
Formal to Practical Security – LNCS 5458, pages 95–115. V. Cortier, C. Kirchner, M. Okada, and H. Sakurada Eds. Springer-Verlag.

Anonymous Consecutive Delegation of Signing Rights:
Unifying Group and Proxy Signatures?

Georg Fuchsbauer and David Pointcheval

École normale supérieure, LIENS - CNRS - INRIA, Paris, France
http://www.di.ens.fr/{~fuchsbau,~pointche}

Abstract. We define a general model for consecutive delegations of signing rights with the following
properties: The delegatee actually signing and all intermediate delegators remain anonymous. As for group
signatures, in case of misuse, a special authority can open signatures to reveal all delegators’ and the
signer’s identity. The scheme satisfies a strong notion of non-frameability generalizing the one for dynamic
group signatures. We give formal definitions of security and show them to be satisfiable by constructing an
instantiation proven secure under general assumptions in the standard model. Our primitive is a proper
generalization of both group signatures and proxy signatures and can be regarded as non-frameable dynamic
hierarchical group signatures.

1 Introduction

The concept of delegating signing rights for digital signatures is a well studied subject in cryptography.
The most basic concept is that of proxy signatures, introduced by Mambo et al. [MUO96] and group
signatures, introduced by Chaum and van Heyst [CvH91]. In the first, a delegator transfers the right
to sign on his behalf to a proxy signer in a delegation protocol. Now the latter can produce proxy
signatures that are verifiable under the delegator’s public key. Security of such a scheme amounts to
unforgeability of proxy signatures, in that an adversary can neither create a signature without having
been delegated, nor impersonate an honest proxy signer.

On the other hand, in a group signature scheme, an authority called the issuer enrolls group
members, who can then sign on behalf of the group, which has one single group signature verification
key. Enrollment can be viewed as delegating the signing rights of the group—represented by the
issuer—to its members. A crucial requirement is anonymity, meaning that from a signature one cannot
tell which one of the group members actually signed. In contrast to ring signatures [RST01], to preclude
misuse, there is another authority holding an opening key by which anonymity of the signer can be
revoked. Generally, one distinguishes static and dynamic groups, depending on whether the system
and the group are set up once and for all or whether members can join dynamically. For the dynamic
case, a strong security notion called non-frameability is conceivable: nobody—not even the issuer nor
the opener—is able to produce a signature that opens to a member who did not sign. The two standard
security requirements are traceability (every valid signature can be traced to its signer), which together
with non-frameability implies unforgeability, and anonymity, that is, no one except the opener can
distinguish signatures of different users.

It is of central interest in cryptography to provide formal definitions of primitives and rigorously
define the notions of security they should achieve. Only then can one prove instantiations of the
primitive to be secure. Security of group signatures was first formalized by Bellare et al. [BMW03]
and then extended to dynamic groups in [BSZ05]. The model of proxy signatures and their security
were formalized by Boldyreva et al. [BPW03].1

? A short version of this work appeared as [FP08].
1 Their scheme has later been attacked by [TL04]. Note, however, that our definition of non-frameability prevents this

attack, since an adversary querying PSig(·, warr, ·) and then creating a signature for task′ is considered successful (cf.
Sect. 3.3).

c© Springer-Verlag, 2009.

2

1.1 Our Results

The contribution of this paper is to unify the two above-mentioned seemingly rather different concepts,
by establishing a general model which encompasses both proxy and group signatures, and which is of
independent interest itself. We give security notions that imply the formal ones for both primitives.
Moreover, we consider consecutive delegations where all intermediate delegators remain anonymous.
As for dynamic group signatures, we define an opening authority separated from the issuer and which
in addition might even be different for each user. (For proxy signatures, a plausible setting would
be to enable the users to open signatures on their behalf.) We call our primitive anonymous proxy
signatures, a term that already appeared in the literature (see e.g. [SK02]), however without providing
a rigorous definition nor security proofs. As it is natural for proxy signatures, we consider a dynamic
setting, which allows us to define an extension of non-frameability that additionally protects against
wrongful accusation of delegation.

The most trivial instantiation of proxy signatures is “delegation-by-certificate”: The delegator
signs a document called the warrant containing the public key of the proxy and passes it to the latter.
A proxy signature then consists of a regular signature by the proxy on the message and the signed
warrant. Together they can by verified using the delegator’s verification key only. Although hardly
adaptable to the anonymous case—after all, the warrant contains the proxy’s public key—, a virtue of
the scheme is the fact that the delegator can restrict the delegated rights to specific tasks by specifying
them in the warrant. Since our model supports re-delegation, a user might wish to re-delegate only a
reduced subset of tasks she has been delegated for. We represent tasks by natural numbers and allow
delegations for arbitrary sets of them, whereas re-delegation can be done for any subsets.

The primary practical motivation for the new primitive is GRID Computing, where Alice, after
authenticating herself, starts a process. Once disconnected, the process may remain active, launch
sub-processes and need access to additional resources that require further authentication. Alice thus
delegates her rights to the process. On the one hand, not trusting the environment, she will not want
to delegate all her rights, which can be realized by delegation-by-certificate. On the other hand, there
is no need for the resources to know that it was not actually Alice who was authenticated, which is
practically solely achieved by full delegation, i.e., giving the private key to the delegatee. While the first
solution exposes the proxy’s identity, the second approach does not allow for restriction of delegated
rights nor provide any means to trace malicious signers. Anonymous proxy signatures incorporate both
requirements at one blow.

Another feature of our primitive is that due to possible consecutiveness of delegations it can be
regarded as non-frameable, dynamic hierarchical group signatures, a concept introduced by Trolin and
Wikström [TW05] for the static setting.

After defining the new primitive and a corresponding security model, in order to show satisfiability
of the definitions, we give an instantiation and prove it secure under the (standard) assumption that
families of trapdoor permutations exist. The problem of devising a more efficient construction is left for
future work. We emphasize furthermore that delegation in our scheme is non-interactive (the delegator
simply sends a warrant she computed w.r.t. the delegatee’s public key) and does not require a secure
channel.

2 Algorithm Specification

We describe an anonymous proxy signature scheme by giving the algorithms it consists of. First of all,
running algorithm Setup with the security parameter λ creates the public parameters of the scheme,
as well as the issuing key ik given to the issuer in order to register users and the opener’s certification
key ock given to potential openers. When a user registers, she and her opening authority run the
interactive protocol Reg with the issuer. In the end, all parties hold the user’s public key pk, the user

3

� -
�

� -

?

6

?

-RegIssuer (ik) Opener (ock)

User

pk, okpk

pk, sk
...

.

λ → Setup → pp, ik, ock

skx, [warr→x,] TList,pky → Del → warr[→]x→y

sky,warrx→...→y, task,M → PSig → σ

pkx, task,M, σ → PVer → b ∈ {0, 1}
okx, σ, task,M and registry-data → Open → a list of users or ⊥ (failure)

Fig. 1. Inputs and outputs of the algorithms

is the only one to know the corresponding signing key sk, and the opener possesses ok, the key to open
signatures on the user’s behalf.

Once a user U1 is registered and holds her secret key sk1, she can delegate her signing rights
for a set of tasks TList to user U2 holding pk2: U1 runs Del(sk1,TList, pk2) to produce a warrant
warr1→2 that will enable U2 to proxy sign on behalf of U1. Now if U2 wants to re-delegate the re-
ceived signing rights for a possibly reduced set of tasks TList′ ⊆ TList to user U3 holding pk3,
she runs Del(sk2,warr1→2,TList′, pk3), that is, with her warrant as additional argument, to produce
warr1→2→3. Every user in possession of a warrant valid for a task task can produce proxy signatures σ
for messages M corresponding to task via PSig(sk,warr, task,M).2 Anyone can then verify σ under the
public key pk1 of the first delegator (sometimes called “original signer” in the literature) by running
PVer(pk1, task,M, σ).

Finally, using the opening key ok1 corresponding to pk1, Open(ok1, task,M, σ) opens a signature
σ by returning the list of users that have re-delegated as well as the proxy signer.3 Note that for
simplicity, we identify users with their public keys, so Open returns a list of public keys. Figure 1 gives
an overview of the algorithms constituting an anonymous proxy signature scheme.

Consider a warrant established by executions of Del with correctly registered keys. Then for any
task and message we require that the signature produced on it pass verification.

Remark (Differences to the Model for Proxy Signatures). The specification deviates from the
one in [BPW03] in the following points: First, dealing with anonymous proxy signatures, in our model
there is no general proxy identification algorithm; instead, only authorized openers holding a special
key may revoke anonymity. Second, in contrast to the above specifications, the proxy-designation
protocol in [BPW03] is a pair of interactive algorithms and the proxy signing algorithm takes a single
input, the proxy signing key skp. However, by simply defining the proxy part of the proxy-designation
protocol as

skp := (sk,warr) ,

any scheme satisfying our specifications is easily adapted to theirs.

2 Note that it depends on the concrete application to check whether M lies within the scope of task.
3 We include task and M in the parameters of Open so the opener can verify the signature before opening it.

4

Expanon-b
PS,A (λ)
(pp, ik, ock)← Setup(1λ)
(st,pk, (sk0,warr0), (sk1,warr1), task,M) ← A1(pp, ik : USndToO, ISndToO,OK,Open)
if pk /∈ OReg, return 0
for c = 0 . . 1

σc ← PSig(skc,warrc, task,M)
if PVer(pk, task,M, σc) = 0, return 0
(pkc2, . . . ,pkckc

)← Open(OK(pk), task,M, σc)
if opening succeeded and k0 6= k1, return 0
d← A2(st, σb : Open)
if A1 did not query OK(pk) and A2 did not query Open(pk, task,M, σb), return d,
else return 0

Fig. 2. Experiment for Anonymity

3 Security Definitions

3.1 Anonymity

Anonymity ensures that signatures do not leak information on the identities of the intermediate
delegators and the proxy signer, even in the presence of a corrupt issuer. However, the number of
delegators involved may not remain hidden, as an openable signature must contain information about
the delegators, whose number is not a priori bounded.

A quite “holistic” approach to define anonymity is the following experiment in the spirit of CCA2-
indistinguishability: The adversary A, who controls the issuer and all users, is provided with an oracle
to communicate with an honest opening authority. A may also query opening keys and the opening
of signatures. Eventually, he outputs a public key, a message, a task and two secret-key/warrant pairs
under one of which he is given a signature. Now A must decide which pair has been used to sign.
Note that our definition implies all conceivable anonymity notions, such as proxy-signer anonymity,
last-delegator anonymity, etc.

Figure 2 depicts the experiment, which might look more complex than expected, as there are
several checks necessary to prevent the adversary from trivially winning the game by either

1. returning a public key he did not register with the opener,
2. returning an invalid warrant, that is, signatures created with it fail verification, or
3. having different lengths of delegation chains.4

The experiment simulates an honest opener as specified by Reg with whom the adversary com-
municates via the USndToO and ISndToO oracles, depending on whether he impersonates a user or
the issuer. It also keeps a list OReg of the opening keys it created and the corresponding public keys.
Oracle OK, called with a public key, returns the related opening key from OReg and when Open is
called on (pk′, task′,M ′, σ′), the experiment looks up the corresponding opening key ok′ and returns
Open(ok′,M ′, task′, σ′) if pk′ has been registered and ⊥ otherwise.

Definition 1 (Anonymity). A proxy signature scheme PS is anonymous if for any probabilistic
polynomial-time (p.p.t.) adversary A = (A1, A2), we have∣∣Pr

[
Expanon-1

PS,A (λ) = 1
]
− Pr

[
Expanon-0

PS,A (λ) = 1
]∣∣ = negl(λ) .

4 The experiment checks 2. and 3. by producing a signature with each of the returned warrants and opening both to
check if the number of delegators match. Note, that traceability (cf. Sect. 3.2) guarantees that valid signatures can be
opened.

5

Exptrace
PS,A(λ)
(pp, ik, ock)← Setup(1λ)
(pk, task,M, σ)← A(pp : SndToI,SndToO)
if PVer(pk, task,M, σ) = 1 and Open(OK(pk), task,M, σ) = ⊥

return 1, else return 0

Fig. 3. Experiment for Traceability

Remark (Hiding the Number of Delegations). A feature of our scheme is that users are able to
delegate themselves. It is because of this fact—useful per se to create temporary keys for oneself to
use in hostile environments—that one could define the following variant of the scheme:

Suppose there is a maximum number of possible delegations and that before signing, the proxy
extends the actual delegation chain in her warrant to this maximum by consecutive self-delegations.
The scheme would then satisfy a stronger notion of anonymity where even the number of delega-
tions remains hidden. What is more, defining standard (non-proxy) signatures as self-delegated proxy
signatures, even proxy and standard signatures become indistinguishable.

Since we also aim at constructing a generalization of group signatures in accordance with [BSZ05],
we split the definition of what is called security in [BPW03] into two parts: traceability and non-
frameability. We thereby achieve stronger security guarantees against malicious issuers.

3.2 Traceability

Consider a coalition of corrupt users and openers (the latter however following the protocol) trying to
forge signatures. Then traceability guarantees that whenever a signature passes verification, it can be
opened.5

In the game for traceability we let the adversary A register corrupt users and see the communication
between issuer and opener. To win the game, A must output a signature and a public key under which
it is valid such that opening of the signature fails.

Figure 3 shows the experiment for traceability, where the oracles SndToI and SndToO simulate
issuer and opener respectively, according to the protocol Reg. In addition, they return a transcript
of the communication between them. The experiment maintains a list of generated opening keys, so
OK returns the opening key associated to the public key it is called with, or ⊥ in case the key is not
registered—in which case Open returns ⊥, too.

Definition 2 (Traceability). A proxy signature scheme PS is traceable if for any p.p.t. adversary
A, we have

Pr
[
Exptrace

PS,A(λ) = 1
]

= negl(λ) .

3.3 Non-Frameability

Non-frameability ensures that no user is wrongfully accused of delegating or signing. In order to give
a strong definition of non-frameability by according the adversary as much liberty as possible in his
oracle queries, we require an additional functionality of the scheme: function OpenW applied to a
warrant returns the list of delegators involved in creating it.

In the non-frameability game, the adversary can impersonate the issuer and the opener as well as
corrupt users. He is given all keys created in the setup, and oracles to register honest users and query
5 The issuer is assumed to behave honestly as he can easily create unopenable signatures by registering dummy users

and sign in their name. The openers are partially corrupt, otherwise they could simply refuse to open or not correctly
register the opening keys.

6

Expn-frame
PS,A (λ)
(pp, ik, ock)← Setup(1λ)
(ok,pk1, task,M, σ)← A(pp, ik, ock : ISndToU,OSndToU,SK,Del,PSig)
if PVer(pk1, task,M, σ) = 0 or Open(ok, task,M, σ) = ⊥, return 0
(pk2, . . . ,pkk) = Open(ok, task,M, σ)
if pk1 ∈ HU and no queries Del(pk1,TList,pk2) with TList 3 task made

return 1 (Case 1)
if for some i ≥ 2, pki ∈ HU and no queries Del(pki,warr,TList,pki+1) with

TList 3 task and OpenW(warr) = (pk1, . . . ,pki) made, return 1 (Case 2)
if pkk ∈ HU and no queries PSig(pkk,warr, task,M) made

with OpenW(warr) = (pk1, . . . ,pkk) made, return 1 (Case 3)
return 0

Fig. 4. Experiment for Non-Frameability

delegations and proxy signatures from them. To win the game, the adversary must output a task, a
message and a valid signature on it, such that the opening reveals either

1. a second delegator or proxy signer who was never delegated by an honest original delegator for
the task,

2. an honest delegator who was not queried the respective delegation for the task, or

3. an honest proxy signer who did not sign the message for the task and the respective delegation
chain.

We emphasize that impersonating U1, U ′1 and U3, querying re-delegation from honest user U2 to U3

with a warrant from U1 for U2 and then producing a signature that opens to (U ′1, U2, U3) is considered
a successful attack. Note furthermore that it is the adversary that chooses the opening key to be used.
See Fig. 4 for the experiment for non-frameability.

Oracles for non-frameability: ISndToU (OSndToU) enables the adversary impersonating a
corrupt issuer (opener) to communicate with an honest user. When first called without arguments,
the oracle simulates a new user starting the registration procedure and makes a new entry in HU , the
list of honest users. Oracles Del and PSig are called with a user’s public key, which the experiment
replaces by the user’s secret key from HU before executing the respective function; e.g., calling Del
with parameters (pk1,TList,pk2) returns Del(sk1,TList,pk2). Oracle SK takes a public key pk as
argument and returns the corresponding private key after deleting pk from HU .

Definition 3 (Non-frameability). A proxy signature scheme PS is non-frameable if for any
p.p.t. adversary A we have

Pr
[
Expn-frame

PS,A (λ) = 1
]

= negl(λ) .

Remark. In the experiment Expn-frame
PS,A , the opening algorithm is run by the experiment, which by

definition behaves honestly. To guard against corrupt openers, it suffices to add a (possibly interactive)
zero-knowledge proof of correctness of opening.

7

pkε,

certω

�

?

6

-

Reg

• (pkσ, skσ)← Kσ(1λ)

sk := (pk, skσ)
pk := (pkσ,pkε, cert, certω,pp)
• verify cert and certω

User x Issuer (skα)

public: pp = (λ, pkα,pkω, crs)

Opener (skω)

• if sig invalid for pkσ,

• cert← Sig(skα,pkσ)
• write (pkσ, sig) to IReg

• produce sig, a signature on pkσ pkσ, sig

cert,pkε, certω

return ⊥

pkσ

• (pkε, skε)← Kε(1λ)
• certω ← Sig(skω, (pkσ,pkε))
• write (pkσ,pkε, skε) to OReg

Fig. 5. Registration protocol

4 An Instantiation of the Scheme

4.1 Building Blocks

To construct the generic scheme PS, we will use the following standard cryptographic primitives
(formally defined in Appendix A) whose existence is implied by assuming trapdoor permutations
[Rom90,DDN00,Sah99].

– DS = (Kσ,Sig,Ver), a digital signature scheme secure against existential forgeries under chosen-
message attack [GMR88].

– PKE = (Kε,Enc,Dec), a public-key encryption scheme with indistinguishable encryptions under
adaptive chosen-ciphertext attack (CCA2) [RS92].

– Π = (P,V, Sim), a non-interactive zero-knowledge (NIZK) proof system for an NP-language to be
defined in the following that is simulation sound [BDMP91,Sah99].

4.2 Algorithms

The algorithm Setup establishes the public parameters and outputs the issuer’s and the opener’s
certification key. The public parameters consist of the security parameter, a common random string
for non-interactive zero-knowledge proofs and the two signature verification keys corresponding to the
issuer’s and the opener’s key:

Setup

1λ → (pkα, skα)← Kσ(1λ); (pkω, skω)← Kσ(1λ); crs← {0, 1}p(λ)

pp, ik, ock← pp := (λ,pkα,pkω, crs); ik := skα; ock := skω

8

The registration protocol is depicted in Fig. 5. When a user joins the system, she creates a pair of
verification/signing keys (pkσ, skσ) and signs pkσ (e.g. via an external PKI) in order to commit to it.
She then sends pkσ and the signature sig to the issuer. The latter, after checking sig, signs pkσ with
his certificate issuing key skα and writes the user data to IReg , the registration table.

In addition, the issuer sends pkσ to the authority responsible for opening the user’s signatures.
The opener creates an encryption/decryption key pair (pkε, skε) and a certificate on pkε and pkσ,
which together with pkε he sends to the issuer, who forwards it to the user.6

Remark (Attaining Non-Frameability). It is by having the users create their own signing keys skσ
that a corrupt authority is prevented from framing them. The user is however required to commit to
her verification key via sig, so that she cannot later repudiate signatures signed with the corresponding
signing key. Now to frame a user by creating a public key and attributing it to her, the issuer would
have to forge sig. Note that it is impossible to achieve non-frameability without assuming some sort
of PKI prior to the scheme.

Algorithm Del enables user x to pass her signing rights to user y (if called with no optional argument
warrold), or to re-delegate the rights represented by warrold for the tasks in TList. A warrant is an
array where warr[i] corresponds to the ith delegation and warr[i][task] basically contains a signature
by the ith delegator on the next delegator’s public key and task.

More specifically, consider user x being the kth delegator. If k > 1, she first copies all entries for
the tasks to re-delegate from warrold to the new warrant warr. She then writes her public key to
warr[k][0], which will later be used by the delegatee, and finally produces a signature on the task, the
public keys of the delegators, her and the delegatee’s public key and writes it to warr[k][task].

Del

skx, [warrold,] parse skx (pkx, skσ); k := |warrold|+ 1 // k = 1 if no warrold

TList,pky → for all 1 ≤ i < k

warr[i][0] := warrold[i][0]
for all task ∈ TList, warr[i][task] := warrold[i][task]

warr[k][0] := pkx
for all 1 ≤ i ≤ k, parse warr[i][0] (pkσi,pkεi, certi, certωi,pp)
for all task ∈ TList

warr ← warr[k][task]← Sig
(
skσ, (task,pkσ1, . . . ,pkσk,pkσy)

)
In order to prove correctness of an anonymous signature, we define a relation Rk, specifying an

NP-language LRk . Basically, a theorem (pkα,pkω,pkσ1,pkε1, certω1, task,M,C) is in LRk if and only
if

(1) pkε1 is correctly certified w.r.t. pkω,
(2) there exist verification keys pkσ2, . . . ,pkσk that are correctly certified w.r.t. pkα,
(3) there exist warrant entries warri for 1 ≤ i < k, s.t. pkσi verifies the delegation chain pk1 → · · · →

pki+1 for task,
(4) there exists a signature s on the delegation chain and M valid under pkσk,
(5) C is an encryption using some randomness ρ of all the verification keys, certificates, warrants and

the signature s.

6 In practice, our protocol would allow for the opener to communicate directly with the user without the detour via
the issuer—for example in the case where each user is his own opener. We define the protocol this way to simplify
exposition of the security proofs.

9

We define formally:

Rk
[
(pkα,pkω,pkσ1,pkε1, certω1, task,M,C),

(pkσ2, . . . ,pkσk, cert2, . . . , certk,warr1, . . . ,warrk−1, s, ρ)
]

:⇔ Ver
(
pkω, (pkσ1,pkε1), certω1

)
= 1 ∧ (1)∧

2≤i≤k Ver
(
pkα,pkσi, certi

)
= 1 ∧ (2)∧

1≤i≤k−1 Ver
(
pkσi, (task, pkσ1, . . . ,pkσi+1),warri

)
= 1 ∧ (3)

Ver
(
pkσk, (task,pkσ1, . . . ,pkσk,M), s

)
= 1 ∧ (4)

Enc
(
pkε1, (pkσ2, . . . ,pkσk, cert2, . . . , certk,warr1, . . . ,warrk−1, s), ρ

)
= C (5)

Note that for every k, the above relation Rk defines an NP-language LRk , since given a witness,
membership of a candidate theorem is efficiently verifiable and the length of a witness is polynomial
in the length of the theorem. Let Πk := (Pk,Vk,Simk) be a simulation-sound NIZK proof system for
LRk .

Now to produce a proxy signature, it suffices to sign the delegation chain and the message, encrypt
it together with all the signatures for the respective task from the warrant and prove that everything
was done correctly, that is, prove that Rk is satisfied:

PSig

sk,warr, k := |warr|+ 1, parse sk (pkk, skσ)
task,M → parse pkk

(
pkσk,pkεk, certk, certωk, (λ, pkα,pkω, crs)

)
for 1 ≤ i < k, parse warr[i][0] (pkσi,pkεi, certi, certωi,pp)

set warri := warr[i][task]
s← Sig

(
skσ, (task,pkσ1, . . . ,pkσk,M)

)
; ρ← {0, 1}pε(λ,k)

W := (pkσ2, . . . ,pkσk, cert2, . . . , certk,warr1, . . . ,warrk−1, s)
C ← Enc(pkε1,W ; ρ)
π ← Pk

(
1λ, (pkα,pkω,pkσ1,pkε1,warrω1, task,M,C),W ‖ρ, crs

)
σ ← σ := (C, π)

Verifying a proxy signature then amounts to verifying the proof it contains:

PVer

pkx, task,M, σ → parse pkx
(
pkσx,pkεx, certx, certωx, (λ, pkα,pkω, crs)

)
; σ (C, π)

b← b := Vk
(
1λ, (pkα,pkω,pkσx,pkεx, certωx, task,M,C), π, crs

)
To open a signature check its validity and decrypt the contained ciphertext:

Open

okx, task,M, σ → parse okx (pkx, skεx); σ (C, π)
parse pkx

(
pkσx,pkεx, certx, certωx, (λ, pkα,pkω, crs)

)
if Vk

(
1λ, (pkα,pkω,pkσx,pkεx, certωx, task,M,C), π, crs

)
= 0

return ⊥
(pkσ2, . . . ,pkσk, cert2, . . . , certk,warr1, . . . ,warrk−1, s) := Dec(skεx, C)

(pk2, . . ,pkk)← if for some i, pki is not in IReg , return ⊥

10

Expanon-b
PS,A (λ)

1 crs← {0, 1}p(λ)

2 (pkα, skα)← Kσ(1λ); (pkω, skω)← Kσ(1λ); pp := (λ,pkα,pkω, crs)

3

(
st,pk, (warr0, sk0), (warr1, sk1), task,M

)
← A1(pp, skα : ISndToO,OK,Open)

4 if pk /∈ OReg, return 0, else parse pk (pkσ∗,pkε∗, cert∗, certω∗,pp)

5 if |warr0| 6= |warr1|, return 0, else k := |warr|+ 1

6 for c = 0 . . 1

7 parse skc
(
(pkσck,pkεck, cert

c
k, certω

c
k,pp), skσc

)
8 for i = 1 . . k − 1: pkci := warrc[i][0] (pkσci ,pkεci , cert

c
i , certω

c
i ,pp)

9 sc ← Sig(skσc, (task,pkσc1, . . . ,pkσck,M)

10 mc := (pkσc2, . . . ,pkσck, cert
c
2, . . . , cert

c
k,warrc[1][task], . . . ,warrc[k − 1][task], s)

11 if R∗k(pkα,pkω,pkσ∗,pkε∗, certω∗, task,M),mc) = 0, return 0

12 ρ← {0, 1}pε(λ,k); C ← Enc(pkε∗,mb ; ρ)

13 π ← Pk
(
1λ, (pkα,pkω,pkσ∗,pkε∗, certω∗, task,M,C), mb ‖ρ, crs

)
14 return d← A2

(
st, (C, π) : Open

)
Oracle OOK((pkσ∗, ··))

if (pkσ∗, ·, ·, skε) ∈ OReg

for some skε

return skε

Oracle OISndToO(pkσ)
(pkε, skε)← Kε(1λ)
certω ← Sig

(
skω, (pkσ,pkε)

)
save (pkσ,pkε, certω, skε) in OReg

return (pkε, certω)

Fig. 6. Experiment for anonymity

4.3 Security Results

From the definition of the algorithms, it should be apparent that running PSig with a warrant correctly
produced by registered users returns a signature which is accepted by PVer and correctly opened by
Open. Moreover, the defined scheme satisfies all security notions from Sect. 3.

Lemma 4. The proxy signature scheme PS is anonymous (Definition 1).

Proof. The natural way to prove anonymity is by reduction to indistinguishability of the underlying
encryption scheme: if the adversary can distinguish between two signatures (C1, π1) and (C2, π2), it
must be by distinguishing C1 from C2, as the proofs πi are zero-knowledge. (Simulating the proofs
does not alter the experiments in any computationally distinguishable manner and could be performed
by the adversary itself.) The only case that needs special treatment in the reduction is when the PS
adversary, after being challenged on σ = (C, π), queries (C, π′)—which is perfectly legitimate, but
poses a problem to the PKE-adversary, which cannot forward C to its decryption oracle.

Without loss of generality, we assume that the adversary is honest in that it does not query OK(pk)
or Open

(
pk, task,M, (C, π)

)
. (Note that any adversary A can be transformed into an honest one having

the same success probability by simulating A and outputting d← {0, 1} if A makes an illegal query.)
Figure 6 shows the experiment for anonymity after plugging in the algorithm definitions and some

simplifications. Relation R∗k is defined as Rk restricted to the first 4 clauses, i.e., there is no check
of encryption (which does not alter the experiment, since encryption is performed correctly by the
experiment anyway). Note also that due to the communication between the parties defined in Reg, the
USndToO oracle is obsolete, and due to honesty of A, we can omit the checks for illegal oracle queries
at the end of the experiment.

11

We define a first variant of the original experiment by substituting the zero-knowledge proof π by
a simulated one. Claim 1 then states that the variant is computationally indistinguishable from the
original one.7

Expanon-b
PS,A (λ)(1)

1 (crs, stS)← Sim1(1λ)
...

13 π ← Sim2

(
stS , (pkα,pkω,pkσ∗,pkε∗, cert∗, task,M,C)

)
...

Claim 1.
∣∣Pr[Expanon-b

PS,A (λ) = 1] − Pr[Expanon-b
PS,A (λ)(1) = 1]

∣∣ ≤ Advzk
Π,D(λ), where D is a p.p.t.

algorithm that in the first stage, on input crs, runs Expanon-b
PS,A (λ) from line 2 to 12 and outputs

(pkα,pkω,pkσ∗,pkε∗, cert∗, task,M,C),mb ‖ ρ). After receiving π in the second stage, D continues
simulating line 14.8

Proof. The claim follows from equivalence of the following random variables:

Expzk
Π,D(λ) = Expanon-b

PS,A (λ) and Expzk-S
Π,D(λ) = Expanon-b

PS,A (λ)(1) . ut

Next, we define a second variant that can then be perfectly simulated by an adversary B against PKE :

Expanon-b
PS,A (λ)(2)

...

14 d← A2

(
st, (C, π) : Open

)
15 if A made a valid query Open

(
pk, task,M, (C, π′)

)
, return 0, else return d

Claim 2.
∣∣Pr[Expanon-b

PS,A (λ)(1) = 1]− Pr[Expanon-b
PS,A (λ)(2) = 1]

∣∣ = negl(λ) .

(See below for the proof.) Due to the above claims, in order to proof Lemma 4, it suffices to relate
Pr[Expanon-b(2)

PS,A = 1] to Pr[Expind-cca b
PKE,B = 1]. Let n be the maximal number of ISndToO queries

performed by A. We construct an adversary against the encryption scheme that, on guessing the right
user, perfectly simulates Expanon-b

PS,A (λ)(2):

Adversary B1(pk : Dec)

1 j∗ ← {1, . . . , n}; j := 0; (crs, stS)← Sim1(1λ)
...

12 return (m0,m1, status)

Adversary B2(status, C : Dec)
π ← Sim2(stS , (pkα,pkω,pkσ∗,pkε∗, certω∗, task,M,C)
d← A2

(
st, (C, π) : Open

)
if A made a valid query Open

(
pk, task,M, (C, π′)

)
, return 0, else return d

7 For ease of presentation, we only give the lines of the experiment that changed.
8 We use Advzk

••(·) as shortcut for |Pr[Expzk
••(·) = 1]−Pr[Expzk-S

•• (·) = 1]| and similarly for indistinguishability. For all
other experiments, Adv•••(·) denotes Pr[Exp•••(·) = 1].

12

Oracle OISndToO(pkσ) by B1

j := j + 1
if j = j∗ then pkε := pk; else (pkε, skε)← Kε(1λ)
certω ← Sig

(
skω, (pkσ,pkε)

)
; write (pkσ,pkε, certω) to OReg

return (pkε, certω)

When A calls its Open oracle for a public key containing pk and a valid signature (C ′, π′), B does the
following: If C ′ 6= C, B uses its own Dec oracle to decrypt C ′; if the signature contains the challenge
C then B returns 0 anyway.

Consider the experiment when A returns pk containing pk (which happens with probability at
least 1

n(λ)). First, note that m0 and m1 are of equal length, for R∗ guarantees that the warrants are
formed correctly. Moreover, B no illegal queries C. We have thus

Pr[Expind-cca-b
PKE,B (λ) = 1] ≥ 1

n(λ) Pr[Expanon-b
PS,A (λ)(2) = 1] . (6)

On the other hand, by indistinguishability of PKE , we have:∣∣Pr[Expind-cca-1
PKE,B (λ) = 1]− Pr[Expind-cca-0

PKE,B (λ) = 1]
∣∣ = negl(λ) ,

which, because of (6) and Claims 1 and 2 yields:∣∣Pr[Expanon-1
PS,A (λ) = 1]− Pr[Expanon-0

PS,A (λ) = 1]
∣∣ = negl(λ) .

We conclude by proving the second claim.

Proof (of Claim 2). We show that after receiving (C, π), A is very unlikely to make a valid open query
(C, π′), i.e., create a different proof π′ for the statement

(pkα,pkω,pkσ∗, pkε∗, certω∗,M, task, C) =: X .

If X was not in LR, then due to simulation soundness of Πk, such a query happens only with negligible
probability. However, indistinguishability of ciphertexts implies that the same holds for X ∈ LR,
otherwise based on Expanon-b(1)

PS,A we could build a distinguisher Bb for PKE as follows:

Adversary Bb1(pk : Dec)
...

12 return (0|m
b|,mb, status)

Adversary Bb2(status, C : Dec)
π ← Sim2

(
stS , (pkα,pkω,pkσ∗,pkε∗, certω∗,M, task, C)

)
d← A2(st, (C, π) : Open)
if at some point A queries (C, π′) with π′ 6= π and

Vk(1λ,
(
pkα,pkω,pkσ∗,pkε∗, certω∗,M, task, C), π′, R

)
= 1 then return 1

else return 0

and a simulation-soundness adversary Sb,c that runs Expind-c
PKE,Bb , except for having crs and π as input

from its experiment instead of creating them itself. Now when when A first makes a valid query (C, π′),
it outputs

(
X := (pkα,pkω,pkσ∗, pkε∗, certω∗,M, task, C), π′

)
, and fails otherwise. We have∣∣Pr[Expanon-b

PS,A (λ)(1) = 1]− Pr[Expanon-b
PS,A (λ)(2) = 1]

∣∣ ≤ Pr[Eb] ,

13

where Eb denotes the event that in Expanon-b
PS,A , A makes a valid query (C, π′). It remains to bound the

probability of event Eb. On the one hand, we have (note that pkε∗ 6= pk implies X /∈ LR, and thus
Sb,1 succeeds in this case):

Pr[Expind-1
PKE,Bb(λ) = 1] = Pr[Expind-1

PKE,Bb(λ) = 1 ∧ pkε∗ = pk] +

Pr[Expind-1
PKE,Bb(λ) = 1 ∧ pkε∗ 6= pk]

= 1
n(λ) Pr[Eb] +

(
1− 1

n(λ)

)
Pr[Expss

Π,Sb,1(λ) = 1] .

On the other hand, we have

Pr[Expind-0
PKE,Bb(λ) = 1] = Pr[Expss

Π,Sb,0(λ) = 1] ,

since (X, 0|m
b|) /∈ R. Combining the above, we get

Advind
PKE,Bb(λ) =

∣∣ 1
n(λ) Pr[Eb] −

(
(1− 1

n(λ))Advss
Π,Sb,1(λ) + Advss

Π,Sb,0(λ)
) ∣∣ ,

and thus the following, which proves the claim:

Pr[Eb] ≤ n(λ)
(
Advind

PKE,Bb(λ) + Advss
Π,Sb,1(λ) + Advss

Π,Sb,0(λ)
)
. ut

Lemma 5. The proxy signature scheme PS is traceable (Definition 2).

Proof. First, note that the requirement to have pkε certified by the opener prevents the adversary
from trivially winning the game as follows: return a public key containing a different pkε′ and use it
to encrypt when signing to get a valid signature that is not openable with the opener’s key.

Figure 7 shows Exptrace
PS,A including the SndToI oracle rewritten with the code of the respective

algorithms. Note that due to our implementation of Reg, the SndToO oracle is obsolete and that the
communication between issuer and opener (i.e., pkσ, pkε, certω) is known to the adversary.

We construct two adversariesBω,Bα against existential unforgeability ofDS that simulate Exptrace
PS,A,

while using their input pk as either the opener’s certifying key (Bω) or the issuer’s signing key (Bα).
When answering A’s SndToI queries, Bω and Bα use their oracle for the respective signature.

Adversary Bω(pk : Sig)

1 (pkα, skα)← Kσ(1λ); pkω := pk
...

6 if no entry pk in OReg

return ((pkσ∗,pkε∗), certω∗)

7 return ⊥

Adversary Bα(pk : Sig)

1 pkα := pk; (pkω, skω)← Kσ(1λ)
...

8 if for some i, pkσi not in IReg

return (pkσi, certi)

9 return ⊥

Let E1, E2 and S denote the following events:

E1 . . . Exptrace
PS,A(λ) returns 1 in line 6

E2 . . . Exptrace
PS,A(λ) returns 1 in line 8

S . . . (pkα,pkω,pkσ∗, pkε∗, certω∗, task,M,C) ∈ LR

We have Advtrace
PS,A(λ) = Pr[E1∧S]+Pr[E2∧S]+Pr[(E1∨E2)∧ S̄]. Showing that the three summands

are negligible completes thus the proof.

14

Exptrace
PS,A(λ)

1 (pkα, skα)← Kσ(1λ); (pkω, skω)← Kσ(1λ)

2 crs← {0, 1}p(λ); pp := (λ,pkα,pkω, crs)

3 (pk, task,M, σ)← A(pp : SndToI)

4 parse pk (pkσ∗,pkε∗, cert∗, certω∗,pp); σ (C, π)

5 if Vk(1λ, (pkα,pkω,pkσ∗,pkε∗, certω∗, task,M,C), π, crs) = 0, return 0

6 if no entry pk in OReg , return 1 // opening fails
otherwise look up the corresponding skε∗.

7 (pkσ2, . . . ,pkσk, cert2, . . . , certk,warr1, . . . ,warrk−1, s) := Dec(skε∗, C)

8 if for some i, pkσi not in IReg , return 1

9 return 0

OSndToI(pkσ, sig)

1 if verification of sig on pkσ fails then return ⊥
2 cert← Sig(skα,pkσ); write (pkσ, sig) to IReg

3 (pkε, skε)← Kε(1λ); certω ← Sig(skω, (pkσ,pkε))

4 write (pkσ,pkε, skε) to OReg

5 return (cert,pkε, certω)

Fig. 7. Experiment for traceability

E1 ∧ S: S means (pkα,pkω,pkσ∗,pkε∗, certω∗, task,M,C) ∈ LR, and thus

Ver
(
pkω, (pkσ∗,pkε∗), certω∗) = 1 .

On the other hand, E1 implies that (pkσ∗,pkε∗) is not in OReg , thus Bω never asked a signature
on it and therefore returns a valid forgery. We have thus

Pr[E1 ∧ S] ≤ Pr[Expeuf-cma
DS,Bω (λ) = 1] .

E2 ∧ S: Now, S implies that for all 2 ≤ j ≤ k : Ver(pkα,pkσj , certj) = 1, but pkσi being not in
IReg means Bα returns a valid forgery, and consequently

Pr[E2 ∧ S] ≤ Pr[Expeuf-cma
DS,Bα (λ) = 1] .

(E1∨E2)∧ S̄: (E1∨E2) implies Vk(1λ, (pkα,pkω,pkσ∗,pkε∗, certω∗, task,M,C), π, crs) = 1, which,
together with S̄ contradicts soundness of Πk: based on Exptrace

PS,A, we could construct an adversary
Bs against soundness of Πk which after receiving crs (rather than choosing it itself), runs along the
lines of the experiment until line 4 and then outputs

(
(pkα,pkω,pkσ∗,pkε∗, certω∗, task,M,C), π

)
.

We have thus
Pr[(E1 ∨ E2) ∧ S̄] ≤ Advss

Π,Bs
. ut

Lemma 6. The proxy signature scheme PS is non-frameable (Definition 3).

Proof. Figure 8 shows experiment Expn-frame
PS,A rewritten with the code of the respective algorithms.

Note that we can dispense with the OSndToU-oracle, because in our scheme the user communicates
exclusively with the issuer.

We construct an adversary B against the signature scheme DS having input a verification key pk
and access to a signing oracle OSig. B simulates Expn-frame

PS for A, except that for one random user

15

Expn-frame
PS,A (λ)

1 (pkα, skα)← Kσ(1λ); (pkω, skω)← Kσ(1λ); crs← {0, 1}p(λ)

2 pp := (λ,pkα,pkω, crs)

3 (ok,pk1, task,M, σ)← A(pp, skα, skω : ISndToU,SK,Del,PSig)

4 parse ok ((pkσ1,pkε1, cert1, certω1,pp), skε1); σ (C, π)

5 if Vk
(
1λ, (pkα,pkω,pkσ1,pkε1, certω1, task,M,C), π, crs

)
= 0 then return 0

6 (pkσ2, . . . ,pkσk, cert2, . . . , certk,warr1, . . . ,warrk−1, s) := Dec(skε1, C)

7 if pk1 ∈ HU and no queries ODel(pk1, {··, task, ··},pk2) then return 1

8 if ∃ i : pki ∈ HU and no queries ODel(pki,warr, {··, task, ··},pki+1)
with warr[j][0][1] = pkσj for 1 ≤ j ≤ i then return 1

9 if pkk ∈ HU and no queries OPSig(pkk,warr, task,M)
with warr[j][0][1] = pkσj for 1 ≤ j ≤ k then return 1

10 return 0

OISndToU(∅)
1 (pkσ, skσ)← Kσ(1λ)

2 HU := HU ∪ {(pkσ, skσ)}
3 return pkσ

OSK((pkσ, ··))
1 if ∃ skσ : (pkσ, skσ) ∈ HU ,

2 delete the entry and return skσ

3 otherwise, return ⊥

Fig. 8. Instantiated experiment for non-frameability

registered by A via ISndToU, B sets pkσ to its input pk, hoping that A will frame this very user. If
B guesses correctly and A wins the game, a forgery under pk can be extracted from the untraceable
proxy signature returned by A. Let n(λ) be the maximal number of ISndToU queries performed by A.

Adversary B and its handling of A’s ISndToU and SK oracle queries are detailed in Fig. 9. To answer
oracle calls Del and PSig with argument pk∗ = (pk, ··),B replaces the line with Sig(skσ, (task,pkσ1, . . .))
in the respective algorithms by a query to its own signing oracle. For all other public keys, B holds
the secret keys and can thus answer all queries.

Let S denote the event
[
(pkα,pkω,pkσ1,pkε1, certω1, task,M,C) ∈ LR

]
and E1, E2, E3 denote

the union of S and the event that Expn-frame returns 1 in line 7, 8, 9, respectively. Then the following
holds:

Advn-frame
PS,A (λ) ≤ Pr[E1] + Pr[E2] + Pr[E3] + Pr[Expn-frame

PS,A (λ) = 1 ∧ S̄] .

We now show that the four summands are negligible:

1. Consider the event E∗1 := [E1 ∧ pkσ1 = pk]. Then, since S is satisfied, we have

Ver
(
pk, (task,pkσ1, pkσ2),warr1

)
= 1 .

So, B returns a valid message/signature pair.
The forgery is valid, since B did not query its oracle for (task, pkσ1, pkσ2), as this only happens
when A queries ODel((pkσ1, ··), {··, task, ··}, (pkσ2, ··)), which by E1 is not the case. Moreover, B
simulates perfectly, for E1 implies OSK((pk, ··) was not queried. All in all, we have

Adveuf-cma
DS,B ≥ Pr[E∗1] = Pr[pk∗ = pk1] · Pr[E1] = 1

n(λ) Pr[E1] .

2. Consider the event [E2 ∧ pkσi = pk]. Then S implies

Ver(pk,
(
(task,pkσ1, . . . ,pkσi+1),warri

)
= 1 .

16

Adversary B(pk : Sig(sk, ·))
0 j∗ ← {1, . . . , n}; j := 0

...

7 if pkσ1 = pk and no queries ODel((pkσ1, ··), {··, task, ··}, (pkσ2, ··))
then return

(
(task,pkσ1,pkσ2),warr1

)
8 if ∃ i : pkσi = pk and no queries ODel((pkσi, ··),warr, {··, task, ··}, (pkσi+1, ··))

with warr[j][0][1] = pkσj for 1 ≤ j ≤ i
then return

(
(task,pkσ1, . . . ,pkσi+1),warri

)
9 if pkσk = pk and no queries OPSig((pkσk, ··),warr, task,M) with

warr[j][0][1] = pkσj for 1 ≤ j ≤ k, then return
(
(task,pkσ1, . . . ,pkσk,M), s

)
10 return 0

OISndToU(∅) by B

1 j := j + 1; if j = j∗, return pk

2 (pkσ, skσ)← Kσ(1λ)

3 HU := HU ∪ {(pkσ, skσ)}
4 return pkσ

OSK((pkσ, ··)) by B

1 if pkσ= pk then abort

2 else if ∃ skσ : (pkσ, skσ) ∈ HU
3 delete entry, return skσ

4 return ⊥

Fig. 9. Adversary B against DS.

So, B returns a valid signature on a message it did not query its signing oracle: only if A queries
ODel((pkσi, ··),warr, {··, task, ··}, (pkσi+1, ··)) with warr[j][0][1] = pkσj for 1 ≤ j ≤ i+ 1, B queries
(task, pkσ1, . . . ,pkσi+1). Moreover, B simulates perfectly, as there was no query OSK((pk, ··). As
for 1., we have 1

n(λ) Pr[E2] ≤ Adveuf-cma
DS,B .

3. Consider the event [E3 ∧ pkσk = pk]. There were no OSK((pk, ··) queries and S implies that
B outputs a valid pair. In addition, B did not query (task,pkσ1, . . . ,pkσk,M) (as A made no
query OPSig((pkσk, ··),warr, task,M) with warr[j][0][1] = pkσj for 1 ≤ j ≤ k). Again, we have

1
n(λ) Pr[E3] ≤ Adveuf-cma

DS,B .

4. The first clause of the event Pr[Expn-frame
PS,A (λ) = 1 ∧ S̄] implies

Vk(1λ, (pkα,pkω,pkσ1,pkε1, certω1, task,M,C), π, crs) = 1 ,

which together with S̄ contradicts soundness of Πk and happens thus only with negligible proba-
bility (as in the proof of Lemma 5). ut

Theorem 7. Assuming trapdoor permutations, there exists an anonymous traceable non-frameable
proxy signature scheme.

Proof. Follows from Lemmata 4, 5 and 6. ut

We have defined a new primitive unifying the concepts of group and proxy signatures and given
strong security definitions for it. Moreover, Theorem 7 shows that these definitions are in fact satisfiable
in the standard model, albeit by a inefficient scheme. We are nonetheless confident that more practical
instantiations of our model will be proposed, as it was the case for group signatures; see e.g. [BW07]
for an efficient instantiation of a variation of the model by [BMW03], or [Gro07] for an instantiation
of [BSZ05]. We believe in particular that the novel methodology to construct NIZK proofs introduced
by [GS08] will lead to practically usable implementations.

17

Acknowledgments

This work was partially funded by EADS, CELAR, the French ANR-07-SESU-008-01 PAMPA Project
and the European Commission through the IST Program under Contract IST-2002-507932 ECRYPT.

References

[BMW03] M. Bellare, D. Micciancio and B. Warinschi. Foundations of group signatures: Formal definitions, simplified
requirements, and a construction based on general assumptions. EUROCRYPT ’03 , LNCS 2656, pp. 614–629.
Springer-Verlag, 2003.

[BSZ05] M. Bellare, H. Shi and C. Zhang. Foundations of group signatures: The case of dynamic groups. In CT-RSA
2005, LNCS 3376, pp. 136–153. Springer-Verlag, 2005.

[BDMP91] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge proof systems. SIAM
Journal on Computing, 20(6):1084–1118, 1991.

[BPW03] A. Boldyreva, A. Palacio and B. Warinschi. Secure proxy signature schemes for delegation of signing rights.
IACR ePrint Archive: Report 2003/096, 2003.

[BW07] X. Boyen and B. Waters. Full-domain subgroup hiding and constant-size group signatures. PKC ’07, LNCS
4450, pp. 1–15. Springer-Verlag, 2007.

[CvH91] D. Chaum and E. van Heyst. Group signatures. EUROCRYPT ’91, LNCS 547, pp. 257–265. Springer-Verlag,
1991.

[DDN00] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on Computing, 30(2):391–437,
2000.

[FP08] G. Fuchsbauer, D. Pointcheval. Anonymous proxy signatures. SCN ’08, LNCS 5229, pp. 201–217. Spinger-
Verlag, 2008

[GMR88] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[Gro07] J. Groth. Fully anonymous group signatures without random oracles. ASIACRYPT ’07, LNCS 4833, pp.
164–180. Spinger-Verlag, 2007

[GS08] J. Groth, A. Sahai. Efficient non-interactive proof systems for bilinear groups. EUROCRYPT ’08, LNCS 4965,
pp. 415–432. Springer-Verlag, 2008

[MUO96] M. Mambo, K. Usuda and E. Okamoto. Proxy signatures for delegating signing operation. Proceedings of the
3rd ACM Conference on Computer and Communications Security (CCS). ACM, 1996.

[RS92] C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack.
CRYPTO ’91, LNCS 576, pp. 433–444, Springer-Verlag, 1992.

[RST01] R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Proceedings of Asiacrypt 2001, LNCS 2248,
pp. 552–565. Springer-Verlag, 2001.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure signatures. 22nd Annual Symposium on
Theory of Computing, pp. 387–394. ACM, 1990.

[Sah99] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. 40th Sym-
posium on Foundations of Computer Science, pp. 543–553, IEEE, 1999.

[SK02] K. Shum and Victor K. Wei. A strong proxy signature scheme with proxy signer privacy protection. 11th IEEE
International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE
’02), pp. 55–56. IEEE, 2002.

[TL04] Z. Tan and Z. Liu. Provably secure delegation-by-certification proxy signature schemes. IACR ePrint Archive:
Report 2004/148, 2004.

[TW05] M. Trolin and D. Wikström. Hierarchical group signatures. Automata, Languages and Programming, 32nd
International Colloquium (ICALP’05), LNCS 3580, pp. 446–458. Springer-Verlag, 2005.

A Formal Definitions of the Employed Primitives

A.1 Signature Scheme DS = (Kσ, Sig,Ver)

DS is a digital signature scheme, that is

∀λ ∈ N ∀m ∈ {0, 1}∗ ∀ (pk, sk)← Kσ(1λ) : Ver
(
pk,m,Sig(sk,m)

)
= 1

We assume DS is secure against existential forgery under chosen-message attack, that is

∀ p.p.t. A : Pr
[
Expeuf-cma

DS,A (λ) = 1
]

= negl(λ) with

18

Expeuf-cma
DS,A (λ)
(pk, sk)← Kσ(1λ)
(m,σ)← A(pk : Sig(sk, ·))
if Ver(pk,m, σ) = 1 and A never queried m, return 1, else return 0

A.2 Public-key Encryption Scheme PKE = (Kε,Enc,Dec)

PKE is a public-key encryption scheme, that is

∀λ ∈ N ∀m ∈ {0, 1}∗ ∀ (pk, sk)← Kε(1λ) : Dec(sk,Enc(pk,m)) = m

We assume that PKE satisfies indistinguishability under adaptive chosen-ciphertext attacks, i.e.,

∀ p.p.t. A = (A1, A2) :
∣∣Pr

[
Expind-cca-1

PKE,A (λ) = 1
]
− Pr

[
Expind-cca-0

PKE,A (λ) = 1
]∣∣ = negl(λ) with

Expind-cca-b
PKE,A (λ)
(pk, sk)← Kε(1λ)
(m0,m1, st)← A1(pk : Dec(sk, ·))
y ← Enc(pk,mb)
d← A2(st, y : Dec(sk, ·))
if |m0| = |m1| and A2 never queried y return d, else return 0

A.3 Non-interactive Zero-knowledge Proof System Π = (P,V, Sim) for LR

We require that Π satisfy the following properties:

– Completeness

∀λ ∈ N ∀ (x,w) ∈ R with |x| < `(λ) ∀ r ∈ {0, 1}p(λ) : V
(
1λ, x,P(1λ, x, w, r), r

)
= 1

– Soundness

∀ p.p.t. A : Pr
[
r ← {0, 1}p(λ); (x, π)← A(r) : x /∈ L ∧ V(1λ, x, π, r) = 1

]
= negl(λ)

– Adaptive Single-Theorem Zero Knowledge ∀ p.p.t. A :

Advzk
Π,A(λ) :=

∣∣Pr
[
Expzk

Π,A(λ) = 1
]
− Pr

[
Expzk-S

Π,A(λ) = 1
]∣∣ = negl(λ) with

Expzk
Π,A(λ)
r ← {0, 1}p(λ)

(x,w, stA)← A1(r)
π ← P(x,w, r)
return A2(stA, π)

Expzk-S
Π,A(λ)
(r, stS)← Sim1(1λ)
(x,w, stA)← A1(r)
π ← Sim2(stS , x)
return A2(stA, π)

– Simulation Soundness

∀ p.p.t. A : Pr
[
Expss

Π,A(λ) = 1
]

= negl(λ) with

Expss
Π,A(λ)
(r, stS)← Sim1(1λ)
(y, stA)← A1(r)
π ← Sim2(stS , y)
(x, π′)← A2(stA, π)
if π 6= π′ and x /∈ LR and V(1λ, x, π′, r) = 1 return 1, else return 0

