is the set of valid user identifiers, usually N) and id /∈ Reg, outputs a user
secret key uskid and a public user tag upkid. The pair (id, upkid) is appended to Reg. Else, outputs
⊥.

– Encaps(EK,Reg, S) takes as input the encryption key, the list Reg, and a target set S and outputs
a key header H and a session key K ∈ {0, 1}k.

3

– Decaps(uskid, S,H) takes as input a user secret key, the target set S, and the key header H. If
id ∈ S, outputs the session key K.

The correctness requirement is that for any (polynomial size) set of joined users U ⊂ UI, any
target set S ⊂ U and for any id ∈ UI, if id ∈ S then the decapsulation algorithm gives back the
ephemeral session key. See figure 1.

(MSK,EK,Reg)← Setup(1k);
for all id ∈ S : (uskid, upkid,Reg)← Join(MSK,Reg, id);
(H,K)← Encaps(EK,Reg, S).

i ∈ S ⇒ Decaps(uski, S,H) = K

Fig. 1. DBE : Correctness

2.1 Terminologies and Various Types of Schemes

Join Algorithms. When the Join algorithm can be run at the setup phase only, with no later evolution
of the group, we say the scheme is static (instead of dynamic). For a dynamic scheme, several kinds
of Join functionalities are possible:

Passive, no input (except a counter i); it generates a public tag upki to identify the user;

Active, the input is id; it generates a public tag upkid to identify the user;

Identity-Based, the input is id, and the public tag upkid is simply id.

We stress that the default case in this paper (when no other version is specified) is that Join is passive.

Target Set. A broadcast encryption scheme is called inclusive when the target set is specified by the
list of authorized users, and exclusive when the target set is specified by its complement R, the set of
revoked users.

Key Encapsulation Mechanisms. We described above a key encapsulation mechanism (KEM) where
only a key is generated. The payload is then encrypted with a symmetric mechanism to get a full
encryption scheme. All the broadcast encryption schemes known to the authors can be written as
KEMs, e. g. the bilinear BE schemes from [BGW05,GW09] generate a random group element which is
then multiplied to the message. This random group element can be considered as the symmetric key,
and group multiplication as the symmetric encryption. To achieve CCA2-security for the full broadcast
encryption, given a CCA2-secure key encapsulation, we additionally need to bind all the components
of the ciphertext together.

Encryption and Decryption Keys. The encryption key can be either public (asymmetric) or private
(symmetric), in the former case, we talk about public-key broadcast encryption, in the latter we say
this is a private-key broadcast encryption. The decryption keys can either be defined and sent to the
users at the join phase and never modified again, or be updated each time another user joins the
system. In the former case, the decoders are said to be stateless since there is no state to evolve. In
the latter case, the decoders are called stateful because they have to keep their state up-to-date. They
thus have to be always on-line to receive the update information.

Default. As already mentioned, in this paper, we focus on public-key key encapsulation system with
possibly stateful decoders.

4

3 Security Notions

Besides the various properties that a broadcast encryption scheme can satisfy, many security notions
have been defined to take all the threats into consideration. We will thus review them, and try to give
a cleaner view. As usual, security notions are defined by the goal the adversary want to achieve, and
by the means that are available. We first define our standard security notions, and then compare them
with some alternatives defined in the literature.

3.1 Standard Security Notions

Since we are studying a KEM [CS03], the goal of the adversary is to distinguish two keys in a key
encapsulation, noted IND for key indistinguishability : after having received the public parameters, in
the first phase (the FIND phase) the adversary outputs a target set S; then the challenger runs the
key encapsulation algorithm, on this set S, that outputs the ephemeral K and the encapsulation H. It
then chooses a random key K ′ and a random bit b and sets Kb = K and K1−b = K ′. Upon receiving
(H,K0,K1), the adversary runs the second phase (the GUESS) during which it has to decide whether
H encapsulates K0 or K1, which means it has to guess the bit b.

Oracles can be available at different periods of time (Setup, FIND-phase, or GUESS-phase) which

defines several kinds of attacks. Figure 2 shows the experiment Expind−dxayccaz
DBE,A (k), where the ora-

cles OJoin1, OCorrupt1 and ODecaps1 are available during the FIND-phase, and the oracles OJoin2,
OCorrupt2 and ODecaps2 are available during the GUESS-phase. According to the exact definition
of these oracles, we have an IND-Dynx-Ady-CCAz security game, for x-Dynamic (Join), y-Adaptive
(Corrupt) and CCA-z (Decaps). If not otherwise specified, use of the variables x, y, z means that they
can be replaced by any level defined below.

The Join Oracle. It can be available at the Setup-time only. In this case, the adversary can make a
number of non-adaptive Join-queries, where he receives the results only at the end of the Setup-phase,
together with the parameters and MSK,EK. As said above, we then talk about a static scheme, and
the attack is S-Dynamic (or DynS), and both the oracles OJoin1 and OJoin2 output ⊥. The Join-oracle
can be available during the first phase only, then OJoin1 = Join but the OJoin2 oracle outputs ⊥, and
the attack is 1-Dynamic (or Dyn1); it can be available always, then OJoin1 = OJoin2 = Join, and the
attack is 2-Dynamic (or Dyn2).

The Corrupt Oracle. Corruptions can be more or less adaptive. Again, the adversary may have to
decide before the Setup-time which users will be corrupted. This is a selective attack or S-Adaptive
(also denoted AdS), which is meaningful for static schemes (DynS) only (otherwise there are no users
to corrupt during the Setup-phase), and then both the oracles OCorrupt1 and OCorrupt2 output ⊥.
It can be available during the first phase only, then OCorrupt1 = Corrupt but the OCorrupt2 oracle
outputs ⊥, and the attack is 1-Adaptive (or Ad1). It can be available during the full security game, then
OCorrupt1 = OCorrupt2 = Corrupt, and the attack is 2-Adaptive (or Ad2). Eventually, the adversary
can have no access at all to the Corrupt oracle: we say the attack is 0-Adaptive (or Ad0).

The Decaps Oracle. As usual for chosen-ciphertext security, the Decaps-oracle can be available or not.
It can never be available in the CPA (or CCA0) scenario, and both the oracles ODecaps1 and ODecaps2
output ⊥; it can be available during the first phase only, then ODecaps1 = Decaps but the ODecaps2
oracle outputs ⊥, and the attack is CCA1; it can be available during the full security game, then
ODecaps1 = ODecaps2 = Decaps, and the attack is CCA2.

For the IND-goal, the natural restriction for the adversary is not to ask for the decapsulation of
the challenge header H nor corrupt any user in the target set S.

Remark 2. For private-key schemes, the adversary is granted access to the encapsulation oracle instead
of the encryption key. In the rest of the paper, we will focus on the public-key setting for dynamic
broadcast encryption schemes (noted PKDBE).

5

Expind−dxayccaz−b
DBE,A (k)

(MSK,EK)← Setup(1k);
QC ← ∅; QD ← ∅;
(st, S)← AOJoin1(·),OCorrupt1(·),ODecaps1(·,·,·)(param);

(H,K)← Encaps(EK,Reg, S); Kb ← K; K1−b
$← K;

b′ ← AOJoin2(·),OCorrupt2(·),ODecaps2(·,·,·)(st;S,H,K0,K1);
if ∃i ∈ S, (i, S,H) ∈ QD or i ∈ QC

then return 0;
else return b′;

where x ∈{s, 1, 2}, y ∈{0, s, 1, 2}, z ∈{0, 1, 2}.

OJoin(i)
(uski, upki)← Join(msk, i);
return upki;

OCorrupt(i)
QC ← QC ∪ {i};
return uski;

ODecaps(i, S,H)
QD ← QD ∪ {(i, S,H)}
K ← Decaps(uski, S,H);
return K;

Fig. 2. DBE : Key Privacy (IND-Dynx-Ady-CCAz)

Definition 3. A public-key DBE scheme DBE is said to be (t,N, qC , qD, ε)-IND-Dynx-Ady-CCAz-

secure if in the security game presented in figure 2, the advantage, denoted Advind−dxayccaz
DBE (k, t,N, qC , qD),

of any t-time adversary A registering at most N users (OJoin oracle), corrupting at most qC of them
(OCorrupt oracle), and asking for at most qD decapsulation queries (ODecaps oracle), is bounded by ε:

Advind−dxayccaz
DBE (k, t,N, qC , qD) =

max
A
{Pr[Expind−dxayccaz−1

DBE,A (k) = 1]− Pr[Expind−dxayccaz−0
DBE,A (k) = 1]} .

3.2 Alternatives and Variants

Forward-Secrecy. For dynamic exclusive schemes (the target set is defined by the list of revoked users),
new users are by definition included in the target sets of the message headers, even if they did not exist
at the time the header was sent. Furthermore, since new users are included in the challenge set S, the
adversary is not allowed to corrupt them. This means the encryption does not provide forward-secrecy.
To model forward-secrecy, we can allow corruption of joined users, and in this case the encryption key
EK must evolve when a new user joins the system.

For dynamic inclusive schemes (the target set is defined by the list of authorized users), the Ad2
notion provides forward-secrecy since any user not in the target set can be corrupted in the second
phase.

Target Set. In the default security game, the adversary chooses the target set S at the end of the first
phase, the FIND phase which consists in finding the best S for winning the game. But some papers in
the literature restricted this choice:

– The adversary announces the target set before the setup phase [BGW05]. We call this selective
security, denoted TargS. This can only happen in static schemes, because the adversary needs to
know the set of users to choose the target set from.

– The target set is automatically set to all uncorrupted users at the end of the first phase [DF03].
We call this fixed-target-set security, denoted TargF.

When needed, the default case (the adversary chooses the target set S at the end of the FIND-phase)
is denoted TargC.

Malleability of the Id Header By restricting the adversary only to asking queries different from (S,H)
to the decapsulation oracle, our security definition implies non-malleability of the id header. If the
adversary manages to submit a query (i, S′, H) with a different target set for the original header, he
wins the game. Our definition thus goes beyond the one found in [BGW05], where the restriction is
that the same H must not be queried to the decapsulation oracle. By removing S from the list QD,
our definition can be weakened so it does not require S to be protected.

6

Security Models in the Literature. We can now characterize all the security models defined in the
literature into our formalism: These notions are summarized in table 1, when S is the target set and
C the corrupted users set.

– In [YFDL04], the authors defined the full access to the Corrupt oracle, but for a static scheme (no
Join oracle). In order to accommodate the forward-secrecy, they included time slots. Disregarding
the latter, the security model is similar to IND-DynS-Ad2-CCA2-TargF. Essentially the adversary
is restricted to corrupting only users from a time slot later than the one the challenge message
was sent in. In our model, IND-Dynx-Ad2-CCAz-TargF-security does only make sense for x = 2, as
otherwise no users can be corrupted in the GUESS-phase (because the target set is fixed to U \C
and the adversary cannot join new users after the challenge phase).

– In [Del08] the authors define a security model for IBBE they call IND-sID-CCA (selective ID
CCA-security), which is IND-DynS-Ad2-CCA2-TargS-security in our notation.

– The partial access to the Corrupt oracle has been used in [BW06] and [GW09]. In our notation,
the authors used IND-DynS-Ad1-CCA0 security, since no decapsulation queries were available.

– As noted above, the the fixed-target-set security was introduced in [DF03], but no Corrupt queries
were allowed in the second phase, and the system was static (no Join query). In our formalism,
this is IND-DynS-Ad1-CCAz-TargF, according to the Decaps-oracle access.

– Semi-static security has been introduced in [GW09] in order to build a generic conversion into
Adaptive-1. In this setting, the adversary must announce the set of corrupted users before the setup
phase, as we defined as selective attack. In our notation, this is IND-DynS-AdS-CCA0 security.1

– In the static model due to [BGW05], the adversary also has to announce its target set before the
setup phase (selective attack). In our notation, this is IND-DynS-AdS-CCA2-TargF security with
fixed target set. The authors also define a CPA version.2

Security before setup FIND-Phase Challenge-Phase GUESS-Phase

Ad2 Corrupt S Corrupt
Ad2TargF Corrupt Corrupt
Ad1 Corrupt S
Ad1TargF Corrupt
semi-static C S
static C

Table 1. Adversarial Capabilities

Collusion Resistance. We can also distinguish between two types of collusion-resistance: full collusion-
resistance, where there is no limit on the number of Corrupt-queries, and t-collusion-resistance, where
the number of queries is bounded by t (which can depend on the number of users N). With our
parameters, we implicitly consider all the cases.

4 Relationship between the Security Notions

In this section, we shed light on the relationships between the security notions we defined in the last
section. We start in section 4.1 with the hierarchy of Decaps-oracles, where we expect no surprises.

1 More precisely, in the semi-static version of the experiment, the adversary must commit to a set S̃ before the setup
phase. He is allowed to corrupt any user not in S̃ after the setup phase, and must choose a challenge set S ⊆ S̃. An
equivalent formulation is that the adversary chooses the set C of users to corrupt before the setup phase (because
he can corrupt all users not in S̃), but chooses S at the challenge phase. This formulation is only equivalent for fully
collusion-resilient schemes, but it is for these schemes that the notions were designed.

2 In the static version of the experiment [BGW05], the adversary has to announce the set S of users he wants to attack
before the setup phase. He then receives the private keys of all users not in S after the setup phase. An equivalent
definition is that he chooses the set C of corrupted users, and the S is fixed to be all the users except C. To allow the
adversary to choose the target set, the adversary announces both C and S before the setup phase. This definition where
the adversary chooses both C and S can also be used in not fully collusion-secure schemes and is the one considered
in this section.

7

In section 4.2, we explore the Join-oracle, of which we defined three different versions: For the passive
version, which takes no input, all notions are equivalent; For the active version, which takes input
and outputs a user tag, we can separate all notions. For the IBBE version, which takes an arbitrary
string as input, but does not output a user tag (the upk is the identity of the user), we can show
equivalences and separations based on the availability of a Corrupt-oracle. In section 4.3, we address
the Corrupt-queries, and gaps appear according to the number of such queries, and thus the level of
collusion-resistance. In section 4.4, we examine the various ways in which the target set can be chosen.

4.1 Separating CPA and CCA

We remember the well-known separation between CPA (CCA0), CCA1, and CCA2-security for PKE
from [BDPR98]. The same separation applies in the case of broadcast encryption, first because if we
set KeyGen(1k) to

(MSK,EK) ← Setup(1k); (usk1, upk1) ← Join(MSK, 1); dk
def
= usk1, ek

def
= EK||upk1, we obtain a single-

user KEM scheme. But for completeness, and as a warm-up, we give a proof of the relationship for
BE, whatever the size of the target set, part of which leans closely on the proof in [BDPR98].

Theorem 4. The following implications are strict:

IND-Dynx-Ady-CCA2⇒ IND-Dynx-Ady-CCA1⇒ IND-Dynx-Ady-CCA0.

4.2 Separating Notions of Dynamicity

In this section, in order to compare the Join-oracle access, we also have to consider the three versions
of the Join-algorithm, as defined in section 2.1: passive-Join, if it takes no input; active-Join, if it takes
an input; ID-based -Join, if the output tag upk is the input identity.

Easy Implications. As above, there is a clear hierarchy on the Join oracle access: at the setup time
only, in the first phase, or at anytime

Theorem 5. The following implications hold for all versions of the Join oracle: IND-Dyn2-Ady-CCAz
⇒ IND-Dyn1-Ady-CCAz ⇒ IND-DynS-Ady-CCAz.

Passive Join. This is a standard definition in the literature. Interestingly enough, in this context all
the notions are equivalent, since the adversary cannot influence the output.3

Theorem 6. If Join takes no input,we have the following equivalences

IND-Dyn2-Ady-CCAz⇔ IND-Dyn1-Ady-CCAz⇔ IND-DynS-Ady-CCAz.

Proof. Because of the trivial implications, it remains to show that DynS ⇒ Dyn2. Given a successful
Dyn2-adversary Ad that makes N1 queries to the Join-oracle in phase 1, and N2 queries to the Join-
oracle in phase 2, we construct a successful DynS-adversary As that joins N = N1 +N2 users before
the setup phase. Because the Join-oracle takes no input, its behavior is exactly the same in phase 1
and phase 2. Therefore As can store the results and then answer all Join-queries made by Ad later.

Active Join with Large Input. If the Join-algorithm is interactive or takes input from the adversary
(that can be sufficiently large, i. e. |UI| is superpolynomial), the adversary can influence the Join-
process:

Theorem 7. If Join takes input and outputs a public tag, the following implications are strict

IND-Dyn2-Ady-CCAz⇒ IND-Dyn1-Ady-CCAz⇒ IND-DynS-Ady-CCAz.

3 It is interesting to note that the equivalence is for our above notions only: for passive-Join, a query in the first phase is
strictly more useful than a query in the second phase. As a consequence, if we consider in details the number of queries
in each phase, as done in [PP04] for the encryption and decryption oracles, we can show that Dyn(N1 + N2, 0) →
Dyn(N1, N2) → Dyn(0, N1 +N2), and these implications are strict. However, in the above theorem, we do not fix the
number of queries.

8

Identity-Based. In this case, the OJoin-oracle only outputs a user secret key uskid (because upkid =
id). This means that in order to gain anything from the output, the adversary must also be able to
corrupt users.

Theorem 8. For ID-Based Broadcast Encryption, the following implications are strict

IND-Dyn2-Ad2-CCAz⇒ IND-Dyn1-Ad2-CCAz⇒ IND-DynS-Ad2-CCAz
IND-Dyn2-Ad1-CCAz⇔ IND-Dyn1-Ad1-CCAz⇒ IND-DynS-Ad1-CCAz
IND-Dyn2-AdS-CCAz⇔ IND-Dyn1-AdS-CCAz⇔ IND-DynS-AdS-CCAz
IND-Dyn2-Ad0-CCAz⇔ IND-Dyn1-Ad0-CCAz⇔ IND-DynS-Ad0-CCAz

4.3 Separating Forms of Corruption

Theorem 9.

IND-Dynx-Ad2-CCAz⇒ IND-Dynx-Ad1-CCAz
⇒ IND-DynS-AdS-CCAz⇒ IND-Dynx-Ad0-CCAz,

and for BE schemes that are not fully collusion-secure all implications are strict.

Proof. The implications are clear, since having access to an oracle never makes an adversary weaker.
The separations follow from lemmas 10, 11, 12, and 13

Separation of no Corruption from Selective Corruption. Recall that for AdS, the only version
of Dyn that makes sense is DynS (section 3.1).

Lemma 10. IND-Dynx-Ad0-CCAz ; IND-DynS-AdS-CCAz.

Separation of Selective Corruption from 1-Adaptive Corruption. In a model with selective
corruption, the adversary must announce the set C of corrupted users before seeing the encryption key.
To make a difference, we would have to give some information on the subset of the users to corrupt in
the encryption key: we thus embed such information using a secret sharing scheme to make sure all of
the identified users (special users) have to be corrupted.

We need to make sure that the subset is hard to guess by chance: this is the case for IBBE, where
the size of the set UI is exponential and any user is hard to guess. In case UI is of polynomial size, the
size of the subset must not be too small, otherwise all of them will be corrupted even by a selective-
corruption adversary with significant probability. If t is the number of special users, there are

(
N
t

)
ways of choosing them, where N is polynomial in the security parameter. To make the binomial be
super-polynomial for a polynomial N , we need t to be non-constant.

How can we be sure the adversary corrupts at most t users? First, it can be set by definition, using
the t-collusion-secure level. For IBBE,

(|UI|
1

)
is already exponential in the security parameter. However,

without any additional constraint, for a basic broadcast encryption scheme, if N − t is constant, then
|S| must also be constant, and we are actually dealing with a simple multi-encryption scenario. Multi-
cast security of encryption schemes has been considered in [BPS00]. The authors proved that standard
IND-CPA encryption schemes remain secure even if the same message is sent to different users in
parallel. This makes the case where the adversary is always sending only to a constant number of
users less interesting to us. It thus seems reasonable to exclude these cases from BE. In the following,
we thus focus on t-collusion-secure schemes, where t must be less than the total number of users minus
a non-constant number.

Lemma 11. For a t-collusion-secure scheme (for t and N − t non-constant numbers),

IND-DynS-AdS-CCAz ; IND-DynS-Ad1-CCAz.

9

Separation of 1-Adaptive Corruption from 2-Adaptive Corruption.

Lemma 12. For a t-collusion-secure scheme (for t and N − t non-constant numbers),

IND-Dynx-Ad1-CCAz ; IND-Dynx-Ad2-CCAz for z ∈ {0, 1}.

As noted, the proof requires t and N − t to be non-constant. But we can also note that it does not
work in the CCA2-setting, because on the one hand the scheme is malleable, and on the other hand
the adversary could simply query the Hi’s to the Decaps-oracle.

Lemma 13. For a t-collusion-secure scheme (for t and N − t non-constant numbers),if SUF-CMA-
secure MAC, IND-CCA2-secure symmetric encryption and homomorphic OWF exist,

IND-Dynx-Ad1-CCA2 ; IND-Dynx-Ad2-CCA2.

MAC, symmetric encryption, and homomorphic OWF are defined in appendix A.1.

4.4 Choice of the Target Set

Selective Security.

Lemma 14. The following implication is strict:

IND-Dynx-Ady-CCAz-TargC⇒ IND-DynS-Ady-CCAz-TargS.

Fixed Target Sets. In our definition the adversary chooses the target set S of the challenge. In
the DPP security model [DPP07], S is automatically the set of all non-compromised users. The same
situation appears in [BGW05], where the adversary outputs S before the setup and receives the secret
keys for all users in U \ S. A similar definition is given for the BGW model. We could reformulate
the BGW model so that the adversary outputs the set C of the keys he wants to know, and S is set
to U1 \ C1. This formulation is obviously equivalent. We want to investigate the relationship between
these two notions.

Note that under the “fixed” definition, the notions IND-Dynx-Ad1-CCAz and IND-Dynx-Ad2-CCAz
for x ∈ {s, 1} are equivalent since in any case the adversary cannot corrupt users after the challenge
phase (all the non-corrupted users at the end of the first phases are in the target set and cannot be
corrupted).

Theorem 15. All the following implications are strict

IND-DynS-AdS-CCAz-TargC⇒ IND-DynS-AdS-CCAz-TargS
⇔ IND-DynS-AdS-CCAz-TargF

IND-Dynx-Ad0-CCAz-TargC⇒ IND-DynS-Ad0-CCAz-TargS
⇒ IND-Dynx-Ad0-CCAz-TargF

The theorem follows from lemmas 14, 16, 17, and 18.

Lemma 16. IND-DynS-Ady-CCAz-TargS⇒ IND-Dynx-Ady-CCAz-TargF
for y ∈ {0, s}.

Proof. From an adversary Af against the IND-Dynx-Ady-CCAz-TargF-security of a BE scheme, we
build an adversary AS against the IND-DynS-Ady-CCAz-TargS-security. If the model has no corruption
or static corruption, AS runs Af , who outputs C, chooses the same C and sets his target set S = U \C.

Lemma 17. IND-DynS-AdS-CCAz-TargF⇒ IND-DynS-AdS-CCAz-TargS.

Proof. Given a successful adversary AS , we construct an adversary Af as follows. AS outputs his
target set S and the set of users to corrupt C before the Setup phase. Af chooses C ′ = U \ S.

Lemma 18. IND-Dynx-Ad0-CCAz-TargF ; IND-DynS-Ad0-CCAz-TargS.

10

Proof. In the IND-Dynx-Ad0-CCAz-TargF-experiment, the target set is always fixed to S = U . Given a
IND-Dynx-Ad0-CCAz-TargF-secure schemeΠ, we modify it into a schemeΠ ′ that is still IND-Dynx-Ad0-CCAz-TargF-
secure, but not IND-Dynx-Ad0-CCAz-TargS. The only change is that if |S| = 1, Π ′.Encaps sets K = 0
(or determines the key in a deterministic way by fixing all random coins e. g. to 0).

Theorem 19. For fully collusion-resilient BE schemes, the following implications are strict

IND-Dynx-Ady-CCAz-TargC⇔ IND-Dynx-Ady-CCAz-TargF

⇒ IND-DynS-Ady-CCAz-TargS (y ∈ {1, 2})

The theorem follows from lemmas 14 and 20. It seem curious at first that the relationship between
fixed target set and selective security is inverted for models with no corruption, but in this case the
fixed target set means that it is always set to U , while the selective security allows some freedom of
the adversary to choose.

Lemma 20. For fully collusion-resistant BE schemes

IND-Dynx-Ady-CCAz-TargC⇔ IND-Dynx-Ady-CCAz-TargF (y ∈ {1, 2}).

Proof. It is clear that if the adversary can choose S freely, he can set it to U \ C. Let Achoice be a
successful adversary against a BE scheme that can choose his target set S. Then we construct Afixed as
follows: Afixed faithfully forwards all queries. When Achoice outputs his challenge target set S, Afixed

first issues corrupt queries so that U \ C = S, then asks for the challenge and forwards it to Achoice.
He forwards the guess bit b and wins with the same probability as Achoice.

Note that Afixed corrupts more users, which could reduce the tightness of a security proof, and
causes the proof to fail in a t-resilient setting where t < N − 1 (if t = N − 1, the scheme is fully
collusion-resistant).

In the following, we denote by = the fact that ; in both directions.

Theorem 21. For BE schemes where the adversary must leave at least two users uncorrupted, the
following implications are strict:

IND-Dynx-Ady-CCAz-TargC⇒ IND-Dynx-Ady-CCAz-TargF
= IND-DynS-Ady-CCAz-TargS

and IND-Dynx-Ady-CCAz-TargC⇒ IND-DynS-Ady-CCAz-TargS (y ∈ {1, 2})

The theorem follows from lemmas 14, 22, 23, and 24.

Lemma 22. If the adversary is restricted to leaving at least 2 users uncorrupted, the following impli-
cation is strict

IND-Dynx-Ady-CCAz-TargC⇒ IND-Dynx-Ady-CCAz-TargF (y ∈ {1, 2}).

Lemma 23. If the adversary is restricted to leaving at least 2 users uncorrupted,

IND-Dynx-Ady-CCAz-TargF ; IND-DynS-Ady-CCAz-TargS.

We can easily see that the adversary does not get weaker if he can choose the target set freely from
the set of uncorrupted users U \ C, because he can choose S = U \ C as in the fixed case.

Lemma 24.

IND-DynS-Ady-CCAz-TargS ; IND-DynS-Ady-CCAz-TargF for y ∈ {1, 2}.

11

5 Relationships Between Notions from the Literature

A security notion that our model does not cover is defined in [DPP07]. In this model, the adversary
accesses a JoinCorrupted oracle instead of the Corrupt oracle. That means he must decide whether to
corrupt a user before the user is joined, but the choice can depend on information gained previously.
The model defined in [DPP07] is Dyn1, as the adversary has access to a Join oracle before the chal-
lenge phase, CCA0 and TargF, as the challenge set is fixed to S = U \ C, so it is rather similar to
IND-Dyn1-Ad1-CCA0-TargF-model in our framework, except that the Corrupt oracle is replaced with
JoinCorrupted. We call it the partially adaptive model. As in the previous section, we also denote TargC
the default case where the adversary can choose S as any subset of U \ C.

Theorem 25. We have the following implications

IND-Dyn1-Ad1-CCAz-TargF⇒ partially adaptive− CCAz− TargC

⇒ partially adaptive− CCAz− TargF⇒ IND-DynS-Ad1-CCAz-TargS

that are all strict (the first one only if t-collusion secure with t and N − t non-constant).

The proof can be found in appendix A.13.

We now have almost all the results we need to establish the relationship between the security
notions that can be found in the existing literature to fill the picture on figure 3. We now complete it.

Theorem 26. The following implication is strict

Partially adaptive− CCAz− TargC⇒ IND-DynS-AdS-CCA0-TargC.

Proof. From any semi-static adversary AS we construct a partially adaptive adversary as follows. AS

announces N and C before the setup phase. Apa asks for JoinCorrupted on all users in C and simply
joins all users in U \ C. The separation is analogous to the one in lemma 11.

We relate semi-static security to the version of static security with 1-adaptive corruption defined in
[GW09].

Theorem 27. The following implication is strict

IND-DynS-AdS-CCA0-TargC⇒ IND-DynS-Ad1-CCA0-TargS.

Proof. From any selectively 1-adaptive adversary Aa we construct a semi-static adversary As. Aa

announces N and S before the setup phase. As forwards N and sets C = U \ S. He now has enough
information to answer all Corrupt-queries. The separation is analogous to the one in lemma 14.

Theorem 28. Partially adaptive-CCAz-TargF = IND-DynS-AdS-CCAz-TargC.

Remark 29. To conclude this section on the security notions found in the literature, we take a closer
look at the proof in [GW09]. We see that the after applying the two-key transformation, a scheme can
be proved 2-adaptively secure using the same proof, because the simulator has the secret keys of each
user and can answer Corrupt-queries in the GUESS-phase as easily as in the FIND-phase.

6 Previous Schemes

Let us now discuss on the previous schemes in order to compare them. Table 2 sum up the security
levels for each of them.

12

*: for t-collusion secure schemes with t and N − t non-constant
(all implications are strict)

IND-DynS-Ad2-CCAz-TargC

?lemma 22*
IND-DynS-Ad2-CCAz-TargF

?theorem 9*
IND-DynS-Ad1-CCAz-TargC

?lemma 22*
IND-DynS-Ad1-CCAz-TargF

?theorem 25
partially adaptive-CCAz-TargC

@Rtheorem 26�	theorem 25
partially adaptive-CCAz-TargF

@Rtheorem 25
IND-DynS-AdS-CCAz-TargC

�	theorem 27
IND-DynS-Ad1-CCAz-TargS

Fig. 3. Relations between Security Notions from the Literature

DF03 BGW05 DPP07 Del08 GW09 Naive

Dyn DynS DynS DynS Dyn1 DynS Dyn2

Ad Ad1 AdS partially Ad2 Ad2 Ad2

CCA CCA2 CCA0 CCA0 CCA0 CCA0 CCA2

Targ TargF TargF TargF TargS TargC TargC

Table 2. Comparison between schemes.

DF03. Dodis and Fazio[DF03] proposed the first scheme that is secure against adaptive adversaries.
However, their scheme is in the TargF model. Consequently, the scheme can only be Ad1-secure,
because any corrupted user in the second phase is implicitly included in the target set and can thus
decrypt. One of the main disadvantages of the DF03 scheme is that the bound of maximum revoked
user rmax should be fixed before the setup and as soon as there are more than rmax corrupted users,
the scheme can be totally broken. The DF03 scheme can be shown to be Ad2-secure when the target
set is adversarially chosen with the size of the revoked set bounded by rmax and the total number of
corrupted users in both first and second phases is also bounded by rmax.

BGW05. In [BGW05], Boneh, Gentry, and Waters presented new methods for achieving fully collusion-
resistant systems with short ciphertexts. However, the scheme is only proved secure in the static model
(DynS). As discussed in [GW09], the BGW proof of security requires an “exact cancellation” and there
is not an obvious way to prove BGW05 to be semi-statically secure.

DPP07. In [DPP07], Delerablée, Paillier, and Pointcheval proposed a dynamic scheme that is partially
adaptive secure.

Del08. The identity-based broadcast encryption in [Del08] deals with 2-adaptive corruption and enjoys
CCA security with constant ciphertext and private key sizes. However, the adversary has to announce
its target set before the setup phase which corresponds to our selective security model.

GW09. In [GW09], the authors aim to construct efficient schemes that are adaptively secure and
that resist to full collusion. The adaptive security mentioned in the paper correspond to our Ad1
model. However, their schemes can be easily proved secure in Ad2 model. They introduced a two-key
transformation that convert a semi-static system of 2N users into a adaptive secure system of N users.
Their schemes are not dynamic.

A Secure Broadcast Encryption Scheme

Let us now propose a simple scheme that is IND-Dyn2-Ad2-CCA2-secure to show that it is possible.
The naive BE scheme where the center shares a key with every user is not IND-Dyn2-Ad2-CCA2-secure,
but adding a MAC makes it secure.

13

Definition 30. Let PKE be an IND-CCA2 secure public-key encryption scheme with key length κ,
MAC a SUF-CMA MAC. We build a BE scheme Π in the following way.

– Setup(1k) MSK
def
= ∅;EK def

= ∅;Reg def
= ∅

– Join(MSK, i) if ∃pk : (i, pk) ∈ Reg return ⊥;

else (pki, ski)← PKE .KeyGen(1k); Reg
def
= Reg ∪ {(i, pki)}; return (ski, pki)

– Encaps(EK,Reg, S): K,Km
$←− {0, 1}k;

for all i ∈ S : ci ← PKE .Encrypt(pki,K||Km);
σ ←MACKm(S||c1|| . . . ||c|S|);
H

def
= c1|| . . . ||c|S|||σ

– Decrypt(ski, S,H): K||Km = PKE .Decrypt(ski, ci)
if MAC.Verify(Km, σ, c1|| . . . ||c|S|) return K;
else return ⊥

Theorem 31. The above BE scheme is IND-Dyn2-Ad2-CCA2-secure.

The proof can be found in appendix A.15.

Acknowledgments

This work was supported in part by the French ANR-09-VERS-016 BEST Project. The authors would
like to thank Siamak Shahandashti for pointing out the differences that arise from including the target
set S in the condition on the decapsulation queries in our security model.

References

BDPR98. Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions of security
for public-key encryption schemes. In Crypto ’98, volume 1462 of LNCS, pages 26–45. Springer, 1998. Full
version available at http://www.di.ens.fr/~pointche/pub.php.

BGW05. Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with short ciphertexts
and private keys. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 258–275. Springer, 2005.

BPS00. Olivier Baudron, David Pointcheval, and Jacques Stern. Extended notions of security for multicast public key
cryptosystems. In U. Montanari, J. D. P. Rolim, and E. Welzl, editors, ICALP 2000, volume 1853 of LNCS,
pages 499–511. Springer, 2000.

BW06. Dan Boneh and Brent Waters. A fully collusion resistant broadcast, trace, and revoke system. In ACM CCS,
pages 211–220. ACM, 2006. Full version available at Cryptology ePrint Archive http://eprint.iacr.org/

2006/298.
CS03. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption schemes secure

against adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003. http://

shoup.net/papers.
Del08. Cécile Delerablée. Identity-based broadcast encryption with constant size ciphertexts and private keys. In

K. Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 200–215. Springer, 2008.
DF03. Yevgeniy Dodis and Nelly Fazio. Public key trace and revoke scheme secure against adaptive chosen ciphertext

attack. In Y. G. Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 100–115. Springer, 2003. Full version
available at Cryptology ePrint Archive http://eprint.iacr.org/2003/095.

DPP07. Cécile Delerablée, Pascal Paillier, and David Pointcheval. Fully collusion secure dynamic broadcast encryption
with constant-size ciphertexts or decryption keys. In T. Takagi et al., editor, Pairing 2007, volume 4575 of
LNCS, pages 39–59. Springer, 2007.

FN94. Amos Fiat and Moni Naor. Broadcast encryption. In D. R. Stinson, editor, CRYPTO ’93, volume 773 of
LNCS, pages 480–491. Springer, 1994.

GW09. Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems (with short ciphertexts).
In A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 171–188. Springer, 2009. Full version
available at Cryptology ePrint Archive http://eprint.iacr.org/2008/268.

NNL01. Dalit Naor, Moni Naor, and Jeff Lotspiech. Revocation and tracing schemes for stateless receivers. In J. Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 41–62. Springer, 2001. Full version available at Cryptology
ePrint Archive http://eprint.iacr.org/2001/059.

PP04. Duong Hieu Phan and David Pointcheval. On the security notions for public-key encryption schemes. In
C. Blundo and S. Cimato, editors, SCN, volume 3352 of LNCS, pages 33–46. Springer, 2004.

YFDL04. Danfeng Yao, Nelly Fazio, Yevgeniy Dodis, and Anna Lysyanskaya. Id-based encryption for complex hierarchies
with applications to forward security and broadcast encryption. In ACM CCS ’04. ACM, 2004. Full version
from http://www.cs.brown.edu/~anna/research.html.

http://www.di.ens.fr/~pointche/pub.php
http://eprint.iacr.org/2006/298
http://eprint.iacr.org/2006/298
http://shoup.net/papers
http://shoup.net/papers
http://eprint.iacr.org/2003/095
http://eprint.iacr.org/2008/268
http://eprint.iacr.org/2001/059
http://www.cs.brown.edu/~anna/research.html

14

A Proofs and Definitions

A.1 Definitions

Definition 32 (Homomorphic One-Way Function). Let (G,+) and (H, ∗) be two groups with
2k−1 ≤ |G| ≈ |H| ≤ 2k. A PPT-computable function f : G→ H is

– one-way if ∀A : Pr[x
$← G; y ← A(1k, f(x)); f(y) = f(x)] is negligible.

– homomorphic if f(x+ y) = f(x) ∗ f(y).

Definition 33 (Symmetric Encryption Scheme). SE = (KeyGen,Enc,Dec):

– KeyGen(1k), where k is the security parameter, generates a secret key sk
$← Ke.

– Enc(sk,m) produces a ciphertext c on the input message m and the secret key sk.
– Dec(sk, c) decrypts the ciphertext c under the secret key sk. It outputs the plaintext, or ⊥ if the

ciphertext is invalid.

Such an encryption scheme is said to be (t, qD, ε)-IND-CCA2-secure (semantic security against
adaptive chosen-ciphertext attacks) if in the security game presented on Figure 4, the advantage,
denoted Advind−cca

PKE (k, t, qD), of any t-time adversary A asking at most qD decryption queries to the
ODecrypt oracle is bounded by ε:

Advind−cca
PKE (k, t, qD) = max

A
{Pr[Expind−cca−1

PKE,A (k) = 1]− Pr[Expind−cca−0
PKE,A (k) = 1]}.

Expind−cca−b
SE,A (k)

QD ← ∅, (sk)← KeyGen(1k);

(state,m0,m1)← AODecrypt(·),OEncrypt(·)(FIND; 1k);
c∗ ← Encrypt(ek,mb);

b′ ← AODecrypt,OEncrypt(·)(GUESS, state; c∗);
if c∗ ∈ QD then return 0;
else return b′;

ODecrypt(c)
QD ← QD ∪ {c};
m← Dec(sk, c);
return m;

OEncrypt(c)
c← Enc(sk,m);
return c;

Fig. 4. SE : Semantic Security against adaptive Chosen-Ciphertext Attacks (IND-CCA2)

Definition 34 (Message Authentication Code). A message authentication code is a 3-tuple of
algorithms MAC = (KeyGen,GenMac,VerifMac):

– KeyGen(1k), where k is the security parameter, generates a secret key sk
$← Km.

– GenMac(sk,m) takes as input the secret key and a message, and generates the MAC value σ.
– VerifMac(sk,m, σ) takes as input the secret key, the message and the alleged signature. It checks

the validity of the signature and returns 1 if it is valid, 0 else.

In the following, we will require the strong unforgeability of a one-time MAC: even after one MAC
generation query, the adversary cannot generate a new valid pair, even for the already authenticated
message. This strong unforgeability is formalized in the security game presented on Figure 5, where
the adversary wins if it successfully verifies a pair that has not been generated by the authentication
algorithm. Such a message authentication code is said to be (t, qm, qv, ε)-SUF-CMA-secure (strong
existential unforgeability against chosen-message attacks) if in the security game presented on Figure 5,
the success, denoted Succsuf−cma

MAC (k, t, qm, qv), of any t-time adversary A, asking at most qm MAC values
(OGenMac oracle) and qv verifications (OVerifMac oracle) is bounded by ε:

Succsuf−cma
MAC (k, t, qm, qv) = max

A
{Pr[Expsuf−cma

MAC,A (k) = 1]}.

This definition includes One-Time MAC when qm = 1.

15

Expsuf−cma
MAC,A(k)

sk← KeyGen(1k);
QS ← ∅; QV ← ∅;
AOGenMac(·),OVerifMac(·,·)(1k);
if ∃(m,σ) ∈ QV , (m,σ) 6∈ QS then return 1;
else return 0;

OGenMac(m)
σ ← GenMac(sk,m);
QS ← QS ∪ {(m,σ)}
return σ;

OVerifMac(m,σ)
c = VerifMac(sk,m, σ);
if c = 1 then QV ← QV ∪ {(m,σ)};
return c;

Fig. 5. MAC: Unforgeability (SUF-CMA)

A.2 Proof of Theorem 4

Proof. The implications are clear, since having access to an oracle always makes a stronger adversary.

CCA0 vs. CCA1. For this separation, we can use a simpler, proof because we do not have to worry
about non-malleability. We modify an IND-Dynx-Ady-CCA0-secure BE scheme Π into a scheme Π’
that is still IND-Dynx-Ady-CCA0 but obviously not IND-Dynx-Ady-CCA1:

– Π ′.Encaps(EK,Reg, S) : (H,K)← Π.Encaps(EK,Reg, S); return (0||H,K)

– Π ′.Decaps(uskid, S, b||H) :

if b = 0 then K ← Π.Decaps(uskid, S,H); return K; fi;
if b = 1 then return uskid; fi;

Π ′ is clearly not IND-Dynx-Ady-CCA1, because one call to the decapsulation oracle reveals the secret
key. Π ′ remains IND-Dynx-Ady-CCA0, because the decapsulation oracle only differs and in such an
attack it is not used. Furthermore, everything the adversary interacts with, EK and the OJoin and
OCorrupt oracles, is unchanged and the only task of the simulator is to prepend a 0 to the challenge
key header.

CCA1 vs. CCA2. This separation can use malleability with a bit b as above, except that b is disregarded
in the decapsulation process:

– Π ′.Encaps(EK,Reg, S) : (H,K)← Π.Encaps(EK,Reg, S); return (0||H,K)

– Π ′.Decaps(uskid, S, b||H) : K ← Π.Decaps(uskid, S,H); return K.

This construction is not IND-Dynx-Ady-CCA2-secure, because on receiving a challenge 0||H, the ad-
versary can query 1||H to the ODecaps, which returns K. It is IND-Dynx-Ady-CCA1-secure, because
all possible queries in the FIND-phase can be perfectly simulated by removing b.

A.3 Proof of Theorem 7

Proof. We first study DynS vs. Dyn1, and then Dyn1 vs. Dyn2.

DynS vs. Dyn1. Let Π be a IND-DynS-Ady-CCAz-secure BE scheme. We construct a scheme Π ′ as
follows:

– Π ′.Setup: (EK′,MSK′)← Π.Setup; r
$←− UI; EK

def
= EK′||r,MSK

def
= MSK′||r; return (EK,MSK);

– Π ′.Join(MSK, id): (usk′id, upk
′
id) ← Π.Join(MSK′, id); if id = r, then upk′id

def
= upk′id||MSK; fi;

return (usk′id, upk
′
id);

Π ′ is not IND-Dyn1-Ady-CCAz-secure, because if the adversary has access to a OJoin oracle, he can
query OJoin(r) and get MSK. Intuitively, Π ′ is still IND-DynS-Ady-CCAz-secure, because the users are
joined randomly and |UI| is super-polynomial: user r is in the user set with negligible probability.

16

Dyn1 vs. Dyn2. We modify a Dyn1-secure BE scheme Π in such a way that the Join-oracle effectively
doubles as a Decaps-oracle. This means that an id-string fulfills two roles: It is interpreted as a user
identifier and as the input to a Decaps-oracle.
Π ′.Join(MSK, id):

(usk′id, upk
′
id)← Π.Join(MSK, id);

parse id as (i, S,H); (possible if we assume S and H to have a fixed length)
(uski, upki)← Π.Join(MSK, i); (note that i is a prefix of id)

K ← Π.Decaps(uski, S,H); if K =⊥ then K
$← K; fi;

upkid
def
= upk′id||K; return (usk′id, upkid).

Π ′ is not IND-Dyn2-Ady-CCAz-secure, because the adversary can use OJoin(y) to decrypt the challenge
message. Intuitively, Π ′ is still IND-Dyn1-Ady-CCAz-secure, because the adversary has only a negligible
chance to guess the challenge key header y (which encapsulates a key of high entropy) before the
challenge phase.

A.4 Proof of Theorem 8

We prove this theorem in several steps:

Lemma 35. For ID-Based Broadcast Encryption, we have

IND-Dyn2-Ad1-CCAz⇔ IND-Dyn1-Ad1-CCAz
IND-Dyn2-AdS-CCAz⇔ IND-DynS-AdS-CCAz
IND-Dyn2-Ad0-CCAz⇔ IND-DynS-Ad0-CCAz

Proof. Because the OJoin-oracle has no public output (upkid = id), it does not give the adversary
any information if he cannot also corrupt the user he joined. This means that having a OJoin oracle
without having a OCorrupt oracle at the same time gives the adversary no additional power.

Lemma 36. For ID-Based Broadcast Encryption, we have

IND-DynS-Ad1-CCAz ; IND-Dyn1-Ad1-CCAz
IND-DynS-Ad2-CCAz ; IND-Dyn1-Ad2-CCAz.

Proof. The construction is the same as in the first part of the proof of theorem 7, except that the
MSK is appended to the usk instead of to the upk, and usk is revealed in case of corruption.

Lemma 37. For ID-Based Broadcast Encryption, we have

IND-Dyn1-Ad2-CCAz ; IND-Dyn2-Ad2-CCAz.

Proof. The construction is the same as in the second part of the proof of theorem 7, except that the
“decryption” of the id is appended to the usk instead of to the upk, and usk is revealed in case of
corruption.

A.5 Proof of Lemma 10

Proof. Let Π be a BE scheme that is Ad0-secure (no corruption). We construct a scheme Π ′ that is
still secure in this model, but no AdS-secure (selective corruption). We only change the Join-algorithm.

– Π ′.Join(MSK, id): (uskid, upkid)← Π.Join(MSK, id); return (uskid||MSK, upkid).

The scheme remains secure against adversaries that do not corrupt any user, because they will never
see any uskid’s, which is all that changed. In case of corruption, the adversary learns MSK.

17

A.6 Proof of Lemma 11

Proof. Let Π be a BE scheme that is AdS-secure. We construct a BE scheme Π ′ that is still AdS-secure
but not Ad1-secure.

– Π ′.Setup(1k, N):

(MSK′,EK′)← Π.Setup(1k);
Choose a random subset I ⊂ U , with |I| = t;
Use a t-out-of-t secret sharing scheme:

⊕
i∈I si = MSK′;

EK
def
= EK′||I,MSK

def
= MSK′||I||{si};

return (MSK,EK).

– Π ′.Join(MSK′||I||{si}, id):

(upk′id, usk
′
id)← Π.Join(MSK′, id);

if id /∈ I, sid
$← {0, 1}k; fi;

uskid
def
= usk′id||sid;

return (upk′id, uskid).

The scheme is insecure under Ad1 attacks, because the adversary extracts I from EK, then corrupts all
users in I and computes the MSK. Intuitively, it remains AdS-secure because the adversary must choose
the users he corrupts before setup is called. Therefore, he cannot learn any additional information
unless he corrupts all users in I, which happens with negligible probability. This is true if the adversary
does not corrupt almost all the users, hence the restriction to t-collusion secure schemes, with t no too
big.

A.7 Proof of Lemma 12

Proof. We modify a Ad1-secure BE scheme Π as above with a secret sharing, but of the ephemeral
key at the challenge phase:

– Π ′.Encaps(EK, S):

(H ′,K)← Π.Encaps(EK,Reg, S);
Choose a random subset I ⊂ U , with |I| = t;
∀i ∈ I : (Hi,Ki)← Π.Encaps(EK, {i})
Set K0 = K

⊕
i∈I Ki;

return (H ′,K0, {Hi}i∈I),K.

The Decaps-algorithm just uses H ′, and drop the rest of the ciphertext. Π ′ is not Ad2-secure, since
the adversary can corrupt all users in I after receiving the challenge. Π ′ is still Ad1-secure because
the adversary cannot guess I before seeing the challenge, under the restriction that the number of
corrupted users is not too big.

A.8 Proof of Lemma 13

Proof. We use a proof similar to the one for NM-CCA1 ; NM-CCA2 in [BDPR98]. Let t be the
maximum number of users the adversary is allowed to corrupt, N the number of users at the end of
the game. We assume that both t and N − t are non-constant. Assume that (Dec,Enc) is an IND-
CCA2-secure symmetric encryption, (GenMac,VerifMac) a SUF-CMA-secure MAC, f a homomorphic
OWF with f(x) +f(y) = f(x+y) (an example of this, assuming discrete logarithm is hard, is discrete
exponentiation). We modify an IND-Dynx-Ad1-CCAz-secure BE scheme Π as follows.

18

Π ′.Setup(1k):
(MSK′,EK′)← Π.Setup(k)

for all id ∈ U : rid
$←− {0, 1}k;

MSK
def
= MSK′||{rid}

Π ′.Join(MSK, id):
(usk′id, upk

′
id)← Π.Join(MSK′, id);

uskid
def
= usk′id||rid||{f(ri)}i∈U ;

(if rid undef., rid
def
= 0)

return (uskid, upk
′
id).

Π ′.Encaps(EK,Reg, S):
(H ′,K ′)← Π.Encaps(EK′, S);

Km,K
$←− {0, 1}k;

choose T ⊂ U, |T | = t

C
def
= Enc(K ′,Km||K)

M
def
= GenMac(Km, T ||C||H ′);

H
def
= 0||T ||C||H ′||M

Π ′.Decaps(uskid, S,H):
parse uskid = usk′id||rid||{f(ri)};
parse H = b||T ||C||H ′||M ||R
if (b = 0 and R = ∅)
or (b = 1 and f(R) =

∑
i∈T f(ri))

K ′
def
= Π.Decaps(usk′id, S,H

′);

Km||K
def
= Dec(K ′, C);

if VerifMac(Km, T ||C||H ′,M) = 1
then return K
else return ⊥.

else return ⊥.
Π ′ is not IND-Dynx-Ad2-CCAz-secure, because the adversary can corrupt the right users to retrieve
all ri, and then exploit malleability: he can construct a key header that decrypts to the same key
as the challenge. However, Π ′ is still IND-Dynx-Ad1-CCAz-secure, because the adversary has only a
negligible chance to corrupt the right users that he learns only in the challenge phase. The MAC avoid
the malleability in this case. The formal proof of non-malleability works similarly to the proof of our
naive scheme in Section 6, which can be found in appendix A.15.

A.9 Proof of Lemma 14

Proof. The implication is clear, as it is always possible to choose the same S in the challenge phase
that has been output before the setup phase. Let Π be a TargS-secure BE scheme. We construct a BE
scheme Π ′ that is still TargS-secure, but insecure if the adversary is allowed to select the target set
during the challenge phase (TargC).

– Π ′.Setup works as Π.Setup, but appends a randomly chosen subset T of users to EK.

– Π ′.Encaps works as Π.Encaps, except if the target set S is the set T . In this case, it uses the
random coins 0k (a constant one, publicly known).

Π ′ is IND-Dynx-AdS-CCAz-TargS-secure since the adversary has to announce the target set S before
seeing EK. Π ′ is IND-Dynx-Ady-CCAz-TargC-insecure if the adversary can freely choose S after the
setup phase, because the adversary receives EK before having to output the challenge set S. Then the
challenge K is deterministically chosen. Even if he has to choose C before setup, he can choose C = ∅,
so he can choose any S he wants.

A.10 Proof of Lemma 22

Proof. The implication is clear, as the adversary can always set S = U \C. For the reverse direction, we
exploit the fact that |S| > 1 and modify a scheme Π that we assume to be IND-Dynx-AdS-CCAz-TargF-
secure as follows. If |S| = 1, Encaps sets K = 0 (or in deterministic way as in the proof of lemma 18).

A.11 Proof of Lemma 23

Proof. If |C| ≤ N − 2 and the target set is fixed to S = U \ C, then |S| ≥ N − (N − 2) = 2
Given a IND-Dynx-Ad0-CCAz-TargF-secure scheme Π, we exploit this to construct a scheme Π ′ that
is IND-Dynx-Ad0-CCAz-TargF-secure, but not IND-DynS-Ad0-CCAz-TargS. The only change is as in
the proof of lemma 22: if |S| = 1, Π ′.Encaps sets K = 0.

19

A.12 Proof of Lemma 24

Proof. Given a IND-DynS-Ady-CCAz-TargS-secure BE scheme Π, we construct another BE scheme
Π ′ that is also IND-DynS-Ady-CCAz-TargS-secure, but is IND-Dynx-Ady-CCAz-TargF-insecure.

– Π ′.Setup(1k, N): (EK′,MSK′)← Π.Setup(1k, N); chooses T ⊂ U ; EK
def
= EK′||T ; return (MSK′,EK).

– Π ′.Encaps(EK, S): (H ′,K ′)← Π.Encaps(EK′, S) if S = T then K
def
= 0

Π ′ is still IND-DynS-Ady-CCAz-TargS-secure, because the adversary cannot guess T .Π ′ is not IND-Dynx-Ady-CCAz-TargF-
secure, since the adversary can corrupt all users in U \ T , so that S = T .

A.13 Proof of Theorem 25

Proof. We first show the implications. Let Apac be a partially adaptive choice adversary. From Apac

we construct an adaptive1 adversary Aadap as follows. Aadap forwards all Join-queries made by Apac,
and substitutes each call to JoinCorrupted with Join, then Corrupt. When Apac outputs his target set
S, Aadap corrupts all users not in S.

The second implication is clear.
From any selectively adaptive1 adversary As we construct a partially adaptive adversary as follows.

As announces S before the setup phase. Apa joins all users in S and JoinCorrupts all users in U \ S.
He now has enough information to answer all Corrupt queries.

The separations follow from lemmas 38, 39, and 40.

Lemma 38. If the scheme is t-collusion secure with t and N − t non-constant, JoinCorrupted ;
Corrupt for Ad1 and Ad2.

The advantage the adversary has when using Corrupt queries is that he can view the system after
all users are joined, before he has to decide who to corrupt.

We proceed as in the proof of lemma 11, but instead of encoding I in EK, we append a bit to
each tag that indicates whether the user is in I. Then, the adversary knows this only after a user has
joined.

Proof. Fix a degree of adaptiveness and let Π be a protocol secure in this model. We construct a
protocol Π ′ that is secure in this model, but insecure when the JoinCorrupted oracle is replaced with
a Corrupt oracle.

– Π ′.Setup: (MSK′,EK′)← Π.Setup, then guesses N and determines a random subset I ⊂ [1, N] of
the first N users to be joined with |I| = t. Then it uses a linear t-out-of-t secret sharing scheme

with
⊕

i∈I si = MSK′ MSK
def
= MSK||I||{si}; return (MSK,EK′).

– Π ′.Join(MSK, id): (usk′id, upk
′
id)← Π ′.Join(MSK′, id); if id ∈ I, uskid

def
= usk′id||sid||1 fi;

if id /∈ I, sid
$← {0, 1}k; uskid

def
= usk′id||sid||0 fi; return (uskid, upk

′
id).

Π ′ is not secure under corruption attacks, because the adversary extracts a description of I from
the user tags, then corrupts all users in I and computes the MSK.

Π ′ is secure under JoinCorrupted attacks , because the adversary must choose the users he corrupts
before he joins them. Therefore, he cannot learn any additional information unless he JoinCorrupts
all users in I, which happens with negligible probability.

Lemma 39. When considering partially adaptive attacks, TargF ; TargC.

Proof. Let Π be a public-key BE scheme secure against partially adaptive attacks where the challenge
set is fixed to U \C. Then we construct a BE scheme Π ′ that is still secure against an adversary whose
target set is fixed, but insecure against any adversary who can choose his target set. Let N be the
maximum number of users.

– Π ′.Setup does the same as Π.Setup, then chooses r
$← {0, 1}N and appends it to the MSK.

– Π ′.Join(MSK, i) does the same as Π.Join(MSK, i), then appends the i-th bit of r to the tag.

20

– Π ′.Encaps(EK, S) does the same as Π.Encaps(EK, S), except when EK has N tags appended and
the last bit of these tags encodes S (e. g. S consists of exactly those users i for which r[i] = 1). In
this case, it outputs the first |K| bits of r as K.

Π ′ is TargF-secure: Any fixed adversary has to guess S before he starts to corrupt users, because
S is determined by his corruptions.

Π ′ is not TargC-secure: Any adversary that can freely choose S corrupts no users and sets S to
the users determined by the public tags.

Lemma 40. IND-Dyns-Ad1-CCA0-TargS ; partially adaptive.

Proof. We use exactly the same separation as in lemma 14.

A.14 Proof of Theorem 28

Proof. Partially adaptive-CCAz-TargF ; IND-DynS-AdS-CCAz-TargC: To separate the two notions,
we construct a BE scheme that is partially adaptive-CCAz-TargF-secure but not IND-DynS-AdS-CCAz-TargC-
secure by exploiting the fact that if the adversary has to leave at least two users uncorrupted, |S| > 1.
The scheme is exactly the same as the one in lemma 22.

IND-DynS-AdS-CCAz-TargC ; partially adaptive-CCAz-TargF: We build a scheme that is IND-DynS-AdS-CCAz-TargC-
secure but not partially adaptive-CCAz-TargF-secure by exploiting the fact that the adversary has to
announce the corrupted users before seeing the public key. The scheme is exactly the same as the one
in lemma 11.

A.15 Proof of Theorem 31

We assume that A is an adversary against the IND-Dyn2-Ad2-CCA2 security game. We define a
sequence of games, G0, . . . , G6, where G0 is the IND-Dyn2-Ad2-CCA2 experiment with b = 0 and G6

is the IND-Dyn2-Ad2-CCA2 experiment with b = 1. Let ` be the number of components in a challenge
ciphertext.

Game G0: This is the IND-Dyn2-Ad2-CCA2-Experiment with b = 0. We just recall the generation of
the challenge ciphertext (the Encaps oracle), and the simulation of the ODecaps oracle:

Encaps(EK,Reg, S∗):

1. Generate two session keys K0
e and K1

e , as well as a MAC key K0
m;

2. For each user i ∈ S∗, generate c∗i = PKE .Encrypt(eki,K0
e ||K0

m);
3. Then, compute σ∗ =MAC.GenMac(K0

m, S
∗||(c∗i)i∈S∗);

4. Outputs K0
e , K1

e and H∗ = ((c∗i)i∈S∗ , σ
∗).

ODecaps(i, S,H):

1. Extract Ke||Km = PKE .Decrypt(dki, ci);
2. Check if σ is a valid MAC under key Km;
3. In case of validity, output Ke, otherwise output ⊥.

Game G1: We introduce an additional MAC key that will be used later in the sub-ciphertexts:

Encaps(EK,Reg, S∗):

1. Generate two session keys K0
e and K1

e , as well as two MAC keys K0
m and K1

m;

ODecaps(i, S,H):

2. If i ∈ S∗ and ci = c∗i , check if σ is a valid MAC under key K0
m.

21

Lemma 41. G1 and G0 are identical:

Pr
1

[A → 1] = Pr
0

[A → 1].

Game G2: We now use the additional MAC key in the challenge sub-ciphertexts:

Encaps(EK,Reg, S∗):

2. For each user i ∈ S∗, generate c∗i = PKE .Encrypt(eki,K0
e ||K1

m);

Lemma 42. The difference between G2 and G1 is bounded by

Pr
2

[A → 1]− Pr
1

[A → 1] ≤ `×Advind−cca
PKE (k, t, qD).

Game G3: In this game, we reject decryption queries that should decrypt a sub-ciphertext from the
challenge ciphertext.

ODecaps(i, S,H = ((ci)i∈S , σ)):

2. If i ∈ S∗ and ci = c∗i , output ⊥;

Lemma 43. The difference between G3 and G2 is bounded by

Pr
3

[A → 1]− Pr
2

[A → 1] ≤ Succeuf−cma
MAC (k, t, 1, qD).

Game G4: We define the game G4 as the game G3, but we encaps K1
e instead of K0

e :

Encaps(EK,Reg, S∗):

2. For each user i ∈ S∗, generate c∗i = PKE .Encrypt(eki,K1
e ||K1

m);

Lemma 44. The difference between G4 and G3 is bounded by

Pr
4

[A → 1]− Pr
3

[A → 1] ≤ `×Advind−cca
E (k, t, qD).

Game G5: Previous game is similar to G3, but with K1
e in the challenge ciphertext. We now go back,

as in game G2: we check MAC values of sub-ciphertexts of the challenge ciphertext under K0
m:

ODecaps(i, S,H):

2. If i ∈ S∗ and ci = c∗i , check if σ is a valid MAC under key K0
m.

Since we have the same gap as from G2 to G3:

Pr
5

[A → 1]− Pr
4

[A → 1] ≤ Succeuf−cma
MAC (k, t, 1, qD).

Game G6: We eventually change back the use of the MAC key K0
m in the challenge sub-ciphertexts:

Encaps(EK,Reg, S∗):

2. For each user i ∈ S∗, generate c∗i = PKE .Encrypt(eki,K1
e ||K0

m);

22

Since we have the same gap as from G1 to G2:

Pr
6

[A → 1]− Pr
5

[A → 1] ≤ `×Advind−cca
PKE (k, t, qD).

We do not use anymore the key K1
m: this is exactly the IND-Dyn2-Ad2-CCA2 security game with b = 1.

If we sum up all the gaps, we obtain:

Pr
2

[A → 1]− Pr
0

[A → 1] ≤ `×Advind−cca
PKE (k, t, qD)

Pr
3

[A → 1]− Pr
2

[A → 1] ≤ Succeuf−cma
MAC (k, t, 1, qD)

Pr
4

[A → 1]− Pr
3

[A → 1] ≤ `×Advind−cca
E (k, t, qD)

Pr
5

[A → 1]− Pr
4

[A → 1] ≤ Succeuf−cma
MAC (k, t, 1, qD)

Pr
6

[A → 1]− Pr
5

[A → 1] ≤ `×Advind−cca
PKE (k, t, qD)

And this concludes the proof.

	

