
This is the full version of the extended abstract which appears in Latincrypt '10 (august 8-11, 2010, Puebla, Mexico)
M. Abdalla and P. Barreto Eds., Springer-Verlag, LNCS 6212, pages 40�60.

Mediated Traceable Anonymous Encryption

Malika Izabachène1, David Pointcheval2, and Damien Vergnaud2

1 UVSQ, France
2 ENS/CNRS/INRIA, Paris, France

Abstract. The notion of key privacy for asymmetric encryption schemes was formally de�ned by Bellare,
Boldyreva, Desai and Pointcheval in 2001: it states that an eavesdropper in possession of a ciphertext is not able
to tell which speci�c key, out of a set of known public keys, is the one under which the ciphertext was created.
Since anonymity can be misused by dishonest users, some situations could require a tracing authority capable
of revoking key privacy when illegal behavior is detected. Prior works on traceable anonymous encryption

miss a critical point: an encryption scheme may produce a covert channel which malicious users can use to
communicate illegally using ciphertexts that trace back to nobody or, even worse, to some honest user.

In this paper, we examine subliminal channels in the context of traceable anonymous encryption and we
introduce a new primitive termed mediated traceable anonymous encryption that provides con�dentiality and
anonymity while preventing malicious users to embed subliminal messages in ciphertexts. In our model, all
ciphertexts pass through amediator (or possibly several successive mediators) and our goal is to design protocols
where the absence of covert channels is guaranteed as long as the mediator is honest, while semantic security
and key privacy hold even if the mediator is dishonest.

We give security de�nitions for this new primitive and constructions meeting the formalized requirements.
Our generic construction is fairly e�cient, with ciphertexts that have logarithmic size in the number of group
members, while preventing collusions. The security analysis requires classical complexity assumptions in the
standard model.

1 Introduction

Motivation. The notion of key privacy for (asymmetric) encryption schemes was formally de�ned by
Bellare, Boldyreva, Desai and Pointcheval [2]. The motivation for this security notion is anonymous com-
munication, where eavesdroppers are prevented from learning the identities of the communicating parties,
and namely the target recipient of a ciphertext. Since people are more and more concerned about all their
actions being linkable to each other (or even worse, to their identity), key privacy is obviously a very
attractive notion from the user's point of view. However, some organizations and governments are con-
cerned about how anonymity can be abused by criminals, and the key privacy property can potentially be
dangerous against public safety. Therefore anonymity revocation should be available when illegal behavior
is detected, as provided by group signatures [9].

This motivates the notion of traceable anonymous encryption in which an adversary cannot determine
which user's public key has been used to generate the ciphertext that it sees while a trusted third party
(given some trapdoor information) is able to revoke anonymity and thus to trace back to the intended
recipient. Some work dealt with such a property, but to the best of our knowledge, a critical point was
missed: an encryption scheme may contain a steganographic channel (or a covert channel) which malicious
users can use to communicate illegally using ciphertexts that trace back to nobody, or even worse to some
honest user. More precisely, still using the o�cial scheme, it may be possible to encrypt a message to a user
A (the o�cial target recipient for the tracing authority) so that the randomness is used for transmitting
some extra information to a user B, that would not be traced as a possible recipient.

For instance, in 2007, Kiayias, Tsiounis and Yung [17] presented group encryption, a cryptographic
primitive which can be seen as the encryption analogue of a group signature [9]. It provides semantic
security, anonymity and a way for the group manager to revoke anonymity of ciphertexts. However, it
makes use of zero-knowledge proofs to determine whether a ciphertext is valid or not. As a consequence,
an invalid ciphertext can be used to transmit some information. Above all, subliminal channels (available
in the randomness) can be exploited to send some information in addition to a clean message, or even to
frame an honest user.

c© Springer-Verlag, 2010.

Let us consider the following example: in 2000, Sako [20] proposed a novel approach to achieve bid
secrecy in auction protocols. Her technique consists in expressing each bid as an encryption of a known

message, with a key corresponding to the value of the bid. Therefore, what needs to be hidden in the
ciphertext is not the message, but the key itself; the use of traceable anonymous encryption (e.g. group
encryption) seems very promising for such applications (the bid itself being identi�ed using the tracing
procedure). However, one major concern in auction protocols is the problem of collusion between bidders
and it is highly desirable to prevent bidders from engaging in such collaborative bidding strategies. Unfor-
tunately, no known construction of traceable anonymous encryption is free of covert channels and the main
purpose of the present paper is precisely to propose a new cryptographic primitive addressing this issue.
Recently, Abdalla, Bellare and Neven [1] introduced the concept of robust encryption in which it is hard to
produce a ciphertext that is valid for two di�erent users. They showed that if the anonymous encryption
scheme used in Sako's protocol is not robust then the auction protocol does not achieve fairness (i.e. a
cheating bidder can place a bid that he can open later to an arbitrary value). The primitive we propose
in this paper permits to achieve simultaneously fairness and collusion-freeness in Sako's protocol.

Contributions. We introduce a new primitive which we call mediated traceable anonymous encryption

and that provides con�dentiality and anonymity while preventing malicious users to embed subliminal
messages in ciphertexts, which would allow to transmit information to a recipient that would remain
perfectly anonymous, or even worse to frame an honest user.

In order to provide semantic security, asymmetric encryption has to be probabilistic, and randomness
can be used as a covert channel. We will thus have to avoid the users to control the randomness used
in the ciphertext. We introduce a mediator that is not provided with any secret information, but whose
role �similar to the warden model introduced by Simmons [21]� is to add more randomness to each
ciphertext so that any hidden message is smothered. It is worth noting that �contrary to the group
encryption primitive� the mediator only checks the syntactic validity of the ciphertext but it does not
verify the soundness of any complex proof. We can even iterate the re-randomization process by several
mediators to be sure that any ciphertext has been re-randomized at least once.

Another point for traceability, it is impossible to get it without assuming that users (recipients) are
registered in the system, since registered users only can be traced. As for (dynamic) group signatures [3],
we also introduce a trusted party termed the issuer that registers new users. One may wonder whether
the issuer has to be trusted or not with respect to the semantic security property, since he might know all
the decryption keys of the system: one does not really care about that since one can use its own additional
encryption scheme to encrypt the plaintext before re-encrypting using our traceable encryption primitive.

It is relatively easy to design an anonymous encryption scheme that provides traceability or the absence
of steganographic channel, but the task is more challenging if we want to achieve both simultaneously.
Indeed, the existence of the tracing procedure implies that a ciphertext contains (at least implicitly) some
information about the recipient, but this value can be used to transmit one bit of covert information. For
instance, a Boneh-Franklin [6] identity-based variant of the ElGamal universal re-encryption scheme [15]
cannot be used to achieve covert-free traceable anonymous encryption, since it turns out that the re-
randomization preserves some predicates that can be used to transfer some information.

In this paper we propose a formal de�nition of Mediated Traceable Anonymous Encryption Scheme

(Mtaes) and a security model capturing the (seemingly contradictory) following security notions:

1. subliminal channel freeness: after re-randomization, no information at all can be extracted from a
ciphertext that does not trace back to a user registered to the issuer. We thus assume that the
communication network guarantees that any ciphertext will go through a mediator. In practice, we
can assume that in a speci�c network, all the routers implement the mediator re-randomization, which
enforces the use of our scheme by all the users, and which guarantees that all the ciphertexts are re-
randomized at least once. Then, packets that do not follow the encryption rules are made random;

2. the tracing trapdoor information does not allow the opener to violate the semantic security of cipher-
texts nor to issue valid decryption keys (i.e. to play the role of the issuer);

2

3. the ciphertext remains con�dential and anonymous even with respect to the mediator (i.e. we only
rely on the mediator to guarantee the absence of covert channels in ciphertexts, by properly re-
randomizing the ciphertexts), or any collusion of users and the mediator. As already said, multiple
re-randomizations are even possible by various independent mediators.

We propose e�cient constructions of Mtaes in the standard model, which security relies on DDH-like
assumptions. The �rst one does not split the roles of the issuer and the opener and can be applied in
any group where the DDH assumption holds while the second scheme makes use of (Type-2 or Type-
3 [13]) pairing-friendly groups, with asymmetric pairing where the XDH and the (asymmetric1) DBDH
assumptions hold, to separate the two authority roles (and then achieve the second above property). The
two �rst schemes lead to ciphertexts that are linear in the number of registered users. This is not very
practical, but they are fully-collusion secure. Using public collusion-secure codes (e.g. IPP codes [16]),
better e�ciency can be achieved: we provide a generic construction, with (almost) logarithmic ciphertexts.

2 Security Model

2.1 Syntactic De�nitions

In this section, we give the formal de�nitions of our new concept: the Mediated Traceable Anonymous

Encryption, which involves two trusted authorities, an issuer for adding new members to the system,
and an opener for revoking anonymity; and a non-trusted authority, the mediator that systematically
re-randomizes all its inputs, without any private information. There even can be several independent
mediators. Mediators will be assumed to be honest (but possibly curious, and thus de�nitely not trusted):
for the subliminal-channel freeness security notion we will de�ne later, it is clear that in case of collusion
with the last mediator, this strong security level cannot be achieved.

De�nition 1 (Mediated Traceable Anonymous Encryption Schemes). A Mtaes is a tuple of
e�cient algorithms or protocols (GSetup, Join, Encrypt, ReRand, Decrypt, Trace, Judge) such that:

� GSetup(λ)→ (mpk,msk, skO): this is a randomized algorithm run by a trusted party that, on input of
a security parameter λ, produces three keys consisting of a group public key mpk, a manager's secret
key msk and an opening key skO; It also generates a data structure L, called a registration list which
is initially empty.

� Join(id,mpk,msk) → (pkid, skid) takes a bit-string identity id, the group public key mpk and the
manager's secret key msk as inputs. It outputs a pair of member keys (pkid, skid) associated to id, and
updates the registration list L with the pair (id, pkid).

� Encrypt(mpk, pkid,m) → C takes as input the group public key mpk, a user public key pkid and a
message m, and outputs a pre-ciphertext C.

� ReRand(mpk, C) → C ′ takes as input the group public key mpk and a pre-ciphertext C, and outputs
a randomized ciphertext C ′. Note that it may be applied again on a re-randomized ciphertext.

� Decrypt(mpk, skid, C)→ m takes as input the group public key mpk, a member secret key skid, as well
as a ciphertext C, then it outputs a message, or ⊥ in case of invalid ciphertext.

� Trace(mpk, skO,L, C) → (id, Π): This is a deterministic algorithm that on input the group public
key mpk, the opening key skO, the registration list L and a ciphertext C, outputs a user identity id

(equivalently, the public key pk) and a proof Π for the judge, otherwise ⊥ in case of failure.
� Judge(mpk,L, C, id, Π): This is a deterministic algorithm that on input the group public key mpk, the
registration list L, a ciphertext in C, a user identity id and a proof Π checks whether Π indeed proves
that id is the target recipient of the ciphertext C (or one of them, in case of collusion).

Random tapes have been omitted in the notations, for the sake of clarity, but in some cases, they may be
explicit: Join(id,mpk,msk; r), Encrypt(mpk, pkid,m; r) or ReRand(mpk, C; r).

1 The asymmetric DBDH assumption [11] reduces to the classical DBDH assumption [6] in the case of Type-3 bilinear
structures [13].

3

2.2 Security Notions

In any group protocol, where each user owns a private key, collusions have to be dealt with: a collusion
of users may help them to manufacture a new pair (pk, sk) associated to no user, or to an honest user.
The latter case should be unlikely. The tracing algorithm should thus (in case the ciphertext "contains"
some information) either output the identity of the target receiver if this is a well-formed ciphertext to
this user, or the identity of one of the colluders who helped to manufacture the target public key. If the
pre-ciphertext does not target any public key (nobody can be traced) then we want the re-randomization
to cancel any information. Collusion will be modeled by corrupt queries, that will provide the secret keys
of the corrupted users to the adversary. Then, from all these keys, the adversary will be allowed to do
anything it wants to transfer some information, in an untraceable way.

As a consequence, in the security model we provide the adversary with two oracles: a restricted Join
oracle (denoted Join∗) that just outputs the public keys, and a Corrupt oracle that outputs the user's secret
key. Corrupted users are then registered in the corruption list C, initially empty:

� Join∗(id) → pkid, takes as input an identity, and then runs Join(id,mpk,msk) to get (pkid, skid), but
outputs pkid only. Note that the registration list L has been updated by the Join procedure;

� Corrupt(id) → skid takes as input a registered identity, and outputs the secret key corresponding to
pkid. It also updates the corruption list C with (id, skid).

We then denote by LU the list of registered identities, and by CU the list of the corrupted users, whereas L
and C also contain keys. We additionally de�ne a predicate Traceable(U , C), where U is a list of identities
and C a pre-ciphertext, that tests whether the tracing algorithm, run on the global parameters and a
re-randomization of C, outputs an identity id ∈ U with a convincing proof Π.

Since we are dealing with anonymity and traceability, we should address full-anonymity and chosen-
ciphertext security, providing access to the opening oracle and to the decryption oracle respectively. But due
to the inherent malleability of such a re-randomizable encryption scheme, some constraints are required.
This is discussed in the Appendix A. In this section, we focus on the basic anonymity (without opening
oracle access) and the chosen-plaintext security (without decryption oracle access).

In order to avoid the opener to frame an honest user, as the recipient of a ciphertext that is not aimed
to him, we can rely on an additional Public Key Infrastructure (PKI), in which each user owns a pair of
public/private key, and signs pkid when it receives the associated secret key skid. This signature can be
added to the registration list L. We thus trust the link between an identity id and the associated public
key. And we will use both in an indi�erentiable way.

Semantic Security. The main security notion for an encryption scheme is of course the semantic
security of the ciphertext (after re-randomization), that is formalized by the indistinguishability of the
two experiments (for b = 0, 1) presented Fig. 1(a). As usual, the adversary has to guess which plaintext has
been encrypted in the challenge ciphertext. Note that we provide the opening key skO to the adversary,
which models a collusion with the opener. We restrict the adversary to use a valid (registered) public
key, since otherwise no one can decrypt the ciphertext. We are thus only interested in the privacy of real
ciphertexts. We de�ne the advantage of A in breaking the semantic security by its advantage:

AdvrindMtaes,A(λ) = Pr[Exprind−1
Mtaes,A(λ) = 1]− Pr[Exprind−0

Mtaes,A(λ) = 1].

We de�ne a weaker version, where the opening key is not provided to the adversary (which is useful when
we cannot separate the issuing and opening/tracing roles, as in our �rst simple scheme below):

Advweak−rindMtaes,A (λ) = Pr[Expweak−rind−1
Mtaes,A (λ) = 1]− Pr[Expweak−rind−0

Mtaes,A (λ) = 1].

As usual, we denote by AdvMtaes(λ, τ), for any security notion, the best advantage any adversary can get
within time τ . Furthermore, we may add an extra parameter ω, when we limit the number of Corrupt-
queries. This will be useful for schemes that are not fully-collusion secure (see Section 4), but ω-resilient:
the security holds if the number of Corrupt-queries is less than ω.

4

Experiment Exprind−b
Mtaes,A(λ)

(mpk,msk, skO)← GSetup(λ)

AJoin∗(·),Corrupt(·)(mpk, skO)
→ (pk,m0,m1, s)

C ← Encrypt(mpk, pk,mb)
C∗ ← ReRand(mpk, C)

b′ ← AJoin∗(·),Corrupt(·)(s, C∗)
IF pk 6∈ LU\CU RETURN 0
ELSE RETURN b′

Experiment Expranon−b
Mtaes,A(λ)

(mpk,msk, skO)← GSetup(λ)

AJoin∗(·),Corrupt(·)(mpk)
→ (pk0, pk1,m, s)

C ← Encrypt(mpk, pkb,m)
C∗ ← ReRand(mpk, C)

b′ ← AJoin∗(·),Corrupt(·)(s, C∗)
IF pk0 6∈ LU\CU

OR pk1 6∈ LU\CU RETURN 0
ELSE RETURN b′

Experiment Expind−b
Mtaes,A(λ)

(mpk,msk, skO)← GSetup(λ)

AJoin∗(·),Corrupt(·)(mpk, skO)
→ (pk,m0,m1, s)

C∗ ← Encrypt(mpk, pk,mb)

b′ ← AJoin∗(·),Corrupt(·)(s, C∗)
IF pk 6∈ LU\CU RETURN 0
ELSE RETURN b′

Experiment Expanon−b
Mtaes,A(λ)

(mpk,msk, skO)← GSetup(λ)

AJoin∗(·),Corrupt(·)(mpk)
→ (pk0, pk1,m, s)

C∗ ← Encrypt(mpk, pkb,m)

b′ ← AJoin∗(·),Corrupt(·)(s, C∗)
IF pk0 6∈ LU\CU

OR pk1 6∈ LU\CU RETURN 0
ELSE RETURN b′

(a) Semantic Security (b) Anonymity

Experiment ExpcorrectMtaes,A(λ)
(mpk,msk, skO)← GSetup(λ)

AJoin∗(·),Corrupt(·)(mpk)
→ (pk,m, r, r′)

C ← Encrypt(mpk, pk,m; r)
C∗ ← ReRand(mpk, C; r′)
IF pk 6∈ LU RETURN 0
IF pk 6= Trace(mpk, skO,L, C∗)

RETURN 1
IF Decrypt(mpk, sk, C∗) 6= m

(where sk associated to pk) RETURN 1
ELSE RETURN 0

Experiment ExpsubF−b
Mtaes,A(λ)

(mpk,msk, skO)← GSetup(λ)

AJoin∗(·),Corrupt(·)(mpk)
→ (C0, C1, s)

C∗ ← ReRand(mpk, Cb)

b′ ← AJoin∗(·),Corrupt(·)(s, C∗)
IF Traceable(CU , C0)

AND Traceable(CU , C1) RETURN 0
ELSE RETURN b′

(c) Correctness (d) Subliminal-Channel Freeness

Experiment Exppriv−b
Mtaes,A(λ)

(mpk,msk, skO)← GSetup(λ)

AJoin∗(·),Corrupt(·)(mpk)
→ (pk0, pk1,m0,m1, s)

C∗ ← Encrypt(mpk, pkd,md)

b′ ← AJoin∗(·),Corrupt(·)(s, C∗)
IF pk0 6∈ LU\CU

OR pk1 6∈ LU\CU RETURN 0
ELSE RETURN b′

Experiment Expunlink−b
Mtaes,A(λ)

(mpk,msk, skO)← GSetup(λ)

AJoin∗(·),Corrupt(·)(mpk)
→ (C, s)

C′0 ← ReRand(mpk, C)

C′1
R← C, C∗ ← C′b

b′ ← AJoin∗(·),Corrupt(·)(s, C∗)
IF Traceable(CU , C′0) RETURN 0
ELSE RETURN b′

(e) Privacy (f) Ciphertext Unlinkability

Fig. 1. Experiments for Security Notions

5

The above security notion is about the re-randomized ciphertext, and thus for an adversary that does
not have access to the pre-ciphertext before re-randomization. We thus de�ne the same security notion
about the pre-ciphertext characterized by the advantages AdvindMtaes,A(λ) and Advweak−indMtaes,A(λ). It is clear
that the latter security notions (before re-randomization) are stronger than the former, and address the
case where the mediator is honest but curious:

Theorem 2. For any schemeMtaes and any time bound τ ,

AdvrindMtaes
(λ, τ) ≤ AdvindMtaes

(λ, τ) Advweak−rindMtaes
(λ, τ) ≤ Advweak−indMtaes

(λ, τ)

Anonymity. Our goal in this work is anonymity of the recipient (a.k.a. key privacy [2]), we formalize it
as usual by the indistinguishability of the two experiments presented Fig. 1(b): the adversary has to guess
which public key has been used to generate the challenge ciphertext. Again, we restrict the adversary
to use valid (registered) public keys. We de�ne the advantage of A in breaking the anonymity (after
re-randomization or before) by:

Adv
(r)anon
Mtaes,A(λ) = Pr[Exp

(r)anon−1
Mtaes,A (λ) = 1]− Pr[Exp

(r)anon−0
Mtaes,A (λ) = 1].

Theorem 3. For any schemeMtaes and any time bound τ , AdvranonMtaes
(λ, τ) ≤ AdvanonMtaes

(λ, τ).

Correctness. Of course, an encryption scheme that is non-decryptable could be secure (semantically
secure and anonymous). We thus need the scheme to be both decryptable and traceable: a well-formed
ciphertext should be decryptable by the target recipient (using sk associated to the target pk, both gener-
ated by the Join oracle), and should be traced (with high probability) to this recipient by the opener. No
adversary should be able to win the correctness game (see Fig. 1(c)) with signi�cant advantage:

AdvcorrectMtaes,A(λ) = Pr[ExpcorrectMtaes,A(λ) = 1].

Subliminal-Channel Freeness. Let us remind that our ultimate goal is that either the ciphertext can
be traced to a corrupted user (under the control of the adversary), or the adversary cannot transfer any
information. This is modeled by the subliminal-channel freeness property (see Fig. 1(d)): the adversary
generates two pre-ciphertexts C0 and C1, with which it tries to transmit some information. If they are
well-formed, and really trace to corrupted users, then this is normal that the information is transferred and
so the adversary does not win (hence the two tests with the predicate Traceable). The challenger provides
a re-randomized version of one of them to the adversary, and the latter has to guess which one: it has no
bias unless some information leaks in the re-randomized ciphertext. As a consequence, subliminal-channel
freeness is quanti�ed by

AdvsubFMtaes,A(λ) = Pr[ExpsubF−1
Mtaes,A(λ) = 1]− Pr[ExpsubF−0

Mtaes,A(λ) = 1].

We note that for this security notion, the adversary generates the ciphertext itself, and is thus allowed to
generate ill-formed ciphertexts, contrarily to the previous security notions. In such a case, only, it wins if
it manages to transmit some information. We now provide two additional one that will imply the above
ones.

Privacy. This privacy notion (see Fig. 1(e)) encompasses both semantic security (plaintext-privacy) and
anonymity (key-privacy) before re-randomization, and thus even with respect to the mediator:

AdvprivMtaes,A(λ) = Pr[Exppriv−1
Mtaes,A(λ) = 1]− Pr[Exppriv−0

Mtaes,A(λ) = 1].

Ciphertext-Unlinkability. Then, we want that either the pre-ciphertext sent to the mediator has
a well identi�ed target recipient, or the re-randomization cancel any information: unless the ciphertext
traces back to a user controlled by the adversary, or the re-randomized ciphertext is unlinkable to the
input pre-ciphertext, and thus indistinguishable with a truly random ciphertext (in the Real-or-Random
sense) � (see Fig. 1(f)):

AdvunlinkMtaes,A(λ) = Pr[Expunlink−1
Mtaes,A(λ) = 1]− Pr[Expunlink−0

Mtaes,A(λ) = 1].

6

2.3 Relations between the Security Notions

In this section, we state that the later security notions imply the former, and the proofs can be found in
the Appendix A.

Theorem 4. For any schemeMtaes and any time bound τ ,

Advweak−indMtaes
(λ, τ) ≤ AdvprivMtaes

(λ, τ) AdvanonMtaes
(λ, τ) ≤ AdvprivMtaes

(λ, τ)

AdvprivMtaes
(λ, τ) ≤ Advweak−indMtaes

(λ, τ) + AdvanonMtaes
(λ, τ).

Theorem 5. For any schemeMtaes and any time bound τ ,

AdvsubFMtaes
(λ, τ) ≤ 1

2
× AdvunlinkMtaes

(λ, τ).

3 Our scheme

First, we present a simple scheme achieving the above security requirements. This scheme inherits the
properties of some combination of broadcast encryption and re-randomizable techniques. It ful�lls the
strongest properties of privacy and unlinkabillity under the sole DDH assumption, but with the restriction
that the same trapdoor is used for both decrypting and tracing ciphertexts. We then show how we can
separate these capabilities, under the XDH [5] and the (asymmetric) DBDH [11] assumptions. These
classical assumptions are reviewed in the Appendix B. We here use classical advantage notations for
all the decisional problems.

3.1 Description of the Scheme Mtaes1

� GSetup(λ): The GSetup algorithm takes as input a security parameter λ. It de�nes a cyclic group G of
prime order q, in which the DDH assumption holds, in some basis g. We denote G∗ = G\{1}, the subset
of elements of order exactly q. It chooses random scalars x1, . . . , xt ∈ Z∗q with t the maximum number
of registered users. It sets the master secret key and the opening key as msk = skO = (x1, x2, . . . , xt)
and the group public key mpk = (y1 = gx1 , . . . , yt = gxt). It also sets the registration list L to empty.

� Join(id,mpk,msk): The id is assumed to be an integer between 1 and t. This algorithm thus outputs
skid = xid as the secret key of user id, whereas the public key is yid. It adds the pair (id, pkid = yid) in
the list L.

� Encrypt(mpk, i,m): To encrypt a message m ∈ G under a public key pki = yi, we choose two random
scalars r, s ∈ Z∗q and compute (A1, A2, B1, B2) = (gr,m · yri , gs, ysi).

� ReRand(mpk, C): To re-randomize a pre-ciphertext in (G∗)4, we �rst choose 4t random scalars rj , r
′
j

and sj , s
′
j in Z∗q , for j = 1, · · · , t and compute t sub-ciphertexts as follows:

C1,j ← A1 ·B
r′j
1 · g

rj C2,j ← A2 ·B
r′j
2 · yj

rj

D1,j ← B1
s′j · gsj D2,j ← B2

s′j · yjsj .

Then, we obtain a sequence C of t tuples (C1,j , C2,j , D1,j , D2,j) for j = 1, . . . , t. Note that the second
halves of the tuples allow to re-randomize again the ciphertext, with 4t random scalars aj , a

′
j and

bj , b
′
j :

C ′1,j ← C1,j ·D
a′j
1,j · g

aj C ′2,j ← C2,j ·D
a′j
2,j · yj

aj

D′1,j ← D1,j
b′j · gbj D′2,j ← D2,j

b′j · yjbj .

� Decrypt(mpk, i, C): To decrypt a ciphertext for user i, using the secret key xi, we compute m ←
C2,i · C−xi1,i . Note that user i can check whether he really is the target recipient: D2,i

?
= Dxi

1,i.

7

� Trace(msk,L, skO, C): To trace the recipient of a ciphertext C, parse C as (C1,i, C2,i, D1,i, D2,i)i=1,...,t

and check whether g, yi, D1,i, D2,i is a DDH-tuple for one of the index i (which would correspond to a
registered user in the list L). If such an index is found, we provide a non-interactive zero-knowledge
proof of validity Π showing the existence of xi ∈ Zq such that yi = gxi and D2,i = Dxi

1,i; otherwise we
output an error symbol ⊥. Note that the same can be done on (g, yi, B1, B2) from the pre-ciphertext.

� Judge(mpk,L, C, id, Π): This algorithm checks whether the proof Π is valid wrt L, C, id.

3.2 Security Analysis

Correctness. First, one should note that after re-randomization, a ciphertext for pki = yi looks like

C1,j ← A1 ·B
r′j
1 · g

rj = gr+s·r
′
j+rj C2,j ← A2 ·B

r′j
2 · y

rj
j = m · yir+s·r

′
j · yjrj

D1,j ← B
s′j
1 · g

sj = gs·s
′
j+sj D2,j ← B

s′j
2 · yj

sj = yi
s·s′j · ysjj ,

where r, s are the random values chosen by the sender, whereas r′j , s
′
j and the rj , sj are chosen by the

re-randomizer for j = 1, . . . , t. If yi ∈ L, and thus yi = gxi , then

C1,i = gr+s·r
′
i+ri C2,i = m · yir+s·r

′
i+ri = m · Cxi1,i

D1,i = gs·s
′
i+si D2,i = yi

s·s′i+si = Dxi
1,i.

Using the secret key ski = xi, we immediately get m by computing C2,i · C−xi1,i . A similar computation on
D1,i and D2,i traces back user i. For any index j 6= i (or if yi = gxi 6∈ L), with δj = xj − xi 6= 0,

C1,j = gr+s·r
′
j+rj C2,j = m · gxi(r+s·r

′
j)+xjrj = m · Cxj1,j · g

(r+s·r′j)δj

D1,j = gs·s
′
j+sj D2,j = gxi·s·s

′
j+xjsj = D

xj
1,j · g

δjss
′
j .

Then, the tuple (C1,j , C2,j , D1,j , D2,j) follows a distribution statistically close to random in G4, since s and
s′j are non-zero. It thus contains no information on m and i. We will formally justify that in the following.

Privacy. The privacy property implies both semantic security and anonymity of pre-ciphertexts. We
obtain the following result, whose proof can be found in the Appendix C:

Theorem 6. Our scheme Mtaes1 proposed in Section 3.1 ful�lls the privacy property under the DDH
assumption:

AdvprivMtaes1
(λ, τ) ≤ 2t · AdvddhG (τ + 2τexp),

where τexp denotes an upper bound on the time computation for one exponentiation.

Unlinkability. In order to get the subliminal-channel freeness, we will prove the unlinkability, which
holds under the DDH assumption too (the proof can be found in the Appendix C):

Theorem 7. Our schemeMtaes1 proposed in Section 3.1 is unlinkable under the DDH assumption:

AdvunlinkMtaes1
(λ, τ) ≤ 2(t+ 1) · AdvddhG (τ + 2τexp),

where τexp denotes an upper bound on the time computation for one exponentiation.

8

3.3 Two-Level Scheme Mtaes2

In the previous scheme Mtaes1, the same key is used for both the join and the tracing procedures,
hence it achieves the weak security level only. In this section, we separate these two capabilities in
Mtaes2, making use of a so-called Type-2 or Type-3 pairing-friendly structure [13]. It consists in a
tuple (G1,G2,GT , q, e, g1, g2) where e is an admissible bilinear map [6], g1, g2 and G = e (g1, g2) are gener-
ators of G1, G2 and GT respectively (and additionally there exists an e�ciently computable isomorphism
ψ : G2 → G1 in the case of Type-2 structure). We consider structures in which the XDH (i.e. the DDH
assumption in G1) and the (asymmetric) DBDH2 [11] assumptions can be made (e.g., using Weil or Tate
pairings on certain MNT curves as de�ned in [18], these assumptions seem reasonable).

Description.

� GSetup(λ): The GSetup algorithm takes as input a security parameter λ and generates parameters for
a bilinear structure (G1,G2,GT , q, e, g1, g2) As before, the master secret key is set to be a sequence of
t random scalars in Z∗q , msk = (x1, x2, . . . , xt), and the group public key is de�ned by

mpk =

(
g1, g2, G, (y1 = g1

x1 , . . . , yt = g1
xt),

(Y1 = e (gx11 , g2) , . . . , Yt = e (gxt1 , g2))

)
.

The opening key consists of the sequence skO = (h1 = gx12 , · · · , ht = gxt2). This algorithm also sets the
registration list L to empty.

� Join(id,mpk,msk): As before, this algorithm outputs xid as the secret key skid of user id, whereas the
public key is (yid, Yid). It also adds the pair (id, pkid = (yid, Yid)) in the list L. (Note that yid would be
enough in the public key, and in the master public key, but the use of Yid will simplify the notations).

� Encrypt(mpk, i,m): To encrypt a message m ∈ GT under a public key pki = (yi, Yi), one �rst chooses
two random scalars r, s ∈ Z∗q and then computes (A1, A2, B1, B2) = (Gr,m · Y r

i , g
s
1, y

s
i).

� ReRand(mpk, C): To re-randomize a pre-ciphertext, one �rst chooses 4t random scalars rj , r
′
j and sj , s

′
j

in Z∗q for j = 1, · · · , t and computes t sub-ciphertexts as follows:

C1,j ← A1 · e (B1, g2)r
′
j ·Grj C2,j ← A2 · e (B2, g2)r

′
j · Y rj

j

D1,j ← B1
s′j · gsj1 D2,j ← B2

s′j · ysjj .

Then, we obtain a sequence C of t tuples (C1,j , C2,j , D1,j , D2,j) for j = 1, . . . , t. Note that the second
halves of the tuples allow to re-randomize again the ciphertext, as inMtaes1.

� Decrypt(mpk, i, C): To decrypt a ciphertext for user i, using the secret key xi, we compute m ←
C2,i · C−xi1,i .

� Trace(msk,L, skO, C): To trace the recipient of a given ciphertext C, check whether (g1, yi, D1,i, D2,i) is
a DDH-tuple in G1 for some registered user i in the list L, by testing whether e (D2,i, g2) = e (D1,i, hi).
If no such one is found, we output ⊥ otherwise,we provide a non-interactive zero-knowledge proof of
validity, Π showing the existence of xi ∈ Zq such that hi = gxi2 and D2,i = Dxi

1,i.

� Judge(mpk,L, C, id, Π): This algorithm checks whether the proof Π is valid wrt L, C, id.

Security Properties. Granted the richer structure, and both the XDH and the DBDH assumptions, this
scheme achieves all the expected security properties: anonymity, indistinguishability (even given access to
the opening/tracing key) and unlinkability. The proof can be found in the Appendix D.

2 Our scheme actually relies on a weaker mixed assumption which states that given ga1 , g
a
2 , e(g1, g2)

b and e(g1, g2)
c, it is

intractable to decide whether c
?
= ab mod q.

9

Theorem 8. Our schemeMtaes2 proposed in Section 3.3 is anonymous, indistinguishable and unlinkable

under the XDH assumption (the DDH assumption in G1), and the DBDH assumption:

AdvanonMtaes2
(λ, τ),AdvunlinkMtaes2

(λ, τ) ≤ 2t · AdvxdhBS (τ + 2τexp)

AdvindMtaes2
(λ, τ) ≤ t · AdvdbdhBS (τ),

where τexp denotes an upper bound on the time computation for one exponentiation.

3.4 Protection Against the Issuer

As the Private Key Generator (PKG) in Identity Based-Encryption, the issuer can be involved in malicious
activities since it knows all users' registered secret keys. We can easily prevent the issuer from breaking
the semantic security of a ciphertext sent to a speci�c user by �rst encrypting the message with an
appropriate encryption scheme (for which the issuer does not know the decryption keys) and then re-
encrypt (component by component) the ciphertext with our mediated traceable anonymous encryption

scheme: If the global ciphertext is not traceable, then the underlying ciphertext will be totally random,
and thus, no information will be transmitted.

More precisely, for such a technique to be applied with our schemes, we need an underlying ElGamal [12]
encryption scheme in G for Mtaes1 (or G = GT for Mtaes2). For encrypting a message m ∈ G, one
gets the recipient's ElGamal public key, and applies the ElGamal encryption of m: it gets (c1, c2) ∈ G2.
Thereafter, c1 and c2 are independently re-encrypted under our Mtaes1 scheme, using the recipient
registered key. One could use another encryption scheme, di�erent or stronger than ElGamal. The unique
constraint is that the underlying encryption scheme should produce a ciphertext in Gk, for some k, so that
it can thereafter be re-encrypted by ourMtaes's.

4 An ω-Resilient Generic Construction

In this section, we propose a generic scheme that is ω-resilient, which means that the malicious adversary
can corrupt up to a maximum of ω users adaptively and thus possess the ω corresponding private keys.
However, it cannot obtain any information relevant to ciphertexts that are encrypted for public keys not
within the corrupt users. For a �xed ω, our construction is fairly e�cient, with ciphertexts that have
logarithmic size in the number of group members (instead of linear with the two previous proposals
Mtaes1 and Mtaes2). However, tracing might fail (with small probability, depending on the code).
Our construction relies on well-known tools, namely collusion-secure codes and homomorphic encryption

schemes that generalize the protocols from the previous section.

4.1 Collusion-secure codes

Our construction makes use of ω-traceable codes [22], in the same vein as the collusion-secure codes
proposed by Boneh and Shaw [7] as a method of digital �ngerprinting while preventing a collusion of a
speci�ed size ω from framing a user not in the coalition, but furthermore allowing the traceability of a
traitor from a word generated by the coalition. We consider a code C of length ` on an alphabet T , with
#T = t (i.e. C ⊆ T `) and we call it an (n, `, t)-code if #C = n. The elements of C are called codewords.

For any subset of codewords C0 ⊂ C, we de�ne the set of descendants of C0 (a.k.a. the feasible set),
denoted Desc(C0) = {x ∈ T ` : xi ∈ {ai : a ∈ C0}, 1 ≤ i ≤ `}. We now recall the following de�nitions
concerning non-frameability and traceability of codes. Let C be an (n, `, t)-code and ω any integer such
that n > t ≥ ω ≥ 1.

De�nition 9. C is an ω-frameproof code if for any subset C0 ⊂ C such that #C0 ≤ ω, Desc(C0) ∩ C = C0.

10

Optimal explicit constructions of ω-frameproof codes are known for small coalitions [4]. Wang and Xing [24]
provided explicit constructions of ω-frameproof codes based on algebraic curves over �nite �elds; they
obtain in�nite classes of such (n, `, t)-codes with ` = O(log n) for �xed t and ω.

However, a frameproof-code just guarantees that no coalition (not too large) can produce a codeword
of a user not in the coalition. But in the �ngerprinting setting and for traitor tracing [10], we furthermore
want a tracing algorithm TraceC which, on input a word x generated by the coalition, outputs a member
of the coalition C0:

De�nition 10. Let ε > 0. An (n, `, ω, t, ε)-collusion-secure code is an (n, `, t)-code for which there exists
a (probabilistic) tracing algorithm TraceC satisfying the following condition: for any C0 ⊂ C such that
#C0 ≤ ω, and any x ∈ Desc(C0), Pr[TraceC(x) ∈ C0] > 1− ε.

Such codes [23] with e�cient tracing algorithms have been proposed with ` = O(log n).

4.2 Homomorphic encryption

Homomorphic encryption is a form of encryption where one can perform a group operation on the plain-
texts by performing a (possibly di�erent) algebraic operation on the ciphertexts. More formally, a H-
homomorphic encryption scheme is a tuple of e�cient algorithms (Setup,Kg,Encrypt,�,Decrypt) such
that (Setup,Kg,Encrypt,Decrypt) is an encryption scheme with message space a group H and � is an
algorithm (written in�x style) that takes two elements in Encrypt's codomain and outputs an element of
Encrypt's codomain such that for all messages m,m′ ∈ H and any matching key pair (pk, sk), we have:

Decrypt(Encrypt(m, pk)� Encrypt(m′, pk), sk) = m ·m′ ∈ H. (1)

Examples of homomorphic cryptosystems are due to ElGamal [12], Golwasser-Micali [14] and Paillier [19].
Note that (1) further implies the existence of an e�cient function that allows exponentiation of cipher-
texts (using a square-and-multiply algorithm): Encrypt(m, pk)�

r
= Encrypt(m, pk)� · · · � Encrypt(m, pk)

(r times). Our construction relies on a pair of encryption schemes that are compatible for two algebraic
operations � and ⊗ in the following way:

De�nition 11. Let H1 and H2 be two abelian groups of prime order q and let ϕ : H2 → H1 be a group
homomorphism. A (H1,H2, ϕ)-compatible encryption scheme is a tuple of (probabilistic) polynomial-time
algorithms (Setup, Kg, Encrypt1, Encrypt2,�,⊗, Decrypt1, Decrypt2) such that:

� Setup(λ)→ params: this algorithm is run by a (trusted) party that, on input of a security parameter
λ, produces a set params of common public parameters.

� Kg(params)→ (pk, sk(1), sk(2)): on input of public parameters params, all parties use this randomized
algorithm to generate a private/public key pair (pk, sk(1), sk(2)). We denote Kgi for i ∈ {1, 2} the
algorithm that executes Kg but only returns (pk, sk(i)).

� (Setup,Kg1,Encrypt1,Decrypt1) is an encryption scheme with message space H1.
� (Setup,Kg2,Encrypt2,�,Decrypt2) is a H2-homomorphic encryption scheme, but for which we ask for
the decryption algorithm to output ϕ(m) ∈ H1 only (and not m ∈ H2 itself).

� ⊗ is an algorithm (written in�x style) that on input an Encrypt1-ciphertext and an Encrypt2-ciphertext
outputs an Encrypt1-ciphertext such that for all messagesm1 ∈ H1 andm2 ∈ H2 and any matching key
pair (pk, sk(1), sk(2)), we have: Decrypt1(Encrypt1(m1, pk)⊗Encrypt2(m2, pk), sk(1)) = m1 ·ϕ(m2) ∈ H1.

Remark 12. Any G-homomorphic encryption gives rise to a (H1 = G,H2 = G, id)-compatible encryption
scheme in the trivial way (i.e. with ⊗ = �). In a bilinear structure BS = (G1,G2,GT , q, e, g1, g2), a
non-straightforward (H1 = GT ,H2 = G1, ϕ : y 7→ e (y, g2))-compatible encryption scheme is the one we
implicitly use in the construction of the schemeMtaes2 (see the Appendix D):

� Setup generates the parameters for an appropriate bilinear structure BS = (G1,G2,GT , q, e, g1, g2)
where g1, g2 and G = e (g1, g2) are generators of G1, G2 and GT respectively;

11

� Kg picks at random a scalar x ∈ Z∗q and outputs a triple (pk, sk(1), sk(2)) = (y = gx1 , x, h = gx2);
� (Setup,Kg2,Encrypt2,�,Decrypt2) is the ElGamal encryption scheme in the group G1: it performs the

encryption of m ∈ G1 as C = (c1, c2) = (m · pkr, gr1) ∈ G2
1, for a random r

R← Z∗q , and the knowledge

of sk(2) allows to recover ϕ(m) ∈ GT from C as: ϕ(m) = e (c1, g2) /e
(
c2, sk

(2)
)
. The operation � is

the component-wise product in G2
1.

� (Setup,Kg1,Encrypt1,Decrypt1) is the ElGamal encryption scheme in the group GT with public key
Y = e (pk, g2) = ϕ(pk);

� The operation ⊗ : G2
T ×G2

1 −→ G2
T is: (Y1, Y2)⊗ (z1, z2) = (Y1 · e (z1, g2) , Y2 · e (z2, g2)).

Notation. Let H be a �nite group.

� We denote SplitH the probabilistic algorithm that on input m ∈ H and ` ≥ 1, picks uniformly at
random m1, . . . ,m`−1 ∈ H, sets m` = m/(m1 . . .m`−1) and outputs the vector m = (m1, . . . ,m`) =
SplitH(m, `).

� For an encryption scheme (Setup,Kg,Encrypt,Decrypt) with domain H, we denote Encrypt(`) the al-
gorithm that takes as input m = (m1, . . . ,m`) ∈ H` and pk = (pk1, . . . , pk`) and returns the vector
c = Encrypt(m, pk) de�ned as the coordinate-wise encryption of m under the public-key pk. Simi-
larly, we denote Decrypt(`) the algorithm that given a vector of ciphertexts c and a vector of secret
keys sk = (sk1, . . . , sk`), parses c as c = (c1, . . . , c`) (where each ci is a ciphertext), outputs ⊥ if
Decrypt(ci, ski) = ⊥ for some i ∈ {1, . . . , `} and

∏`
i=1 Decrypt(ci, ski) ∈ H, otherwise.

In particular, for any vector of matching key pairs (pk, sk), for any m ∈ H, and any integer ` ≥ 1, we
have:

Decrypt(`)
(
Encrypt(`)(SplitH(m, `),pk), sk

)
= m.

� If (Setup,Kg,Encrypt,Decrypt) is a H-homomorphic encryption scheme, we denote � the coordinate-
wise product de�ned on the codomain of Encrypt(`).
If (Setup,Kg,Encrypt1,Encrypt2,�,⊗,Decrypt1,Decrypt2) is a (H1,H2, ϕ)-compatible encryption scheme,

we also denote ⊗ the coordinate-wise operation de�ned on the cartesian product of the Encrypt
(`)
1 -

ciphertexts and the Encrypt
(`)
2 -ciphertexts.

4.3 Description of the Scheme Mtaes
`
3

Let ` ≥ 1 be an integer, let H1 and H2 be two abelian groups of prime order q and let the map ϕ : H2 → H1

be a group homomorphism. Let the system (Setup,Kg,Encrypt1,Encrypt2,�,⊗,Decrypt1,Decrypt2) be a
(H1,H2, ϕ)-compatible encryption scheme and C a (n, `, ω, t, ε)-collusion-secure code of length ` on the
alphabet T = {1, . . . , t}. The following construction describes the generic schemeMtaes`3:

� GSetup(λ): The GSetup algorithm takes as input a security parameter λ. It executes Setup(λ) and given

the common public parameters params, it runs t` times Kg(params) and gets t` triples (pki,j , sk
(1)
i,j , sk

(2)
i,j)

for (i, j) ∈ {1, . . . , `} × {1, . . . , t}. It sets the group public key, the opening key and the master secret
key:

mpk =

pk1,1 pk1,2 . . . pk1,t

pk2,1 pk2,2 . . . pk2,t
...

...
...

pk`,1 pk`,2 . . . pk`,t

 , skO =

sk

(2)
1,1 sk

(2)
1,2 . . . sk

(2)
1,t

sk
(2)
2,1 sk

(2)
2,2 . . . sk

(2)
2,t

...
...

...

sk
(2)
`,1 sk

(2)
`,2 . . . sk

(2)
`,t

msk =

sk

(1)
1,1 sk

(1)
1,2 . . . sk

(1)
1,t

sk
(1)
2,1 sk

(1)
2,2 . . . sk

(1)
2,t

...
...

...

sk
(1)
`,1 sk

(1)
`,2 . . . sk

(1)
`,t

12

It also outputs the registration list L that is initially empty.
� Join(id,mpk,msk): This algorithm encodes the id into the public key, pkid = c = (c1c2 . . . c`) ∈ C,
where for each i, ci ∈ {1, . . . , t}, and outputs sk

(1)
c = (sk

(1)
1,c1

, . . . , sk
(1)
`,c`

) the secret key of user id. It
furthermore adds the pair (id, pkid) in the list L.

� Encrypt(mpk, c,m): To encrypt a message m ∈ H1 under a public key pkid = c, the algorithm

computes A = Encrypt
(`)
1 (SplitH1

(m, `),pkc) and B = Encrypt
(`)
2 ((1H2 , . . . , 1H2),pkc) where pkc =

(pk1,c1 , . . . , pk`,c`) and outputs C = (A,B).
� ReRand(mpk, C): To re-randomize a pre-ciphertext C = (A,B), the algorithm picks at random t
vectors rj , sj ∈ (Z∗q)` for j ∈ {1, . . . , t}, generates u = SplitH2

(1, `) and v = SplitH2
(1, `) and computes

t vectors of ciphertexts as follows:

Cj ← A⊗ (B�
rj � Encrypt

(`)
2 (u,pkj)) Dj ← B�

sj � Encrypt
(`)
2 (v,pkj),

for j ∈ {1, . . . , t} and pkj = (pk1,j , . . . , pk`,j). It outputs the 2t` vector C ′ = (C1, . . . ,Ct,D1, . . . ,Dt).
� Decrypt(mpk, i, C): To decrypt a ciphertext C = (C1, . . . ,Ct,D1, . . . ,Dt) for the public key pkc,

using the secret key sk
(1)
c , the algorithm computes Decrypt

(`)
1 ((C1,c1 , . . . , C`,c`), sk

(1)
c).

� Trace(msk,L, skO, C): To trace a user wrt a given ciphertext C, parse C as (C1, . . . ,Ct,D1, . . . ,Dt)

and decrypts Dc = (D1,c1 , . . . , D`,c`) with the decryption algorithm Decrypt
(`)
2 for all the secret keys

sk
(2)
c (where c draws all the domain {1, . . . , t}`). If for one of the vector c, the decryption leads to

ϕ(1H2) = 1H1 , then the algorithm executes TraceC(c) and if it returns a codeword v, it provides a

non-interactive zero-knowledge proof of validity Π showing that Decrypt
(`)
2 (Dc, sk

(2)
c) = 1H1 and that

TraceC(c) = v. Otherwise, it outputs an error symbol ⊥.
� Judge(mpk,L, C, id, Π): This algorithm checks whether the proof Π is valid wrt L, C, id.

Remark 13. If we instantiate the schemeMtaes1
3 with the ElGamal homomorphic encryption scheme in

a group G (resp. with the (GT ,G1, ϕ : y 7→ e(y, g2))-compatible encryption scheme in a bilinear structure
(G1,G2,GT , q, e, g1, g2), described in Remark 12) and the code C = {1, . . . , t} = T , we obtain the scheme
Mtaes1 (resp. the schemeMtaes2) described in the Section 3.

4.4 Security Analysis

Let us explain why this scheme works, and which security level it provides.

Correctness. Since B = Encrypt
(`)
2 ((1H2 , . . . , 1H2),pkc), for any random r ∈ (Z∗q)`, Decrypt

(`)
1 (B�

r
,pkc) =

1H2 and therefore
Decrypt

(`)
1 (B�

r � Encrypt(`)(u,pkc), skc) = 1H2 .

The extracted ciphertext (C1,c1 , . . . , C`,c`) is A ⊗ (B�
r � Encrypt(`)(u,pkc)) with r = (rc1 , . . . , rc`) and

thus Decrypt
(`)
1

(
(C1,c1 , . . . , C`,c`), sk

(1)
c

)
= m ∈ H1. Note that because of the code, tracing may fail with

some small probability ε.

Semantic Security and Privacy. We now prove that if the basic construction Mtaes1
3 is semantically

secure (resp. anonymous or private) then for any integer ` ≥ 1 and any ω-collusion secure code C, the
schemeMtaes`3 is ω-resilient semantically secure (resp. ω-resilient anonymous or ω-resilient private).

Theorem 14. Let ` ≥ 1 be an integer and let C be an (n, `, ω, t, ε)-secure code. Our scheme Mtaes`3
ful�lls the ω-resilient (strong) semantic security property if and only if our scheme Mtaes1

3 ful�lls the

(strong) semantic security property:

AdvindMtaes
`
3
(λ, τ, ω) ≤ n× AdvindMtaes

1
3
(λ, τ + t`τKg),

where τKg denotes an upper bound on the time computation for execution of the Kg algorithm.

13

Proof. Let us consider an adversary A against the ω-resilient (strong) semantic security ofMtaes`3. We
construct an adversary B against the (strong) semantic security ofMtaes1

3.

Key Generation. The adversary B simulates the GSetup algorithm by using params, the common pa-
rameters received from its own challenger as the common parameters given to A. In addition, B re-
ceives from its challenger a list of public keys (pk1, . . . , pk`) as well as the second-level matching secret

keys (sk
(2)
1 , . . . , sk

(2)
`) for the scheme Mtaes1

3. The algorithm then uniformly picks at random a vector

(a1, . . . , a`) ∈ C ⊂ {1, . . . , t}` and sets (pki,ai , sk
(1)
i,ai
, sk

(2)
i,ai

) ← (pki,⊥, sk
(2)
i) for i ∈ {1, . . . , `}. It then ex-

ecutes (t − 1)` times the key generation algorithm Kg(λ) and gets (t − 1)` triples (pki,j , sk
(1)
i,j , sk

(2)
i,j), for

(i, j) ∈ {1, . . . , `} × {1, . . . , t} but j 6= ai. It sets the group public key, the opening key and the master
secret key as in the real scheme. The algorithm B runs A on input params, mpk and skO.

Join∗ and Corrupt Queries. When A asks a Join∗ query for user j, B encodes the id into the public key,
pkid = c = (c1c2 . . . c`) ∈ C, where ci ∈ {1, . . . , t}. It furthermore adds the pair (id, pkid) in the list L.

When A asks a Corrupt query for user j with identity id = c, B outputs (sk
(1)
1 , . . . , sk

(1)
`) possibly by

asking to its own Corrupt oracle the keys sk
(1)
i,ai

it does not know. It furthermore adds the pair (id, pkid) in
the list C. If the adversary A wants to corrupt player (a1, . . . , a`), then B aborts. Otherwise, thanks to
the ω-collusion security of the code C, we know the ω corruptions cannot involve all the coordinates of the
challenge code (a1, . . . , a`), otherwise the latter would be in the feasible set, which would contradict the
frameproof-property: B will query its Corrupt oracle at most `−1 times. Then, pkI has not been corrupted,
for some index I.

Challenge Ciphertext. Eventually, A outputs a public key pkid and two messages m0 and m1 (and
possibly some state information s). With probability greater than 1/n (which automatically includes the
fact that (a1, . . . , a`) has not been asked as a Corrupt-query), we have id = (a1, . . . , a`). If this is not the

case, B aborts. As said above, we know that sk
(1)
I,aI

has not been queried to B's Corrupt oracle. The algorithm
B then computes u = (u1, . . . , u`) = SplitH1

(1, `) and for j ∈ {1, . . . , `} \ {I}, c?j = Encrypt1(uj , pkaj). It
then sends to its own challenger (pkI = pkaI , uI ·m0, uI ·m1) and receives the encryption c?I of uImb for a
random b ∈ {0, 1} under the public key pkI . The algorithm B sends c? = (c?1, . . . , c

?
`) to A. This is a valid

encryption of mb: A outputs a bit b? that B forwards to its own challenger.

Conclusion. Globally, the running time of B is the same as A (and the real challenger) plus the time
to execute (t − 1)` times Kg and its success probability is identical to the one of A when the guess for
(a1, . . . , a`) has been correct (which happens with probability greater than 1/n). This concludes the proof
of (strong) semantic security. ut

Theorem 15. Let ` ≥ 1 be an integer and let C be an (n, `, ω, t, ε)-secure code. Our scheme Mtaes`3
ful�lls the ω-resilient privacy property if and only if our schemeMtaes1

3 ful�lls the privacy property

AdvprivMtaes
`
3
(λ, t, ω) ≤ n× AdvprivMtaes

1
3
(λ, τ + t`τKg),

where τKg denotes an upper bound on the time computation for execution of the Kg algorithm.

Proof (Sketch). The proof is very close to the previous one. In the Challenge ciphertext phase, the adversary
A outputs a tuple (pk0, pk1,m0,m1, s), and we know that the two (which are possibly the same) public
keys are not corrupted. Again, still with probability greater than 1/n, the above simulation worked and
there is I such that pkaI has not been queried to B's Corrupt oracle. ut

This theorem implies the anonymity property.

Unlinkability. Finally, we also state that if the basic construction Mtaes1
3 is unlinkable then for any

integer ` ≥ 1 and any ω-secure code C the scheme Mtaes`3 is ω-resilient unlinkable. The proof can be
found in the Appendix E.

14

Theorem 16. Let ` ≥ 1 be an integer and let C be an (n, `, ω, t, ε)-secure code. Our scheme Mtaes`3 is

ω-resilient unlinkable if and only if our schemeMtaes1
3 is unlinkable.

Acknowledgements. This work was supported by the French ANR-07-SESU-008-01 PAMPA Project
and the European Commission through the ICT Program under Contract ICT-2007-216676 ECRYPT II.
The authors thank Julien Cathalo for his participation and contributions in the early stage of this work.

References

1. M. Abdalla, M. Bellare, and G. Neven. Robust encryption. In D. Micciancio, editor, TCC 2010: 7th Theory of Cryptog-

raphy Conference, volume 5978 of Lecture Notes in Computer Science, pages 480�497. Springer, Feb. 2010.
2. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key encryption. In C. Boyd, editor, Ad-

vances in Cryptology � ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages 566�582. Springer,
Dec. 2001.

3. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of dynamic groups. In A. Menezes, editor,
Topics in Cryptology � CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages 136�153. Springer, Feb.
2005.

4. S. R. Blackburn. Perfect hash families: Probabilistic methods and explicit constructions. J. Comb. Theory, Ser. A,
92(1):54�60, 2000.

5. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor, Advances in Cryptology �

CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 41�55. Springer, Aug. 2004.
6. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In J. Kilian, editor, Advances in

Cryptology � CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 213�229. Springer, Aug. 2001.
7. D. Boneh and J. Shaw. Collusion-secure �ngerprinting for digital data (extended abstract). In D. Coppersmith, editor,

Advances in Cryptology � CRYPTO'95, volume 963 of Lecture Notes in Computer Science, pages 452�465. Springer,
Aug. 1995.

8. R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. In D. Boneh, editor, Advances in

Cryptology � CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 565�582. Springer, Aug. 2003.
9. D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, Advances in Cryptology � EUROCRYPT'91,

volume 547 of Lecture Notes in Computer Science, pages 257�265. Springer, Apr. 1991.
10. B. Chor, A. Fiat, and M. Naor. Tracing traitors. In Y. Desmedt, editor, Advances in Cryptology � CRYPTO'94, volume

839 of Lecture Notes in Computer Science, pages 257�270. Springer, Aug. 1994.
11. L. Ducas. Anonymity from asymmetry: New constructions for anonymous HIBE. In J. Pieprzyk, editor, Topics in

Cryptology � CT-RSA 2010, volume 5985 of Lecture Notes in Computer Science, pages 148�164. Springer, Mar. 2010.
12. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In G. R. Blakley and

D. Chaum, editors, Advances in Cryptology � CRYPTO'84, volume 196 of Lecture Notes in Computer Science, pages
10�18. Springer, Aug. 1985.

13. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete Applied Mathematics,
156(16):3113�3121, 2008.

14. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270�299, 1984.
15. P. Golle, M. Jakobsson, A. Juels, and P. F. Syverson. Universal re-encryption for mixnets. In T. Okamoto, editor, Topics

in Cryptology � CT-RSA 2004, volume 2964 of Lecture Notes in Computer Science, pages 163�178. Springer, Feb. 2004.
16. H. D. L. Hollmann, J. H. van Lint, J.-P. Linnartz, and L. M. G. M. Tolhuizen. On codes with identi�able parent property.

J. Comb. Theory, Ser. A, 82:121�133, 1998.
17. A. Kiayias, Y. Tsiounis, and M. Yung. Group encryption. In K. Kurosawa, editor, Advances in Cryptology � ASI-

ACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages 181�199. Springer, Dec. 2007.
18. A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve traces for FR-reduction. IEICE

Trans. Fundamentals, E84-A(5):1234�1243, 2001.
19. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern, editor, Advances in

Cryptology � EUROCRYPT'99, volume 1592 of Lecture Notes in Computer Science, pages 223�238. Springer, May 1999.
20. K. Sako. An auction protocol which hides bids of losers. In H. Imai and Y. Zheng, editors, PKC 2000: 3rd International

Workshop on Theory and Practice in Public Key Cryptography, volume 1751 of Lecture Notes in Computer Science, pages
422�432. Springer, Jan. 2000.

21. G. J. Simmons. The prisoners' problem and the subliminal channel. In D. Chaum, editor, Advances in Cryptology �

CRYPTO'83, pages 51�67. Plenum Press, New York, USA, 1984.
22. J. Staddon, D. R. Stinson, and R. Wei. Combinatorial properties of frameproof and traceability codes. IEEE Transactions

on Information Theory, 47(3):1042�1049, 2001.
23. T. van Trung and S. Martirosyan. New constructions for IPP codes. Des. Codes Cryptography, 35(2):227�239, 2005.
24. H. Wang and C. Xing. Explicit constructions of perfect hash families from algebraic curves over �nite �elds. J. Comb.

Theory, Ser. A, 93(1), 2001.

15

A On Security Notions

A.1 Enhanced Security Notions

Chosen-Ciphertext. To address chosen-ciphertext attacks, we have to provide the adversary with a
decryption oracle. But due to the inherent malleability of such a re-randomizable encryption scheme, some
constraints will be added, in the same vein as RCCA de�nition [8], with some forbidden requests (answered
by Test):

� Decrypt∗(P, (id, C)) → {m,⊥}, takes as input a list P = {(idi, Ci)} of critical pairs, a registered
identity id and a ciphertext C, it runs Decrypt(mpk, skid, C) to get either m, or ⊥ in case of invalid
ciphertext. In the latter case, ⊥ is returned. Otherwise, it furthermore runs Decrypt(mpk, skidi , Ci) for
all the pairs in P to get either mi or ⊥. If for some index i, mi = m, then it outputs Test, otherwise
m is the output.

The restrictions, without which attacks cannot be avoided, are the following ones:

� for the semantic security, we set P = {(pk,C∗)};
� for the anonymity, there is not restriction;
� for privacy, we set P = {(pk0, C

∗), (pk1, C
∗)};

� for both unlinkability and subliminal-channel freeness, we have P = LU × {C∗}.

Full Anonymity. To address full-anonymity, we have to provide the adversary with an opening oracle.
But against, because of the inherent malleability, some constraints will be added, with some forbidden
requests (answered by Test):

� Open∗(P, C) → {pk,⊥}, takes as input a list P = {Ci} of critical ciphertexts and a ciphertext C, it
runs Trace(mpk, skO,L, C) to get either pk, or ⊥ in case of invalid ciphertext. In the latter case, ⊥
is returned. Otherwise, it furthermore runs Trace(mpk, skO,L, Ci) for all the ciphertexts in P to get
either pki or ⊥. If for some index i, pki = pk, then it outputs Test, otherwise pk is the output.

The restrictions, without which attacks cannot be avoided, are the following ones:

� for the semantic security, there is no restriction;
� for the anonymity, we set P = {C∗};
� for privacy, we set P = {C∗};
� for both unlinkability and subliminal-channel freeness, we have P = {C∗}.

A.2 Proofs of the Relations between Security Notions

Proof (of Theorem 4). Let us �rst show that the privacy implies both weak semantic security (without
the opening key) and anonymity:

� let A be an adversary with advantage ε against weak semantic security. We describe an adversary
B against privacy. Upon receiving the master key mpk, B runs A and gets (pk,m0,m1, s). It then
outputs (pk, pk,m0,m1, s) to the challenger. The latter chooses a random bit b, and encrypts mb

under pk (since the two public keys are the same). B then runs A on the challenge ciphertext, and
forwards the answer b′:

AdvprivMtaes,B(λ) = Pr[Expweak−ind−1
Mtaes,A (λ) = 1]− Pr[Expweak−ind−0

Mtaes,A (λ) = 1] = ε

Since AdvprivMtaes
(λ, τ) ≥ AdvprivMtaes,B(λ), and the above equality holds for any adversary A with running

time bounded by τ , we get the expected result.

16

� let A be an adversary with advantage ε against anonymity. We describe an adversary B against privacy,
the same way as above, but duplicating the plaintext instead of the public key.

For the other direction, we use the hybrid technique, for any adversary A against the privacy security
notion, with running time bounded by τ . But we could extend this privacy game with two random bits b
and c, where b speci�es the message to be encrypted (as in the semantic security game) and c the target
public key (as in the anonymity game):

AdvprivMtaes,A(λ) = Pr[d′ = 1|b = 1 ∧ c = 1]− Pr[d′ = 1|b = 0 ∧ c = 0]

= Pr[d′ = 1|b = 1 ∧ c = 1]− Pr[d′ = 1|b = 0 ∧ c = 1]

+ Pr[d′ = 1|b = 0 ∧ c = 1]− Pr[d′ = 1 ∧ b = 0 ∧ c = 0]

≤ Advweak−indMtaes
(λ, τ) + AdvanonMtaes

(λ, τ)

ut

Proof (of Theorem 5). Let A be an adversary with advantage ε against the subliminal-channel freeness
property. We describe an adversary B against ciphertext unlinkability. Upon receiving the master key mpk,
B runs A and gets (C0, C1, s). It then chooses a random bit c, and outputs C = Cc. The challenger chooses
a random bit b, and then outputs C∗ (that is either the re-randomization of Cc if b = 0 or a truly random
ciphertext if b = 1, in which case no information is leaked about c). It is forwarded to A that answers its
guess b′. If b′ = c, we make B output 0, otherwise it outputs 1:

AdvunlinkMtaes,B(λ) = Pr[b′ 6= c|b = 1]− Pr[b′ 6= c|b = 0]

= 1/2− Pr[b′ = 1 ∧ c = 0|b = 0]− Pr[b′ = 0 ∧ c = 1|b = 0]

=
1

2
×
(
1− Pr[b′ = 1|b = 0 ∧ c = 0]− Pr[b′ = 0|b = 0 ∧ c = 1]

)
=

1

2
×
(
Pr[b′ = 1|b = 0 ∧ c = 1]− Pr[b′ = 1|b = 1 ∧ c = 0]

)
=

1

2
× AdvsubFMtaes,A(λ)

ut

B Complexity Assumptions

Our �rst proposal relies on the classical DDH assumption only. Our second proposalMtaes2 requires the
XDH and a new assumption weaker than the widely used (asymmetric) DBDH assumptions.

De�nition 17 (Decisional Di�e-Hellman Assumption DDH). LetG be a cyclic group of prime order
q. The DDH assumption in basis g states that the distributions of the tuples (gx, gy, gxy) and (gx, gy, gz)
for random scalars x, y, z in Zq are computationally indistinguishable.

De�nition 18 (External Di�e-Hellman Assumption XDH). Let G1, G2 and GT be three cyclic
groups of prime order q, with an admissible (which means non-degenerate and e�ciently computable)
bilinear map e : G1 × G2 7→ GT . We denote (G1,G2,GT , q, e, g1, g2), a bilinear structure BS. The XDH
assumption in BS assumes that the DDH assumptions holds in G1.

De�nition 19 ((Asymmetric) Decisional Bilinear Di�e-Hellman Assumption DBDH). Let BS
be a bilinear setting as above. The asymmetric DBDH assumption in bases g1 and g2 states that the
distributions of the tuples (gx1 , g

x
2 , g

y
1 , g

z
2 , G

xyz) and (gx1 , g
x
2 , g

y
1 , g

z
2 , G

w) for random scalars x, y, z, w in Zq
are computationally indistinguishable.

17

De�nition 20 (Decisional Mixed Bilinear Di�e-Hellman Assumption DMBDH). Let BS be a
bilinear setting as above. The DMBDH assumption in bases g1 and g2 states that the distributions of
the tuples (gx1 , g

x
2 , G

y, Gxy) and (gx1 , g
x
2 , G

y, Gw) for random scalars x, y, z, w in Zq are computationally
indistinguishable.

C Proofs of Security of our Scheme Mtaes1

C.1 Privacy of Mtaes1

Proof (of Theorem 6). Consider an adversary A against the privacy of our �rst scheme, we will construct
an adversary B against the 2-DDH problem: This is a simple variant of the DDH-problem in basis g, where
an instance is a 5-tuple (gx, gy, gz, gȳ, gz̄), and one has to decide whether both z = xy and z̄ = xȳ, or both
z and z̄ are random. Using an hybrid argument, one easily gets that Adv2-ddh

G (τ) ≤ 2× AdvddhG (τ + 2τexp),
where τexp is the time to compute an exponentiation in G.

Let g be any generator of G, and we have to guess at least one of the players that will not be corrupted:
we choose an index I at random: we are given a 2-DDH instance (U = gu, V = gv, Z = gz, V̄ = gv̄, Z̄ = gz̄),

and set: mpk = (y1 = gx1 , y2 = gx2 , · · · , yI ← U, · · · , yt = gxt) for random scalars xi
R← Zq for i 6= I.

When A asks a Join∗ query for user j, we output the public key pkj = yj . When A asks a Corrupt query
for user j, we output sk = xj . With probability greater than 1/t, there is no problem here, otherwise, we
abort (if the adversary wants to corrupt player I).

Then, the adversary outputs a tuple (pki0 , pki1 ,m0,m1, s), and we know that the two (which are
possibly the same) public keys are not corrupted. Again, still with probability greater than 1/t, the above
simulation worked (no corruption of player I) and there is d such that pkid = yI = U . The random choice
of d is equivalent to the above random choice of I, if i0 6= i1, we thus either choose an additional random
bit d (if i0 = i1), or set d so that pkid = yI = U , and de�ne the challenge ciphertext as described below:

A1 = V A2 = Z ×md B1 = V̄ B2 = Z̄

Then, A outputs his guess d′ and we output the bit β ← (d = d′) as B's response. Let γ be the bit that
indicates whether the 2-DDH-tuple follows a real (γ = 0) or random (γ = 1) distribution.

Note that if γ = 0, then the above challenge ciphertext really corresponds to the encryption of md

under pkid , and thus Pr[d′ = d|γ = 0] = (AdvprivMtaes1,A(λ)+1)/2. On the other hand, if γ = 1, the challenge

ciphertext is a truly random tuple in G4, and thus Pr[d′ = d|γ = 1] = 1/2. As a consequence,

Adv2-ddh
G (B) = Pr[β = 1|γ = 0]− Pr[β = 1|γ = 1]

= (AdvprivMtaes1,A(λ) + 1)/2− 1/2 = AdvprivMtaes1,A(λ)/2.

Globally, the running time of B is the same as A and the real challenger, when the 2-DDH instance is
given, but when the guess for I has been correct only, which happens with probability greater than 1/t.
This concludes the proof of privacy. ut

C.2 Unlinkability of Mtaes1

Proof (of Theorem 7).We consider an adversary that tries to transfer some information in a ciphertext that
does not trace back to any corrupted key. We will show that after re-randomization, any pre-ciphertext (or
even a ciphertext already re-randomized) that does not trace back to any corrupted yi leads to a randomly
looking tuple in G4t.

Two cases can appear: the ciphertext provided by the adversary traces back to none of the t keys, or
it traces back to an honest user. We are given a 2-DDH tuple (U = gu, V = gv, Z = gz, V̄ = gv̄, Z̄ = gz̄),
and we choose a random index I between 1 and t + 1, in which to inject the DDH tuple. The case t + 1
means that we do not inject it, and thus we bet that the ciphertext will trace back to nobody.

18

As in the previous proof, we set mpk = (y1 ← gx1 , y2 = gx2 , · · · , yI = U, · · · , yt = gxt) for random

scalars xi
R← Zq. When the adversary A asks a Join∗ query for user j, we output pkj ← yj = gxj .

When A asks a Corrupt query for user j, we output skj ← xj . We recall that L is the list of all the
registered keys/users, and C the list of the corrupted keys/users. When A outputs his target ciphertext
C = (A1 = ga, A2 = gb, B1 = gc, B2 = gd), we know (or assume) that it does not trace back to any
corrupted user: d = xc, with x 6∈ L\C. We now re-rerandomize it:

∀i 6= I, C1,i = A1 ×Br′i
1 × gri C2,i = A2 ×Br′i

2 × y
ri
i D1,i = Bs′i

1 × gsi D2,i = Bs′i
2 × y

si
i

= ga+ci = gb+xci+c
′
i = gdi = gxdi+d

′
i

if I ≤ t, C1,I = A1 ×Br′I
1 × V C2,I = A2 ×Br′I

2 × Z D1,I = Bs′I
1 × V̄ D2,I = Bs′I

2 × Z̄
= ga+cr′I+v = gb+cur

′
I+z = gcs

′
I+v̄ = gcus

′
I+z̄

where ci = cr′i + ri, c
′
i = (xi − x)ri, di = cs′i + si, d

′
i = (xi − x)si, which can be seen as four independent

random variables, when i 6= I. As a consequence, for any i 6= I, the tuple (C1,i, C2,i, D1,i, D2,i) is randomly
distributed in G4, independently of other tuples. Which means that if I > t, the ciphertext C is randomly
distributed in G4t.

However, if I ≤ t, which means that the adversary tries to transfer some information in a ciphertext
that traces back an honest user: the re-randomized line I is

(C1,I = ga+cI , C2,I = gb+ucI+(z−uv), D1,I = gdI , D2,I = gudI+(z̄−uv̄)),

where cI = cr′I + v and dI = cs′I + v̄. In the case of a real 2-DDH tuple, this is a real re-randomization,
with rI = v and si = v̄. But under the DDH assumption, this is indistinguishable to the situation where
we have a random 2-DDH tuple, and in such a case,

(C1,I = ga+cI , C2,I = gb+ucI+r, D1,I = gdI , D2,I = gudI + r̄),

where r = z − uv and r̄ = z̄ − uv̄, which are two random scalars. This line is also a truly random tuple in
G4.

With such a random 2-DDH instance as input, our re-randomization of C is perfectly indistinguishable
from a truly random ciphertext in G4t. Hence the view of the adversary is perfectly independent of the bit
b involved in the unlinkability game. Globally, the running time of our simulator is the same as A and the
real challenger, when the 2-DDH instance is given, but when the guess for I has been correct only, which
happens with probability greater than 1/(t+ 1). This concludes the proof of unlinkability. ut

D Indistinguishability of Mtaes2

Proof (of Theorem 8). All the previous results for Mtaes1 still hold for Mtaes2, since without the
tracing key, everything can be done with elements in G1. We just have to prove that we can reveal
the tracing keys for the indistinguishability. Let us thus show how we can initialize the simulation in
this particular case, in a bilinear setting BS = (G1,G2,GT , q, e, g1, g2). We consider an adversary A
against indistinguishability, and we construct an adversary B against the DMBDH problem: given a tuple
(U1 = gu1 , U2 = gu2 , V = Gv, Z = Gz), we set:

mpk = (g1, g2, G, (y1 = gx11 , y2 = gx21 , · · · , yI ← U1, · · · , yt = gxt1), (Yj = e (yj , g2))j=1,...,t)

for random scalars xi
R← Zq for i 6= I. We also set skO = (h1 = gx12 , h2 = gx22 , · · · , hI ← U2, · · · , ht = gxt2).

When A asks a Join∗ query for user j, we output the public key pkj = (yj , Yj). When A asks a Corrupt
query for user j, we output sk = xj . Then, the adversary outputs a tuple (pk,m0,m1, s), and we assume
that pk = pkI . We choose a random bit d, and de�ne the challenge ciphertext (A1 = V,A2 = Z×md, B1 =
gs1, B2 = ysI). Eventually, A outputs his guess d′ and we output the bit β ← (d = d′) as B's response. Let γ

19

be the bit that indicates whether the DMBDH-tuple follows a real (γ = 0) or random (γ = 1) distribution:
If γ = 0, then A1 = Gv, which means that r = v, and A2 = Guv = Y r

I . The above challenge ciphertext
really corresponds to the encryption of md under pkI , and thus Pr[d′ = d|γ = 0] = (AdvindMtaes2,A(λ)+1)/2;
On the other hand, if γ = 1, the challenge ciphertext is truly random and independent of d, and thus
Pr[d′ = d|γ = 1] = 1/2. As a consequence,

AdvdbdhG (B) = Pr[β = 1|γ = 0]− Pr[β = 1|γ = 1] = (AdvindMtaes2,A(λ) + 1)/2− 1/2 = AdvindMtaes2,A(λ)/2.

Globally, the running time of B is the same as A and the real challenger, when the DMBDH instance is
given, but when the guess for I has been correct only, which happens with probability greater than 1/t.
This concludes the proof of indistinguishability. ut

E Unlinkability of Mtaes3

Proof (of Theorem 16). Consider an adversary A against the ω-resilient unlinkability of Mtaes`3, we
construct an adversary B against the unlinkability ofMtaes1

3.

Key Generation. The adversary B simulates the GSetup algorithm by using params the common pa-
rameters received from its own challenger as the common parameters given to A. In addition, B receives
from its challenger a list of public key (pk1, . . . , pk`) for the schemeMtaes3(1).

The algorithm picks then uniformly at random a vector (a1, . . . , a`) ∈ C ⊂ {1, . . . , t}` and sets

(pki,ai , sk
(1)
i,ai
, sk

(2)
i,ai

) = (pki,⊥,⊥) for i ∈ {1, . . . , `}. It then executes (t− 1)` times Kg(λ) and gets (t− 1)`

triples (pki,j , sk
(1)
i,j , sk

(2)
i,j) for (i, j) ∈ {1, . . . , `} × {1, . . . , t} with j 6= ai. It sets the group public key, the

opening key and the master secret key as in the real scheme. The algorithm B runs A on input params
and mpk.

Join∗ and Corrupt Queries. When A asks a Join∗ query for user j, B encodes the id into the public key,
pkid = c = (c1c2 . . . c`) ∈ C, where ci ∈ {1, . . . , t}. It furthermore adds the pair (id, pkid) in the list L.

When A asks a Corrupt query for user j with identity id = c, B outputs (sk
(1)
1 , . . . , sk

(1)
t) possibly by

asking to its own Corrupt oracle the keys sk
(1)
i,ai

it does not know. It furthermore adds the pair (id, pkid) in
the list C.

If the adversary A wants to corrupt player (a1, . . . , a`), then B aborts. As in the previous proof, thanks
to the ω-frameproof property of the code C, we know that there is a pkI , for some index I that has not
been corrupted.

Challenge Ciphertext. Eventually, A outputs a ciphertext C = (A,B) (and possibly some state

information s). As said above, we know that sk
(1)
I,aI

has not been queried to B's Corrupt oracle. The
adversary B sends CI = (AI , BI) to its own challenger (which is therefore by de�nition a non-traceable
ciphertext). It receives C?I = (A?1, . . . , A

?
t , B

?
1 , . . . , B

?
t) that is either a re-randomization of CI or a truly

random ciphertext.
The adversary then applies the re-randomization procedure ofMtaes`3 to the ciphertext C = (A,B)

in the following way: it picks at random t vectors rj , sj ∈ (Z∗q)` for j ∈ {1, . . . , t}, then generates u =
SplitH2

(1, `) and v = SplitH2
(1, `). It computes t vectors of ciphertexts as follows:

Cj ← A⊗ (B�
rj � Encrypt

(`)
2 (u,pkj)) Dj ← B�

sj � Encrypt
(`)
2 (v,pkj),

for j ∈ {1, . . . , t} and pkj = (pk1,j , . . . , pk`,j). The algorithm B then replaces, for j ∈ {1, . . . , t}, the value
Cj,i and Dj,i by:

CI,j ← A?I ⊗ Encrypt2(uI , pkI,j) DI,j ← B?
I � Encrypt2(vI , pkI,j).

It outputs the 2t` vector C ′ = (C1, . . . ,Ct,D1, . . . ,Dt). It is readily seen that if C? is a valid re-
randomization of Ci = (Ai, Bi), then C ′ is a valid re-randomization of C. However, if C? is a random

20

ciphertext, then C ′ is a random ciphertext too. When eventually, the adversary A outputs a bit b′, B
forwards to its own challenger.

Conclusion. Globally, the running time of B is the same as A (and the real challenger) plus the time
to execute (t − 1)` times Kg and its success probability is identical to the one of A when the guess for
(a1, . . . , a`) has been correct (which happens with probability greater than 1/n). This concludes the proof
of unlinkability. ut

21

