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École normale supérieure, LIENS - CNRS - INRIA, Paris, France
http://www.di.ens.fr/{~fuchsbau,~pointche}

Abstract We give a generic methodology to unlinkably anonymize cryptographic schemes in bilinear groups
using the Boneh-Goh-Nissim cryptosystem and nizk proofs in the line of Groth, Ostrovsky and Sahai. We
illustrate our techniques by presenting the first instantiation of anonymous proxy signatures (in the standard
model), a recent primitive unifying the functionalities and strong security notions of group and proxy signatures.
To construct our scheme, we introduce various efficient nizk and witness-indistinguishable proofs.

1 Introduction

One of the major concerns of modern cryptography is anonymity. Group signatures [CvH91] for exam-
ple allow members to sign on behalf of a group while remaining anonymous. Other concepts to which
anonymity is central are hierarchical group signatures [TW05], identity escrow [KP98] and anonymous
credentials [Cha85], to mention only a few. The main issue of these concepts is to demonstrate that a
user is entitled to perform a certain task, while not revealing anything about his identity. Zero-knowledge
proofs provide the means to do so: prove something without leaking any further information. In particu-
lar, non-interactive zero-knowledge (nizk) proofs [BFM88] have enjoyed numerous applications to achieve
anonymity.

Substantial progress has been made in recent years in making nizk proofs efficient and thus applicable
to practical schemes: Groth et al. [GOS06b] show how to efficiently non-interactively prove that a bgn-
ciphertext [BGN05] (cf. Sect. 2) encrypts 0 or 1. Although conceived for purely theoretical purposes, their
techniques were used by Boyen and Waters in [BW06] to construct compact group signatures, which they
improve in [BW07].

In a different line of research—which has been unified with the one based on bgn in [GS08]—, Groth
et al. [GOS06a] based nizk proofs on a commitment scheme building on linear encryption [BBS04]. The
latter is an extension of ElGamal encryption to bilinear groups1 and is semantically secure under the
decisional linear assumption (dlin). Keys for gos-commitments are basically linear encryptions of either
0 or 1, with the encrypted value determining whether the resulting commitments are perfectly hiding or
perfectly binding. Since both types of keys are indistinguishable by dlin, they inherit a computational
version of the other’s property from one another.

This scheme has given rise to a multitude of practical nizk proof systems (see e.g. the full version
of [Gro06] for an impressive demonstration of its power), practical implementations of fully-secure group
signatures [Gro07] without random oracles [BR93], as well as the introduction of new primitives such as
non-interactive anonymous credentials in [BCKL08].

Our Contributions. All the above analyses required ad-hoc security proofs. When extending anonymity
to more complex protocols, these proofs quickly become too intricate—unless one manages to provide a
generic way to anonymize a large class of proofs. Such a generic anonymization is our first contribution;
we generalize the ideas of [BW06,BW07] to bgn-encrypt proofs (and in particular signatures) and prove
validity of the encrypted values, for the following category of schemes: the relations checked by the
verification algorithm are equations consisting exclusively of products of pairings. (Actually, this is the

1 The decisional Diffie-Hellman assumption (ddh), on which ElGamal relies, does not hold in symmetric bilinear groups.
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case for most signature schemes in bilinear groups such as Boneh-Boyen’s short signatures [BB04] or
Waters’ scheme [Wat05].)

We give a methodology to construct proofs demonstrating that encrypted values satisfy certain re-
lations, and show that these proofs do not leak information on the plaintexts, nor additional relations
about the plaintexts—providing thus anonymity (unlinkability and untraceability). Moreover, given a set
of ciphertexts and a corresponding proof, then without knowledge of the plaintexts, one can re-encrypt (or
re-randomize) the ciphertexts and adapt the proof to the new encryptions. In particular, re-randomizations
of two sets of ciphertexts and proofs are indistinguishable. This yields a generic method to anonymize
schemes in an unlinkable way, such as group signatures (“full anonymity” of the schemes in [BW06]
and [BW07] is an immediate consequence of our results), fair contract signing [ASW00], or verifiable en-
cryption [BGLS03], as shown in Sect. 3.2. Since we use encryption to achieve anonymity, the decryption
key provides a trapdoor to revoke anonymity in case of abuse, as required by primitives such as group
signatures.

In order to illustrate our methodology and to demonstrate its power, our second contribution is the first
concrete implementation of anonymous proxy signatures in the standard model. This primitive was recently
introduced by Fuchsbauer and Pointcheval [FP08a], who while giving practical applications merely prove
theoretical feasibility. It merges group signatures with proxy signatures [MUO96], generalizing the strong
security notions of both (in particular, [BMW03,BSZ05] for group signatures and [BPW03] for proxy
signatures). Proxy signatures allow consecutive delegation of signing rights while publicly providing the
identities of the delegators and the signer with the signed document. Anonymous proxy signatures require
that these identities remain hidden: nobody can tell who actually signed or re-delegated, but still anyone
can verify that the proxy signer was indeed entitled (via a chain of delegations) to do so. Traceability, i.e.
the fact that an authority can revoke anonymity, deters from misuse.

We slightly simplify the model of [FP08a], in that we consider one general opener (instead of having
each user choose his own) and anonymity against adversaries without opening oracles (cpa-anonymity [BBS04],
a common notion for practical standard-model group signature schemes). Furthermore, we introduce a
maximal number of possible delegations. We emphasize that this variant still directly yields dynamic hi-
erarchical group signatures satisfying non-frameability (i.e., the group manager cannot produce signatures
that open to a user), while [BW07] only consider the static and non-hierarchical case where the group
manager knows every member’s secret key.

Overview. We recall some results from the literature on pairing-based cryptography in Sect. 2 and present
our methodology in Sect. 3. Before presenting our full scheme in Sect. 5, we mainly focus on constructing
a (non-anonymous) scheme for consecutive signature delegations (Sect. 4) to which our methodology can
then readily be applied. Its main building block is a signature scheme secure against existential forgeability
under chosen message attacks (euf-cma) [GMR88], capable of signing public keys for the scheme itself,
and whose verification procedure falls in a certain class. The security of the scheme relies on a new
assumption presented in Sect. 4.3. The scheme uses a zero-knowledge proof of knowledge [DP92], which
we introduce in Sect. 4.2 and of which we sketch an instantiation in Sect. 6. In order to achieve the strong
security notions, we design the proof system to satisfy weak simulation soundness, a relaxation of the
concept introduced by Sahai [Sah99].

2 Preliminaries

We briefly recapitulate the employed concepts from the literature and refer to the cited works for more
details. A (symmetric) bilinear group is a tuple (n,G,GT , e(·, ·), g) where G and GT are two cyclic groups
of order n and g is a generator of G. Furthermore, e(·, ·) is a non-degenerate bilinear map G×G→ GT ,
i.e. ∀ u, v ∈ G ∀ a, b ∈ Z : e(ua, vb) = e(u, v)ab and e(g, g) is a generator of GT .
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The Subgroup Decision Assumption and BGN-Encryption [BGN05]. Let the group order |G| =
n = pq be a product of two primes p and q. The subgroup decision assumption (sd) states that no
probabilistic polynomial-time (p.p.t.) adversary not knowing the factorization of n can with non-negligible
probability distinguish a random element of G from a random element of Gq, the subgroup of order q.

The subgroup decision assumption implies semantic security of the following encryption scheme: The
public key is the bilinear group (not revealing the factors of its order) and an element h ∈ Gq. The secret
key is q, i.e. the factorization of the group order. To encrypt a message m ∈ {0, . . . , T}, with T < p, choose
r ← Zn and compute the ciphertext C := gmhr. Since h is of order q, we have Cq = (gmhr)q = (gq)m, so
m can be recovered by computing loggq Cq = m.

The Decisional Linear Assumption and Linear Encryption [BBS04]. Let (p,G,GT , e) be a bi-
linear group; let f, h, g be generators of G. We call a triple (c1, c2, c3) ∈ G

3 linear w.r.t. to the basis
(f, h, g) iff there exist r, s ∈ Zp such that c1 = f r, c2 = hs, c3 = gr+s. The decisional linear assumption
(dlin) states that no p.p.t. adversary can distinguish random linear triples w.r.t. a random basis from
random triples; that is, given (g, gx, gy, gxr, gys) for random x, y, r, s, it is hard to distinguish gr+s from a
uniformly random element in G.

Assuming dlin, the following encryption scheme is secure: Choose a secret key (x, y) ← (Z∗
p)

2

and publish pk := (f := gx, h := gy, g). To encrypt a message m ∈ G, choose r, s ← Zp and com-

pute Enc(pk,m; (r, s)) := (f r, hs,mgr+s). Any (u, v,w) can be decrypted by computing u−x
−1
v−y

−1
w =

g−rg−smgr+s = m.

GOS-Commitments [GOS06a]. The following homomorphic commitment scheme is based on linear
encryption: The commitment key is a public key for linear encryption (f, h, g) and a triple (u, v,w)
which is an encryption of either 1 or g (i.e., (f ru, hsv , gru+sv) or (f ru , hsv , gru+sv+1) for random ru, sv ∈
Zp). The first leads to a perfectly hiding key, while the latter constitutes a perfectly binding key. Now
Com((f, h, g, u, v, w),m; (r, s)) := (umf r, vmhs, wmgr+s) is a commitment to m ∈ Zp for random r, s.
Note that for perfectly hiding keys for any message m this is a random encryption of 0 while in the
binding case, it encrypts gm.

3 The Leak-Tightness Lemma

In [BW07], Boyen and Waters use the following strategy to construct efficient group signatures without
random oracles: First, they construct two-level hierarchical signatures (a.k.a. certified signatures) that
satisfy unforgeability (“traceability”), such that signatures consist of group elements only and can be
verified by checking pairing-product equations (cf. Lemma 1). They then convert the scheme into a group
signature scheme, obtaining anonymity by bgn-encrypting the signature components and adding proofs
for the plaintexts satisfying the verification equations. Considerable effort is then dedicated to showing
that their specific proofs do not leak information on the plaintexts.

In fact, as shown by the following lemma, proofs of this kind generally do not leak any additional in-
formation on the encrypted values. Thus, full anonymity of [BW06] and [BW07] follows immediately from
the lemma. We first state the—somewhat technical—results and clarify their relevance in the subsequent
discussion.

Lemma 1 (Leak tightness). Let (n,G,GT , e, g) be a bilinear group, and let aj, bj ∈ G, δj,i, εj,i ∈ Zn

for 1 ≤ j ≤ ℓ, 1 ≤ i ≤ m. Let (Xi)
m
i=1 ∈ G

m satisfy a pairing-product equation E(aj ,bj)j
that is

E(aj ,bj)j
(X1, . . . ,Xm) :

∏ℓ

j=1
e
(
aj

∏m
i=1X

δj,i

i , bj
∏m
i=1X

εj,i

i

)
= 1l .
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1. Let H ∈ G, (ρi)
m
i=1 ∈ Z

m
n . Then X̃i := XiH

ρi for 1 ≤ i ≤ m satisfy

∏
j
e
(
aj

∏
iX̃

δj,i

i , bj
∏
iX̃

εj,i

i

)
= e

(
H,PE

(
(Xi), (ρi)

))
, (Ẽ)

where PE
(
(Xi), (ρi)

)
:=

∏
j

(
(aj

∏
iX

δj,i

i )
P

εj,iρi(bj
∏
iX

εj,i

i )
P

δj,iρiH(
P

δj,iρi)(
P

εj,iρi)
)
.

2. Given (Xi) and (X ′
i) both satisfying E, and (ρi), (ρ′i), s.t. for all 1 ≤ i ≤ m: XiH

ρi = X ′
iH

ρ′i, then

PE
(
(Xi), (ρi)

)
= PE

(
(X ′

i), (ρ
′
i)

)
.

3. Let |G| = pq, let aj , bj ,Xi ∈ Gp; cj , dj , Yi ∈ Gq for all i, j. If (Xi) satisfy E(aj ,bj)j
and (Yi) satisfy

E(cj ,dj)j
, then (XiYi) satisfy E(ajcj ,bjdj)j

.

4. Let furthermore H ∈ Gq and θ ∈ N be such that θ ≡ 1 (mod p) and θ ≡ 0 (mod q). If (X̃i) ∈ G

satisfy Ẽ(ajcj ,bjdj)j
for some PE, then (X̃θ

i ) satisfy E(aj ,bj)j
.

See Appendix D.1 for the proof. We give a brief description of the lemma’s content: Let (Xi) be a
vector of group elements satisfying relation E; think of the Xi’s as components of a digital signature and
E being the verification relation. If H ∈ Gq then X̃i as defined in (1) is a bgn-encryption of Xi using

randomness ρi. Given (X̃i), the element PE can be seen as a proof that the plaintexts in (X̃i) satisfy E,
which is verified by checking Ẽ.

While (1) states that every proof constructed as described passes verification, (4) ensures soundness:
if there exists a PE such that (X̃i) and PE satisfy Ẽ in G, then their projections (X̃θ

i ) into Gp satisfy
E in Gp. We will use this fact to reduce a forgery in an “anonymized” scheme in G to a forgery in an
underlying scheme in Gp; in [BW06] for example a forged group signature is translated to a forgery of a
certified signature this way.

If we have equations E(aj ,bj)j
in Gp and E(cj ,dj)j

in Gq, and values (Xi), (Yi) satisfying them respec-
tively, then their products satisfy equation E(ajcj , bjdj)j

in G due to (3), which we will be useful in our
simulations.

Now the main result is (2): Assume H ∈ G, rather than in Gq, which is indistinguishable by the

subgroup decision (sd) assumption. In this case each X̃i is perfectly random: Given an “encryption” X̃i,
then for any potential plaintext Xi, there exists randomness ρi := logH(X̃i/Xi) leading to X̃i. Now, (2)
states that given (X̃i), any vector of such pairs of plaintexts/randomness (Xi, ρi)

m
i=1 “explaining” (X̃i)

leads to exactly the same proof PE , which means that the proof leaks no information on the plaintext.

Remark 1 (Unlinkably re-randomizing randomized values). Consider a vector (Xi) satisfying E,
but with right-hand side e(H,P ′) instead of 1l. Again, let X̃i := XiH

ρi for all i. Then (X̃i) satisfies Ẽ with
e(H,P ′ · PE((Xi), (ρi))) as right-hand side. So, given a proof P for randomized (X̃i) satisfying Ẽ, one
can re-randomize the (X̃i) using fresh ρ′i and adapt the proof (without knowledge of the plaintexts!) by

setting Pnew := P · PE((X̃), (ρ′i)). If ((X̃i), P ) and ((Ỹi), P
′) both satisfy Ẽ, then their re-randomizations

are indistinguishable by sd and Lemma 1(2).

3.1 The Waters Signature Scheme

We review the scheme from [Wat05] to sign messages M = (M1, . . . ,Mm) ∈ {0, 1}m, which will be used
several times in the remainder of the paper.

Setup. Choose a bilinear group (n,G,GT , e, g). The parameters are g2 ← G
∗ and a vector u := (u0, u1, . . . , um)←

G
m+1. Choose a secret key x← Zm, and define the public key as X := gx.

For convenience, we define the following function F(M) :=
∏m
i=1 u

Mi
i .
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Signing. Choose r ← Zp and define the signature as σ := (gx2 (u0F(M))r , g−r).

Verification. A signature σ = (σ1, σ2) is accepted for a message M iff

e(σ1, g) e(u0F(M), σ2) = e(g2,X) .

Security. euf-cma follows from hardness of the computational Diffie-Hellman assumption (cdh) in the
underlying group.

3.2 Applying Lemma 1 to Construct Verifiable Encryption

To exemplify our techniques, we construct a verifiable-encryption scheme in the standard model, which
we only sketch due to space limitations. Suppose, we want to encrypt a signature and prove that the
plaintext satisfies the signature verification relation. Lemma 1 lets us do so if the verification procedure
consists merely of verifying pairing-product equations, as is the case for Waters’ scheme. Moreover, if the
signatures are euf-cma then a similar property holds for encryption/proof pairs: Even after querying
such pairs for messages of its choice, no adversary can produce a valid pair for a new message.

We construct a scheme ES for encrypted signatures: Given a plain signature in scheme S, indepen-
dently bgn-encrypt all its components and add a proof PE for each verification equation E, as defined in
Lemma 1(1). Indistinguishability of the hidden elements follows from the sd assumption combined with
(2): Replacing H ∈ Gq by a random element from the entire group G is indistinguishable by sd. Now the
encryptions are perfectly random and the proofs do not reveal any information either; every hypothesis
(Xi) on the plaintexts of (X̃i) leads to the same proof.

Unforgeability of ES is inherited from scheme S defined in subgroup Gp: Lemma 1(3) allows us to
simulate all oracle queries and (4) lets us transform a forgery in ES to a forgery in S; more precisely:
Given an adversary A against ES in G, we construct B against S in Gp as follows: After receiving the
parameters of S, B produces parameters and the public key for a twin instance TS of S, but in subgroup
Gq (knowing thus the secret key). Then B constructs scheme ES in G whose parameters are the products
of those of S and TS.

Whenever A performs an oracle query, B splits all involved group elements (if any) into their compo-
nents in Gp (by raising them to the θ-th power as in (4)) and their components in Gq by raising them to
the power of θq, with θq ≡ 0 (mod p) and θq ≡ 1 (mod q). The p-parts are submitted to B’s own oracle,
while the action on the q-parts can be performed by B itself. The two results are then combined to a
solution in G by multiplying them component-wise. (3) guarantees validity as the products satisfy the
equations in group G when both components satisfy the equations in their respective subgroups. Finally, a
forgery returned by A can be translated to one for S, again via (4), giving B the same success probability
as A.

To further illustrate our methodology, we give an instantiation of “anonymous proxy signatures”. We
first construct a (non-anonymous) delegation scheme whose verification relations satisfy the requirements
of Lemma 1. To instantiate the generic concept of such a scheme, the most important tool is the following:
a Lemma-1-compatible euf-cma-secure signature scheme, where the messages to be signed are vectors of
public keys of the scheme itself.2 This is the main difference to previous certified-signature schemes (on
which group signatures build), where the certification and the signature itself are not based on the same
mechanism, excluding thus consecutive delegation. In order to motivate our proceeding we briefly review
the notions from [FP08a] in the next section.

2 Note that we cannot simply hash the vector of messages and sign the hash value, as we will later encrypt the messages
and prove that the signature is valid on the plaintexts.
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3.3 Definition and Security of Anonymous Proxy Signatures

In an anonymous proxy signature scheme, there are the following protagonists: The issuer enrolls users
in the system, the users can delegate and sign on behalf of other users, and the opener is able to trace
the hidden delegators and the signer from a proxy signature in case of misuse.

The scheme consists of 7 algorithms: Setup produces the public parameters, the issuer’s secret key
and the opening key. Algorithm UKGen is run by the users in order to produce a key pair, the public key
of which is registered by the issuer running Enroll. A user can delegate her signing rights by producing
a warrant with Dlg taking as input her secret key and the delegatee’s public key. Dlg also provides the
possibility to re-delegate when given a warrant as additional argument. Now using a warrant, users can
“proxy sign” messages running PSig, whereas the resulting signatures are verifiable via PVer using the
first (“original”) delegator’s public key only. Algorithm Open allows the opener holding the opening key
to reveal the delegators and the signer.

We overview the required security notions and refer to the full version or [FP08a] for the rigorous
definitions:

Anonymity. The experiment for anonymity is the following: Consider an adversary getting the issuer’s
key and who in a first phase returns an original delegator’s public key, two pairs consisting of a warrant
and a secret key each, and a message. Now, flip a random bit and depending on the outcome give the
adversary a signature produced using either the first or the second warrant/secret-key pair. Then as
long as both warrants result from the same number of delegations and both lead to valid signatures, the
adversary cannot decide the value of the flipped bit with probability more than a half.

Traceability. No adversary, after enrolling arbitrarily many users via an Enroll-oracle, can produce a
signature which cannot be opened. Thus, every valid signature can be traced to registered users.

Non-Frameability. No adversary, even when colluding with the issuer and the opener, can frame honest
users. More precisely, give the adversary all keys returned by Setup, and oracles to create honest users and
ask delegations and signatures of them—or adaptively corrupt them by asking their secret key. Then the
adversary is not able to produce a valid signature whose opening yields an honest user for a delegation
or a signing he has not been queried for.

Remark 2. Remark 1 hints that our scheme actually achieves a stronger notion of anonymity where even
to a delegatee the preceding delegators are anonymous.

4 A Consecutive Signature-Delegation Scheme

4.1 Overview

A Generic Construction. The issuer and each user create a key pair for an euf-cma-secure signature
scheme. To enroll a user, the issuer signs her public key, creating thus a certificate sent to the user. If user
U1 wants to delegate U2, she sends him a signature on her own and U2’s public key, called warrant. To
re-delegate to U3, U2 sends her his certificate cert2 received from the issuer, the warrant warr1→2 received
from U1, and warr1→2→3, a signature on (pk1,pk2,pk3), the user’s public keys. Now to sign a message M
on behalf of U1, U3 produces a signature σ on (pk1,pk2,pk3,M). The (non-anonymous) proxy signature
is Σ := (warr1→2,pk2, cert2,warr1→2→3,pk3, cert3, σ).

Remark 3 (Delegating for specific tasks only). The scheme can easily be extended, so that dele-
gation of signing rights can be done for specific tasks only—as proposed by [FP08a]—as follows: When
delegating, sign (pk1, . . . ,pki, task) rather than the public keys only; likewise for proxy signing. The ver-
ification procedure takes the task tag as additional argument and the verification relations are adapted
respectively.
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Instantiation. We instantiate the generic scheme by choosing Waters’ signature scheme (cf. Sect. 3.1)
as euf-cma-secure scheme, which supports the hierarchical nature of the messages to be signed. Unfor-
tunately, at the same time, this limits us to a fixed maximal number of delegations.

The messages in the Waters scheme are bit-strings, while we need to sign vectors of public keys (i.e.,
group elements) for the scheme itself. We solve this shortcoming as follows: Instead of signing public keys,
we sign the bits of the private keys—which the signer should obviously not learn. We take thus advantage
of the fact that Waters signatures can be computed and verified without knowledge of the message if its
hash value F = F(M) =

∏m
i=1 u

Mi
i is given instead. On the other hand, the assumption we introduce

in Sect. 4.3 implies that the hash value hides enough information about the secret key. In particular, it
states that the public key and the secret key’s hash look unrelated.

The private key’s hash value can be precomputed by its owner and then be used directly by the
delegator to produce a signature. We define thus the following two functions:3

FSig(x, F ) := (ḡx(ūF )r, g−r) for random r ← Zp ,

FVer(X,F, (σ1, σ2)) = 1 iff e(σ1, g) e(ūF, σ2) = e(ḡ,X) .

Now we need to add a nizk proof of consistency of the hash with the corresponding public key, which
we discuss in the next section. Anticipating, we note that the secret key must be extractable from such
a proof, so we can reduce unforgeability of delegations (i.e., non-frameability) of our scheme to security
of Waters signatures. We emphasize the fact that verifying the nizk proof must exclusively consist of
checking pairing-product equations to be compatible with the Leak-Tightness Lemma.

4.2 ZK Proof of Equality of Logarithm and Hash Preimage

As mentioned above, in order to prove consistency of a public key X = gx with the hash value of its
private key F = F(x), in Sect. 6 we construct a zero-knowledge proof system ΠX↔F for np-relation

RX↔F :=
{
((X,F ), x)

∣∣X = gx, F = F(x)
}
.

The np-language LX↔F defined by it is then indistinguishable from G2 by the xf-assumption given in the
next section. We require ΠX↔F to have the following properties:

– Verification of a proof consists of checking pairing-product equations.
– The proof is a proof of knowledge at the same time, i.e., we can extract witness x. Furthermore,

extraction must be efficient and consequently cannot rely on rewinding techniques.
– We can simulate proofs for any (possibly false) statements (gx1 ,F(x2)) without knowledge of (x1, x2).
– Even after seeing a simulated proof of a random (not necessarily true) statement, no adversary can

produce a proof for a false statement; in addition, from every valid proof, the witness can still be
extracted. This property, defined below, is a relaxation of the standard notion of simulation soundness
where it is the adversary that chooses the statement to be simulated.

A nizk proof of knowledge is a tuple (K,P,V,Sim1,Sim2,Ext), where K generates the common reference
string (crs) crs and P produces proofs that are verified via V. Simulator Sim1 outputs a crs, a trapdoor
tr which allows Sim2 to simulate proofs, and an extraction key ek, used by Ext to extract the witness.

Definition 2. A proof of knowledge Π = (K,P,V,Sim1,Sim2,Ext) for np-language L is weakly simu-
lation sound if for every p.p.t. A the following probability is negligible in the security parameter λ:

Pr
[
(crs, tr, ek)← Sim1(1

λ); y ← L∪ L; π ← Sim2(tr, y); (y∗, π∗)← A(crs, (y, π));

w∗ ← Ext(ek, (y∗, π∗)) : y∗ 6= y ∧ (y∗, w∗) /∈ RL ∧ V(crs, y∗, π∗) = 1
]

3 Note that FSig, FVer do not constitute a secure signature scheme on their own; a successful forgery must include the
message’s bits (Mi)

m
i=1 s.t. F = F(. . . , Mi, . . .) in order to be reducible to cdh.
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Weak simulation soundness (wss) is implied by the following strengthening of zero-knowledge, where
the adversary trying to distinguish between a real and a simulated proof is now provided with an extraction
oracle.

Definition 3. A proof of knowledge Π = (K,P,V,Sim1,Sim2,Ext) is extraction zero knowledge if for
every p.p.t. adversary A = (A1,A2) we have:

∣∣ Pr
[
Expzk

Π,A(λ) = 1] − Pr
[
Expzk-S

Π,A(λ) = 1]
∣∣ = negl(λ) ,

with Expzk
Π,A(λ)

(crs, ek)← K(1λ)

(y, w, st)← A1(crs : Ext(ek, ·, ·))

π ← P(crs, y,w)

b← A2(st, π : Ext(ek, ·, ·))

Expzk-S
Π,A(λ)

(crs, ek, tr)← Sim1(1
λ)

(y, w, st)← A1(crs : Ext(ek, ·, ·))

π ← Sim2(crs, tr, y)

b← A2(st, π : Ext(ek, ·, ·))

Claim 1 (ezk implies wss). Let L be a language which no p.p.t. adversary can decide with non-negligible
probability; let Π be an extraction-zero-knowledge proof of knowledge for L. Then Π is weakly simulation
sound.

Proof. Consider the following game:

Game 0 (crs, ek)← K(1λ); (y,w)← RL; π ← P(crs, y, w);

(y∗, π∗)← A(crs, (y, π)); w∗ ← Ext(ek, (y∗, π∗));

return 1 iff y∗ 6= y ∧ (y∗, w∗) /∈ RL ∧ V(crs, y∗, π∗) = 1

Soundness of Π implies that A can win Game 0 with at most negligible probability. Now define Game
1 replacing K and P by Sim1 and Sim2, respectively. Games 0 and 1 are indistinguishable by ezk, since
a distinguisher can perfectly simulate the games because of its extraction oracle. Finally, a distinguisher
between Game 1 and the wss game would contradict the assumption on L (neither game uses the witness
w). ⊓⊔

4.3 The XF-Assumption

The xf-assumption basically states that for someone seeing a public key X = gx without knowing the
secret key x, the hash F(x) of the latter looks random. We will utilize this when reducing non-frameability
of our delegation scheme to unforgeability of Waters signatures, where we will have to produce hashes
corresponding to unknown secret keys. Proof system ΠX↔F allows us to simulate the consistency proofs,
but however, replacing an element of LX↔F by one outside the language must be indistinguishable to
guarantee simulation.

Moreover, having to simulate hash values for all delegation levels (cf. Sect. 4.4 for the details), we will
generalize our assumption: Given X = gx0 and Λ hash values Fi = Fi(xi), for different hash functions Fi,
it is hard to tell whether all xi’s are equal. Intuitively, the assumption states that values Fi do not reveal
more information about x than X.

Definition 4. Let Λ,m ∈ N, (n,G,GT , e, g)← G(1
λ) be a bilinear group, let ((ui,j)

m
j=1)

Λ
i=1 ∈ G

Λ×m. We

define the ith hash of (x1, . . . , xm) ∈ {0, 1}m:

Fi(x1, . . . , xm) :=
∏m
j=1 u

xj

i,j
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We say the (Λ,m)–XF-Assumption holds for G if it is difficult to distinguish the np-language

LX↔F :=
{
(X, (Fi)

Λ
i=1) ∈ G

Λ+1
∣∣ ∃ x := (x1, . . . , xm) ∈ {0, 1}m : X = g

P

xi2i−1
∧

∧Λ

i=1
Fi = Fi(x)

}

from G
Λ+1, that is, for all p.p.t. adversaries A, the following function is negligible in λ:

∣∣ Pr
[
(n,G,GT , e, g)← G(1

λ); u← G
Λ×m; x← {0, 1}m :

A
(
n,G,GT , e, g,u, g

P

xi2
i−1
,
∏
uxi

1,i, . . . ,
∏
uxi
Λ,i

)
= 1

]

− Pr
[
(n,G,GT , e, g)← G(1

λ); u← G
Λ×m; X,F1, . . . , FΛ ← G :

A
(
n,G,GT , e, g,u,X, F1, . . . , FΛ

)
= 1

] ∣∣

Note that the assumption satisfies Naor’s falsifiability criterion [Nao03]. We give some more intuition
on the assumption.

Comparison to DDH and DLIN. Consider the (1,m)–xf-Assumption in a group G with 2λ−1 ≤
|G| < 2λ, and m = λ − 1: Given (g, u1, . . . , um,X, F ), decide whether there exist xi ∈ S := {0, 1}, s.t.
X = g

P

xi2
i−1

and F =
∏
uxi
i .

If we set m = 1 and S = Z2λ , we get ddh—which is easy in bilinear groups. However, case m = 2,

S = Z2λ/2 (i.e., X = gx1+x22λ/2 ?
⇒ F = ux1

1 u
x2
2 ) can already be considered hard, since it is implied

by a variant of dlin, where r, s are randomly chosen from a smaller set S: An instance (Y = gy, Z =
gz , R = gyr, S = gzs, T ∈ {gr+s, gt}) of dlin with r, s ∈ S can be decided by running the xf-decider on

(u1 = Y, u2 = Z,X = T, F = R · S2λ/2
).

Now, if we continue the process of increasing m while at the same time reducing the set of possible
values for xi, we end up with the xf-assumption.

Relation to the DL Problem with Auxiliary Information. Consider the problem of computing
x = logX on input (X,F ) ∈ Lu, i.e., in addition to instance X, a hash value F = Fu(x) :=

∏
uxi
i of

the logarithm is given. Suppose, there exists an algorithm A that on input (u,X, F ) decides whether
F =

∏
uxi
i for x := logX, thus breaking the xf-assumption. Then we can construct an algorithm B

that given (X,F ) ∈ Lu computes x = logX: For 1 ≤ i ≤ m, choose random u∗i and run A on
(
Ui :=

(u1, . . . , ui−1, u
∗
i , ui+1, . . . , um),X, F

)
. If xi = 0, then (X,F ) ∈ LUi , whereas this is only the case with

negligible probability if xi = 1. B can thus extract x bit-by-bit.

4.4 Implementation of the Delegation Scheme DS

Based on the ideas from Sect. 4.1, we give implementations of the algorithms introduced in Sect. 3.3
(where λ is the security parameter and Λ− 1 is the maximum delegation “depth”, that is, the number of
possible delegations from the original delegator to the proxy signer).

Setup(1λ, Λ) – Choose a bilinear group gPar := (p,G,GT , e, g)← G(1
λ).

– Define m, the maximal length of messages to be signed, as m := λ− 1.

– Choose Waters parameters to sign messages consisting of Λ ·m bits:
sPar := (ḡ, ū, (ui,1, . . . , ui,m)Λi=1)← G

Λm+2

– For 1 ≤ i ≤ Λ, choose crsi, a common reference string for ΠX↔F for parameters (ui,j)
m
j=1.

The issuer chooses an issuing key ik := ω ← Zp and defines Ω := gω. The public parameters are

pp :=
(
gPar, sPar, (crsi)

Λ
i=1, Ω

)
.
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UKGen(pp) Choose a random x ← Z2m and set X := gx. Define the public key pk := (X, (Fi, Pi)
Λ
i=1),

where Fi := Fi(x), is the ith hash (cf. Def. 4) and Pi := PX↔F(crsi, (X,Fi), x) is a proof for X and
Fi containing the same x.

Enroll(pp, ik,pk) Parse pk as (X, (Fi, Pi)
Λ
i=1).

1. Check all proofs Pi; if one is invalid, return ⊥.

2. certi := FSig(ω,Fi) for 1 ≤ i ≤ Λ.

3. Add (X, (Fi, Pi, certi)
Λ
i=1) to UList and return (certi)

Λ
i=1.

The user defines her secret key as sk := (X, (Fi, Pi, certi)
Λ
i=1, x).

Dlg(pp, ski, [warr→i],pki+1) Let the user holding ski be the ith delegator.

1. Parse ski as (Xi, (Fi,j , Pi,j , certi,j)
Λ
j=1, xi),

pki+1 as (Xi+1, (Fi+1,j , Pi+1,j)
Λ
j=1)

and warr→i as
(
(Xj , Fj,j, Pj,j, certj,j, σj)

i−1
j=1, (X

′
i , F

′
i,i, P

′
i,i)

)
,

in case i = 1, define warr→1 := (X1, F1,1, P1,1)

2. If one of the proofs in warr→i or pki+1 is invalid or if
(X ′

i, F
′
i,i, P

′
i,i) 6= (Xi, Fi,i, Pi,i) then return ⊥.

3. Define σi ← FSig(xi, F1,1 · · ·Fi,i · Fi+1,i+1).
Return warr→i+1 := warr→i ‖(certi,i, σi, (Xi+1, Fi+1,i+1, Pi+1,i+1)).

PSig(pp, ski,warr→i,M) Let the user holding ski be the (i− 1)st delegatee.

1. and 2. as for Dlg (but ignoring the commands for pki+1).

3. Define σi := FSig(xi, F1,1 · · ·Fi,i · FΛ(M)). The proxy signature is

Σ :=
(
σ1, (Xj , Fj,j, Pj,j , certj,j, σj)

i
j=2

)
.

PVer(pp,pk,M,Σ) Let pk = (X1, F1,1, P1,1, . .), Σ =
(
σ1, (Xi, Fi,i, Pi,i, certi,i, σi)

k
i=2

)
. Return 0 if any of

the following returns 0, otherwise return 1.

1. VX↔F(crsi, (Xi, Fi,i), Pi,i), for 1 ≤ i ≤ k,

2. FVer(Ω,Fi,i, certi,i), for 2 ≤ i ≤ k,

3. FVer(Xi, F1,1 · · ·Fi+1,i+1, σi), for 1 ≤ i < k,
FVer(Xk, F1,1 · · ·Fk,k · FΛ(M), σk).

Open(pp,pk,M,Σ,UList)
If Σ is valid, parse it as

(
σ1, (Xi, Fi,i, Pi,i, certi,i, σi)

k
i=2

)
. If for all i, Xi ∈ UList, return (X2, . . . ,Xk),

otherwise return ⊥.

Claim 2. Scheme DS is non-frameable

We give an overview of the proof and refer to Appendix D.2 for the quite technical proof. Our strategy
is to reduce a “framing” proxy signature to a forgery of a Waters signature: An euf-cma adversary B
against Waters’ scheme receives a public key X from its environment and sets out to simulate the non-
frameability game for adversary A against DS, setting X as the public key of a random honest user U∗.
Now to do so, without knowledge of the secret key, it must simulate the hash values (Fi) corresponding to
X. We define thus a sequence of indistinguishable games: The first game is the original non-frameability
game. In the next one, we simulate the zk-proofs (Pi) in the public key of U∗. In the third game, relying
on the xf assumption, we substitute the (Fi) by random values. Now the last game can be simulated by
B, given the fact that the signatures required to answer Dlg and PSig queries can be forwarded to B’s

10



own signing oracle. If A wins the non-frameability game by framing U∗, then the signature output by A
contains a Waters forgery.

However, to win the euf-cma game, B is required to return the bits of the message rather than its hash
value—in fact, B’s oracle queries also require messages. This is why we need ΠX↔F to be an extractable
proof system; moreover, extraction must be possible even after having simulated proofs—which is the
reason for ΠX↔F to be weakly simulation sound.

Claim 3. Scheme DS is traceable

Proof. The claim follows by a reduction to unforgeability of the Waters signature scheme for messages of
length Λ ·m using the following fact:

Let 0i denote a string of i ·m zeroes. Then for any x ∈ {0, 1}m and any i∗, a signature on
(0i

∗−1 ‖x‖0Λ−i
∗

) w.r.t. parameters ((ui,j)
m
j=1)

Λ
i=1 is a signature on x w.r.t. parameters (ui∗,j)

Λ
j=1.

The simulator sets Ω to the public key it is challenged on and deals with Enroll(X, (Fi, Pi)) queries as
follows: If one of the Pi is invalid, return ⊥, otherwise extract x from one of them. To produce certi, query
a signature on the message (0i−1 ‖x‖0Λ−i). Open the signature returned by the adversary to X2, . . . ,Xk.
If Xi /∈ UList for some i, return certi from the signature, together with the extracted bits. ⊓⊔

5 The Anonymous Delegation Scheme

Now using the techniques derived from the Leak Tightness Lemma as discussed in Sect. 3, we can convert
the scheme DS from the last section into an anonymous proxy signature scheme APS. We give the
necessary modifications to DS:

Setup(1λ, Λ) Choose a bilinear group of composite order (p, q,G,GT , e, g) ← Gc(1
λ) and define gPar :=

(n = pq,G,GT , e, g). Add H ← Gq, a subgroup element for bgn-encryptions, to pp and additionally
output the opening key ok := q.

Enroll(pp, ik, (X, . . .)) The opener approves4 a new public key by verifying that Xq 6= (X ′)q for all
X ′ ∈ UList before adding X to UList.

PSig(pp, skk,warr→k,M) After producingΣ=
(
σ1, (Xi, Fi,i, Pi,i, certi,i, σi)

k
i=2

)
, blind Σ by bgn-encrypting

all elements of Σ under H and adding one proof π (cf. Lemma 1) per pairing-product equation to be
satisfied in PVer. Denote the result as Σ̃ :=

(
σ̃1, (X̃i, F̃i,i, P̃i,i, c̃erti,i, σ̃i)

k
i=2, (πi)

)
.

PVer(pp,pk,M, Σ̃) Instead of verifying the pairing-product equations directly, verify the proofs (πi) on
the encrypted values.

Open(pp, ok,M, Σ̃,UList) If Σ̃ passes verification, do the following for 2 ≤ i ≤ Λ: if X̃q
i = (X ′)q for some

X ′ ∈ UList, then set Xi := X ′, otherwise return ⊥. Finally, return (X2, . . . ,Xk).

Anonymity. Consider two “plain” proxy signatures Σ1 and Σ2, both valid under the same public key
and resulting from the same number of delegations (and consequently of the same size). If we blind both
signatures and add proofs (πi), then they are indistinguishable: replacing H by a random element in G is
indistinguishable by sd. Now the signature components are perfectly blinded and the πi’s do not leak any
information on the cleartexts besides validity by Lemma 1(2). As a consequence, APS satisfies anonymity
as defined in Sect. 3.3.

4 If Xq = (X ′)q then the sets of ciphertexts of X and X ′ coincide, making correct tracing impossible. Note that for random
keys this is very improbable. It occurs if X was maliciously set to X ′Hρ for some ρ, which makes the key useless anyway,
as to compute the corresponding secret key one would have to know logg H .
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Traceability and Non-Frameability. Traceability and non-frameability both follow from a reduction
to the respective notions for DS in the subgroup Gp using the techniques of Lemma 1. Given an adversary
A against APS, we construct B against DS: After receiving ppDS , B defines ppAPS by first creating
parameters pp′, ik′ for a new instance of DS in group Gq, and then multiplying all parameters from ppDS

with the new ones, resulting thus in correctly distributed parameters in G, e.g., g ∈ pp and g′ ∈ pp′ yield
g := gg′ ∈ G. Finally, B adds H ∈ Gq to ppAPS . A’s oracle queries are dealt with in the following way:

PK queries. Run the PK oracle for DS to get pk := (X, (Fi, Pi)), then choose a secret key x′ ∈ {0, 1}m

and compute X ′ := (g′)x
′

and F ′
i :=

∏
(u′i,j)

x′j for 1 ≤ i ≤ Λ, as well as the corresponding proofs

w.r.t. parameters pp′. Let the result be pk′ and define (X, (F i, P i)) by multiplying all components of
pk with the respective ones of pk′.
First, note that due to Lemma 1(3), all proofs P i satisfy all pairing-product equations of VX↔F.
Second, (X, (F i)) is indistinguishable from an honestly computed one by the xf-assumption in G, Gp

and Gq.
5

Enroll, Dlg, PSig queries. Answering these queries basically consists of simulating FSig(y, F1 · · ·Fk) for
some y, F1, . . . , Fk. Define θp, θq such that θp ≡p 1, θp ≡q 0, θq ≡p 0, θq ≡q 1. If F =

∏m
i=1(uiu

′
i)
xi ,

then F θp =
∏
uxi
i ∈ Gp and F θq =

∏
(u′i)

xi ∈ Gq. Now, B submits F1
θp · · ·Fk

θp to its own oracle to
get σ and—knowing all secret keys for the q-components—computes σ′ in Gq on its own. Finally, B
returns σ = σ ·σ′ which is a valid signature according to Lemma 1(3).

When A eventually returns (pk,M,Σ), B “translates” the result back to Gp by raising everything to the
power of θp and outputs it. It follows from Lemma 1(4) that B’s output passes verification. If A wins its
game then so does B:

Traceability. If A wins the game then for some i we have: ∀X ′ ∈ UListAPS : X̃q
i 6= (X ′)q, which implies

X̃
θp

i 6= (X ′)θp . On the other hand we have UListDS = {Xθp |X ∈ UListAPS}. Together, this means

X̃
θp

i /∈ UListDS , the condition for B winning the game.

Non-frameability. Analogously: A wins the game if in the returned signature, there is one delegation
step it has not queried. Since we compare “openings” of the signature and the warrants, the argument
works as for traceability.

6 The Proof of Equality of Exponent and Hash Preimage

In order to construct ΠX↔F, as introduced in Sect. 4.2, we will use the following proof systems, detailed
in Appendix A.

Π1L A perfect wi (witness indistinguishable) proof system similar to the one from [GOS06a]: Given two
triples, it proves that at least one of them is linear w.r.t. a given basis. We generalize their method,
in that the bases for each triple are not necessarily the same.

Πb,eq From Π1L we directly derive a proof of the following: Given a gos-commitment to some x and a
linear encryption of some gy, prove that x, y ∈ {0, 1} and x = y.

ΠcX Given a vector of gos-commitments to bits (ci)
m
i=1 and X ∈ G,ΠcX is a nizk proof for the committed

values being the bits of logX.

5 An element
`

gx, (Fi(x))
´

∈ LG is indistinguishable from a random element in G
Λ+1 by the xf-Assumption in G. Now the

latter is indistinguishable from elements
`

gx ·(g′)x′

1 , (Fi(x)·(g′)x′

2

´

in LGp·G
Λ+1
q by the xf-Assumption in Gp, whereas the

one in Gq guarantees indistinguishability of LGp·G
Λ+1
q from LGp ·LGq .
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ΠcF Given a vector of commitments to bits (ci)
m
i=1 and F ∈ G, ΠcF is a nizk proof for the committed

values being a hash preimage of F , i.e., if ci commits to xi for all i, then F = F(x1, . . . , xm).
ΠG Given (pk,pk′, d, d′, ck, c, v), ΠG is a wi proof for either d and d′ being linear encryptions of the same

message under pk, pk′, resp., or c being a commitment to v under ck.

We will also use a one-time signature scheme Sots = (KGenots,Sigots,Verots) (cf. [Gro06] for an implemen-
tation). All verification procedures of the above systems consist exclusively of checking pairing-product
equations. We give an overview of our construction and refer to Appendix B for the details.

Let ((X,F ), x) ∈ RX↔F, i.e., X = gx and F = F(x). Aiming for an extractable proof, we first produce
vectors of commitments cX and cF to the bits of x and prove consistency with X and F via ΠcX and
ΠcF, resp. The proofs can be simulated by replacing the commitment keys for cX and cF by perfectly
hiding keys. However, to achieve extraction-zero knowledge (ezk), we must extract from proofs queried
to the oracle, even after replacing the crs by a simulated one. We thus add linear encryptions d′i and d′′i
under public keys pk′, pk′′ of the bits in cXi and cF i, resp., and prove that we did so via Πb,eq. At the
same time this proves that cXi, cF i are commitments to bits and that d′i, d

′′
i are encryptions of either g0

or g1.
The latter enables us to ensure equality of the plaintexts in d′i and d′′i for all i at once, by proving that

d′P :=
∏

(d′i)
2i−1

and d′′P :=
∏

(d′′i )
2i−1

decrypt to the same plaintext. However, this proof must contain
some kind of trapdoor, because in the proof of ezk, d′i and d′′i might contain different plaintexts. To do
so, we borrow a trick Groth uses to build rca-secure encryption in [Gro06]:

Add a commitment cG under key ckG of a signature verification key vkG to the crs of ΠX↔F and
require the prover to choose a one-time signature key pair (vk, sk), and to add vk and a signature on
(X,F ) to the proof. The proof of consistency of d′P and d′′P is a ΠG proof of (pk′,pk′′, d′P , d

′′
P , ckG, cG, vk).

Now we can (one-time) simulate proofs by choosing vk := vkG and using the corresponding signing key
which is unknown to the adversary.
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A Tools

We give the proof systems introduced in Sect. 6.

A.1 Π1L, a Perfectly WI Proof of Linearity of One of Two Triples w.r.t. Different Bases

[GOS06a] give a witness indistinguishable (wi) proof for one of two tuples being linear. We extend their
ideas to construct a proof system where linearity holds w.r.t. different bases.

Let (n,G,GT , e) be a bilinear group, f, h, g, f̄ , h̄, ḡ be generators. Given two triples c = (c1, c2, c3) and
c̄ = (c̄1, c̄2, c̄3), we prove that either c is linear w.r.t. (f, h, g) or c̄ is linear w.r.t. (f̄ , h̄, ḡ).

Proof. In case c = (f r, hs, gr+s), let r̄, s̄ := 0, in case c̄ = (f̄ r̄, h̄s̄, ḡr̄+s̄), let r, s := 0. Define

π11 := cr̄1f
t11 π12 := cs̄1f

t12 π̄11 := c̄r1f̄
−t11 π̄12 := c̄r2h̄

−t12 π̄13 := c̄r3ḡ
−t11−t12

π21 := cr̄2h
t21 π22 := cs̄2h

t22 π̄21 := c̄s1f̄
−t21 π̄22 := c̄s2h̄

−t22 π̄23 := c̄s3ḡ
−t21−t22

π31 := cr̄3g
t11+t21 π32 := cs̄3g

t12+t22
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for random t11, t12, t21, t22.

Verification. Check the following relations:

e(f, π̄11)e(π11, f̄) = e(c1, c̄1) e(f, π̄12)e(π12, h̄) = e(c1, c̄2) e(f, π̄13)e(π11π12, ḡ) = e(c1, c̄3)

e(h, π̄21)e(π21, f̄) = e(c2, c̄1) e(h, π̄22)e(π22, h̄) = e(c2, c̄2) e(h, π̄23)e(π21π22, ḡ) = e(c2, c̄3)

e(g, π̄11π̄21)e(π31, f̄) = e(c3, c̄1) e(g, π̄12π̄22)e(π32, h̄) = e(c3, c̄2) e(g, π̄13π̄23)e(π31π32, ḡ) = e(c3, c̄3)

Perfect Completeness. We content ourselves to show satisfaction of the relations “in the corner”, for
the rest works analogously. Note that the last equality in each line follows from the fact that either r, s = 0
or r̄, s̄ = 0

e(f, π̄11)e(π11, f̄) = e(f, c̄r1)e(f, f̄
−t11)e(cr̄1, f̄)e(f t11 , f̄) = e(f r, c̄1)e(c1, f̄

r̄) = e(c1, c̄1)

e(f, π̄13)e(π11π12, ḡ) = e(f, c̄r3)e(f, ḡ
−t11−t12)e(cr̄+s̄1 , ḡ)e(f t11+t12 , ḡ) = e(f r, c̄3)e(c1, ḡ

r̄+s̄) = e(c1, c̄3)

e(g, π̄11π̄21)e(π31, f̄) = e(g, c̄r+s1 )e(g, f̄−t11−t21)e(cr̄3, f̄)e(gt11+t21 , f̄) = e(gr+s, c̄1)e(c3, f̄
r̄) = e(c3, c̄1)

e(g, π̄13π̄23)e(π31π32, ḡ) = e(g, c̄r+s3 )e(g, ḡ−t11−t12−t21−t22)e(cr̄+s̄3 , ḡ)e(gt11+t12+t21+t22 , ḡ) = e(c3, c̄3)

Perfect Soundness. Define

γ1 := logf c1 γ̄1 := logf̄ c̄1 m1j := logf π1j m̄i1 := logf̄ π̄i1

γ2 := logh c2 γ̄2 := logh̄ c̄2 m2j := logh π2j m̄i2 := logh̄ π̄i2

γ3 := logg c3 γ̄3 := logḡ c̄3 m3j := logg π3j m̄i3 := logḡ π̄i3

Then e(f, f̄)m11+m̄11 = e(f, π̄11)e(π11, f̄) = e(c1, c̄1) = e(f, f̄)γ1 γ̄1 , thus m11 + m̄11 = γ1γ̄1. For all verifica-
tion relations we get thus:

m̄11 +m11 = γ1γ̄1 m̄12 +m12 = γ1γ̄2 m̄13 +m11 +m12 = γ1γ̄3

m̄21 +m21 = γ2γ̄1 m̄22 +m22 = γ2γ̄2 m̄23 +m21 +m22 = γ2γ̄3

m̄11 + m̄21 +m31 = γ3γ̄1 m̄12 + m̄22 +m32 = γ3γ̄2 m̄13 + m̄23 +m31 +m32 = γ3γ̄3

Now, these relations imply that either γ3 = γ1 + γ2 or γ̄3 = γ̄1 + γ̄2, since

(γ1 + γ2 − γ3)(γ̄1 + γ̄2 − γ̄3) = γ1γ̄1 + γ1γ̄2 − γ1γ̄3 + γ2γ̄1 + γ2γ̄2 − γ2γ̄3 − γ3γ̄1 − γ3γ̄2 + γ3γ̄3

= m̄11 + m̄12 − m̄13 + m̄21 + m̄22 − m̄23 − (m̄11 + m̄21)− (m̄12 + m̄22) + m̄13 + m̄23 = 0

Perfect Witness-Indistinguishability. Suppose, both c and c̄ are linear (otherwise, there is only one
witness and we’re done). Let πij be proofs formed with witness (r, s) (and r̄ = s̄ = 0) and randomness
tij , and let π′ij be proofs formed via witness (r̄, s̄) and the following (equally distributed) randomness:

t′11 := t11 − rr̄ t′12 := t12 − rs̄

t′21 := t21 − sr̄ t′22 := t22 − ss̄

Then we get (we dispense with the cases π2j , π̄2j as they work analogously to π1j , π̄1j)

π11 = f t11 = f rr̄+t
′

11 = π′11 π12 = f t12 = f rs̄+t
′

12 = π′12 π̄11 = f̄ r̄r−t11 = f̄−t
′

11 = π̄′11

π̄12 = f̄ s̄r−t12 = f̄−t
′

12 = π̄′12 π̄13 = ḡ(r̄+s̄)r−t11−t12 = ḡ−t
′

11−t
′

12 = π̄′13

π31 = gt11+t21 = grr̄+t
′

11+sr̄+t′21 = π′31 π32 = gt12+t22 = grs̄+t
′

12+ss̄+t′22 = π′32
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A.2 Πb,eq, Proof for a Commitment and a Ciphertext Containing the Same Bit

Using the wi proofs of the previous section, we can easily give a proof of the following: Given c =
Com(ck, x ; r, s) and d = Enc(pk, gx

′

; r′, s′), with ck = (v,w, u, f, h, z) and pk = (f ′, h′, z′), prove that
x = x′ and x ∈ {0, 1}.

Pb,eq

(
crs, (c, d), (x, r0, s0, r1, s1)

)
:= (π1, π2) with

– π1 := P1L

(
(f, h, z, f ′, h′, z′), ((c1, c2, c3), (d1, d2, d3g

−1)), (rx, sx)
)

– π2 := P1L

(
(f, h, z, f ′, h′, z′), ((c1v

−1, c2w
−1, c3u

−1), (d1, d2, d3)), (r1−x, s1−x)
)

Now depending on whether ck is binding or hiding, we get either soundness or simulation:

ck binding Suppose both proofs pass verification. (1) if c is linear, (c1v
−1, c2w

−1, c3u
−1) is non-linear,

so by π2, d must be linear; c is thus a commitment to 0, and d an encryption of g0. (2) if on the other
hand (d1, d2, d3g

−1) is linear, d is not, thus (c1v
−1, c2w

−1, c3u
−1) is linear, again by π2; thus, c is a

commitment to 1, and d an encryption of g1.

ck hiding Now if the commitment key is perfectly hiding and given rv, sw such that v = f rv , w = hsw ,
the proof can be simulated given the randomness in c only: let c be a commitment to 0 using (r, s),
then Simb,eq

(
(crs, rv, sw), (c, d), (r0 , s0)

)
:= (π1, π2) where π1 is constructed using (r, s) and π2 using

(r − rv, s − sw).

A.3 ΠcX, Proof for Commitments to the Bits of a Logarithm

Let (n,G,GT , e(·, ·), g) be a bilinear group, let (a, b, g) be a binding commitment key for base (f, h, z).
Let X = gx, (ci)

m−1
i=0 be commitments to xi ∈ {0, 1}. We prove that x =

∑
xi2

i.

CRS generation choose (n,G,GT , e(·, ·), g) ← G(1λ); f, h ← G
∗; ra, sb ← Zp; a := f ra , b = hsb ,

z := g(ra+sb+1)−1
. Define ck := (f, h, z, a, b, g); return crs := (n,G,GT , e(·, ·), ck).

Proof The witnesses are (xi, ri, si)
m−1
i=0 s.t. ci = Com(ck, xi; ri, si); let x :=

∑
xi2

i. The proof is (A,B,L)

with A := ax, B := bx, L := z
P

ri2
i
.

Verification given crs = (n,G,Gt, e(·, ·), a, b, g, f, h, z), statement (X, (ci)) and proof (A,B,L)

– check e(A, g)
?
= e(a,X) and e(B, g)

?
= e(b,X) (V1)

– check e(A−1
∏
c 2i

i,1 , z)
?
= e(f, L) and e(B−1

∏
c 2i

i,2 , z)
?
= e(h,X−1L−1

∏
c 2i

i,3 ) (V2)

Completeness (V1): trivial.

(V2) : e(A−1∏c2
i

i,1, z) = e(a−xa
P

xi2i
f

P

ri2i
, z) = e(f

P

ri2i
, z) = e(f, L)

e(B−1∏c2
i

i,2, z) = e(b−xb
P

xi2i
h

P

si2i
, z) = e(h, z

P

si2i
) =

= e(h, g−xz−
P

ri2i
g

P

xi2i
z

P

(ri+si)2i
) = e(h,X−1L−1∏c2

i

i,3)

Soundness Let x = loggX and (A,B,L) a proof that passes verification. From (V1) we have A = ax

and B = bx. Let ci = Com(αi; ri, si); define α =
∑
αi2

i and consider (V3). From

e(f, L) = e(A−1∏c 2i

i,1 , z) = e(a−xa
P

αi2i
f

P

ri2i
, z) = e(f ra(α−x)+

P

ri2i
, z)

we get L = zra(α−x)+
P

ri2
i
. Analogously we have

e(B−1∏c 2i

i,2 , z) = e(b−xb
P

αi2
i
h

P

si2
i
, z) = e(hsb(α−x)+

P

si2
i
, z) (1)
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and on the other hand (let g = zt),

e(h,X−1L−1∏c 2i

i,3 ) = e(h, g−xz−ra(α−x)−
P

ri2
i
gαz

P

(ri+si)2
i
) = e(h, zt(α−x)−ra(α−x)+

P

si2
i
) (2)

Since by (V3), the leftmost terms in (1) and (2) are equivalent, considering the exponents, we get
(ra + sb − t)(α− x) = 0, thus α = x, otherwise (a, b, g) were not a binding commitment key.

Zero Knowledge – simulated CRS: choose φ,ψ, ra, sb ← Zp and define f := gφ, h := gψ , a := f ra,

b := hsb , z := g(ra+sb)
−1

. The trapdoor is tr := (φ,ψ, ra, sb). Since (a, b, g) in the simulated crs is
linear w.r.t (f, h, z), while in the real one it is not, they are indistinguishable by the decisional linear
assumption.
– simulated proof: given X, (ci); let x := loggX be unknown.

– define A := Xφra and B := Xψsb . (perfect simulations since a = gφra , b = gψsb .)

– define L :=
(∏

c 2iφ−1

i,1 X−ra
)(ra+sb)

−1

.
To see that The simulation is perfect, let ri, si s.t. ci,1 = f ri , ci,2 = hsi . Setting r̃i := ri − raxi and
s̃i := si − sbxi, we have ci = (f raxi+r̃i , hsbxi+s̃i , z(ra+sb)xi+r̃i+s̃i) = (axif r̃i , bxihs̃i , gxizr̃i+s̃i) and

L =
(∏

c 2iφ−1

i,1 X−ra
)(ra+sb)

−1

= (f
P

ri2i
)φ

−1(ra+sb)
−1

(g
P

xi2i
)−ra(ra+sb)

−1
=

z
P

ri2
i
z−ra

P

xi2
i
= z

P

(ri−raxi)2
i
= z

P

eri2
i

Remark 4. Proof systemΠcX can be used to construct a proof of knowledge of logarithm: given statement
X and witness x =

∑m−1
i=0 xi2

i s.t. X = gx, produce a crs for ΠcX. Next, for all 0 ≤ i < m, define
ci := Com(crs, xi; ri, si) and, via P1L(. . . , (ci, (ci1a

−1, ci2b
−1, ci3g

−1)), . . .), prove that the committed values
are in {0, 1}. Finally, run PcX(crs, (X, (ci)), . . .). Now from each ci, we can extract the committed bit using
extraction key (loge f, loge h).

A.4 ΠcF, Proof for Commitments to the Bits of a Hash Preimage

Let (n,G,GT , e, g) be a bilinear group, let (ui)
m
i=1 be a basis for the Waters signature scheme, and let

(vi, wi, ui, fi, hi, zi)
m
i=1 be a special binding commitment key as constructed below. Given a hash value F

and commitments (ci)
m
i=1 to xi ∈ {0, 1}, we show that the ci are commitments to the bits of a preimage

of F .

Common Reference String given (n,G,GT , e) and (ui)
m
i=1 ∈ G

λ. Choose φ,ψ, rv , sw ← Zp and define

for 1 ≤ i ≤ m: fi := uφi , hi := uψi , vi := f rvi , wi := hsw
i , zi := u

(rv+sw+1)−1

i . The common reference
string is crs := (n,G,GT , e, (cki)

m
i=1) with cki := (fi, hi, zi, vi, wi, ui).

Proof let the witness be x1, . . . , xm ∈ {0, 1}, s.t. F = F(x1, . . . xm) and (ri, si), the randomness used
for ci (i.e., ci = Com(cki, xi; (ri, si))). The proof is π = (V,W,Z) with V :=

∏
vxi
i , W :=

∏
wxi
i and

Z :=
∏
zrii .

Verification given crs, statement (F, (ci)) and proof (V,W,Z), return 1 if the following hold

– e(V, u1)
?
= e(F, v1) and e(W,u1)

?
= e(F,w1) (V1)

– e(V −1
∏
ci,1, z1)

?
= e(f1, Z) and e(W−1

∏
ci,2, z1)

?
= e(h1, F

−1Z−1
∏
ci,3) (V2)

Simulation – simulated CRS: As the real crs, except that zi := u
(rv+sw)−1

i .

– simulated proof: given F , (ci), define V := F rv , W := F rw and Z :=
(∏

c φ
−1

i,1 F−rv
)(rv+sw)−1

Note that ΠcX is a special case of ΠcF, setting ui := g2i−1
, since F(x) =

∏
uxi
i = g

P

xi2i−1
= X.
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A.5 ΠG, Groth’s WI Proof of Two Encryptions Having the Same Plaintext or a
Commitment Containing a Specific Value

Due to limited space we will use the following wi proof as a black box (cf. the full version of [Gro06]
for an implementation that respects the pairing-product-equation paradigm): Given two encryptions d, d′

under public keys for linear encryption pk, pk′, resp., a commitment c under commitment key ck, and v,
a vector of group elements. Then ΠG enables to give a wi proof for “either d and d′ contain the same
plaintext or c is a commitment to v”.

The statement (pk, pk′, d, d′, ck, c, v) can be proven using either witness (m, r, r′) s.t. d = Enc(pk,m; r)
and d′ = Enc(pk,m; r′) or witness (v, r) s.t. c = Com(ck, v; r).

B The Proof System ΠX↔F = (KX↔F, PX↔F, VX↔F, SimX↔F, ExtX↔F)

Reference String Generation KX↔F(p,G,GT , e, g,u)

– choose φ,ψ, ξ′1, ξ
′
2, ξ

′′
1 , ξ

′′
2 , ra, sb, rv, sw, rG ← Zp

– (vkG, skG)← KGenots(1
λ); ckG ← KGenCom,binding(1

λ); cG ← Com(ckG, vkG; rG)

– crs′G ← KG(1λ)

– define f := gφ h := gψ z := g(ra+sb+1)−1
a := f ra b := hsb

f ′ := zξ
′

1 h′ := zξ
′

2 f ′′ := zξ
′′

1 h′′ := zξ
′′

2

for 1 ≤ i ≤ m fi := uφi hi := uψi zi := u
(rv+sw+1)−1

i vi := urvi wi := usw
i

– ckX := (f, h, z, a, b, g), ckF i := (fi, hi, zi, vi, wi, ui), pk′ := (f ′, h′, z), pk′′ := (f ′′, h′′, z).

crsG := (ckG, cG, crs
′
G)

crs := (ckX , ckF ,pk′,pk′′, crsG) tr := (φ,ψ, ra, sb, rv, sw, vkG, skG, rG) ek := (ξ′1, ξ
′
2, ξ

′′
1 , ξ

′′
2 )

Proof PX↔F(crs, (X,F ), x) – for all 1 ≤ i ≤ m do: choose rXi, sXi, rF i, sF i, r
′
i, s

′
i, r

′′
i , s

′′
i ← Zp

cXi := Com(ckX , xi; rXi, sXi) cF i := Com(ckF i, xi; rF i, sF i)

d′i := Enc(pk′, gxi ; r′i, s
′
i) π′i := Pb,eq

(
(ckX ,pk′), (cXi, d

′
i), (rXi, sXi, r

′
i, s

′
i)

)

d′′i := Enc(pk′′, gxi ; r′′i , s
′′
i ) π′′i := Pb,eq

(
(ckF i,pk′′), (cF i, d

′′
i ), (rF i, sF i, r

′′
i , s

′′
i )

)

– πX := PcX

(
ckX , (X, cX), (x, rX , sX)

)

– πF := PcF

(
ckF , (F, cF ), (x, rF , sF )

)

– (vk, sk)← Kots(1
λ); σ := Sigots(sk, (X,F ))

– d′P :=
∏

(d′i)
2i−1

; r′P :=
∑
r′i2

i−1; s′P :=
∑
s′i2

i−1;

d′′P :=
∏

(d′′i )
2i−1

; r′′P :=
∑
r′′i 2

i−1; s′′P :=
∑
s′′i 2

i−1

– πG := PG

(
crs′G, (pk′,pk′′, d′P , d

′′
P , ckG, cG, vk), (X, r′P , s

′
P , r

′′
P , s

′′
P )

)
(6)

The proof for (X,F ) is π :=
(
πX , cX ,π

′,d′, πG,d
′′,π′′, cF , πF , vk, σ

)

Verification VX↔F(crs, (X,F ), π) To verify a proof, verify σ on (X,F ) under vk and verify the proofs
πX , πF , πG and π′i, π

′′
i for all 1 ≤ i ≤ m.

Extraction ExtX↔F(ek, (X,F ), π) Let ek := (ξ′, ξ′′), π :=
(
πX , cX ,π

′,d′, πG,d
′′,π′′, cF , πF , vk, σ

)
If π

is valid, extract bits xi using either ξ′ on d′i or ξ′′ on d′′i for all i.

6 Due to the homomorphic property of linear encryption, d′

i = Enc(xi; r′i, s
′

i) implies d′

P = Enc(
Q

gxi2
i−1

; r′P , s′P ).
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Simulation SimX↔F,1 works as KX↔F except for outputting tr and replacing ckX and all ckF i by

perfectly hiding commitment keys by setting z := g(ra+sb)
−1

and zi := u
(rv+sw)−1

i

SimX↔F,2 – replace cXi and cF i by commitments to 0, d′i, d
′′
i by encryptions of g0.

– πX := SimcX((φ,ψ, ra, rb), (X, cX)), π′i := Simb,eq

(
(ckX ,pk′, ra, sb), (cXi, d

′
i), (rXi, sXi)

)

– πF := SimcF ((φ,ψ, rv , sw), (F, cF )), π′′i := Simb,eq

(
(ckF i,pk′′, rv, sw), (cF i, d

′′
i ), (rF i, sF i)

)

– (vk, sk) := (vkG, skG), σ := Sigots(skG, (X,F )),

πG := PG
(
crsG, (pk′,pk′′,

∏
(d′i)

2i−1
,
∏

(d′′i )
2i−1

, ckG, cG, vkG), (vkG, rG))

Soundness / Extraction. Let π be a valid proof for (X,F ). First of all, soundness of π′i guarantees
that if cXi is a commitment to x′i, then x′i ∈ {0, 1} and furthermore d′i encrypts gx

′

i . Now πX ensures

that X = g
P

x′i2
i−1

. An analogous argument applied to π′′ and πF yields that if cF i commits to x′′i , then
d′′i encrypts gx

′′

i , with x′′i ∈ {0, 1}, and F = F(x′′1 , . . . , x
′′
m). Since the commitment cG is computationally

hiding, it is only with negligible probability that vk is the committed value. Soundness of πG ensures thus
that the values encrypted in

∏
(d′i)

2i−1
and

∏
(d′′i )

2i−1
are the same, i.e., g

P

x′i2
i−1

= g
P

x′′i 2i−1
, which,

given the fact that x′i, x
′′
i ∈ {0, 1}, means x′i = x′′i for all i. Thus, (X,F ) ∈ LX↔F and the bits extracted

by Ext are the bits of the witness.

Extraction Zero Knowledge.

Theorem 1 ΠX↔F is an extraction-zero-knowledge proof of knowledge and language membership.

Proof (sketch). We define a sequence of games:

Game 0 := Expzk
Π,A, where Ext queries are answered using ξ′. In addition, whenever A2 makes a valid

query involving (X,F ), the statement output by A1 together with a witness x, we simply output x.
Since x is the only witness, Game 0 and Expzk

Π,A are indistinguishable by correctness of extraction.

Game 1 Define crs to be a simulated reference string (triples (a, b, g) and (vi, wi, ui) become linear w.r.t.
(f, h, e) and (fi, hi, ei), respectively. Indistinguishability of Games 0 and 1 is implied by the decisional
linear assumption.

Game 2 In PX↔F(crs, (X,F )), set (vk, sk) := (vkG, skG), the pair from tr, instead of running Kots. Games
1 and 2 are indistinguishable by the computational hiding property of cG.

Game 3 Compute π by SimX↔F, 2, except that d′i, d
′′
i remain encryptions of xi. The probabilities of

Game 2 and 3 are equivalent, since all we did is compute the wi proofs using different witnesses:
Commitments cXi and cF i are already linear in Game 2 due to the simulated crs. Proofs πX , πF , π′i
and π′′i are computed using different witnesses.

Game 4 We replace encryptions d′′i by encryptions of 0. Games 3 and 4 are indistinguishable by a hybrid
argument on semantic security of encryptions. (Note that the distinguisher can perfectly simulate
both games, since we use ξ′ to extract and because the wi proofs do not use the witnesses of d′′i .)

Game 5 The Ext-oracle uses ξ′′ instead of ξ′. The only difference between Games 4 and 5 would be if the
adversary queried some ((X∗, F ∗), π∗) with (X∗, F ∗) 6= (X,F ) and π∗ containing (d′i)

∗ encrypting x′i
and (d′′i )

∗ encrypting x′′i 6= x′i for some i. However, in this case
∏

((d′i)
∗)2

i−1
and

∏
((d′′i )

∗)2
i−1

contain
different ciphertexts. Now soundness of π∗G implies that vk∗ = vkG, while on the other hand σ∗ is a
signature on (X∗, F ∗) 6= (X,F ) (the statement output by A1), which is valid w.r.t. vkG. The distance
between Games 4 and 5 is thus upper-bounded by the advantage of a forger against the one-time
signature scheme

Game 6 Replace encryptions d′i by encryptions to 0. Game 5 and 6 are indistinguishable analogously to
Game 3 and 4. Game 6 is indistinguishable from Expzk-S

Π,A.
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C Security Definitions for Anonymous Proxy Signatures

Expanon-b
PS,A (λ,Λ)

(pp, ik, ok)← Setup(1λ, Λ)

(st, pk, (sk0,warr0), (sk1,warr1),M)← A1(pp, ik)

for c = 0 . . 1

Σc ← PSig(pp, skc,warrc,M)

if PVer(pp, pk,M,Σ0) = 0, return 0

(pkc
2, . . . ,pkc

kc
)← Open(pp, ok,M,Σc)

if k0 6= k1, return 0

d← A2(st, Σ
b)

return d

Exptrace
DS,A(λ,Λ)

(pp, ik, ok)← Setup(1λ, Λ)

(pk,M,Σ)← A(pp, ok : Enroll)

if PVer(pp, pk,M,Σ) = 1 and Open(pp, ok,M,Σ) = ⊥ return 1

return 0

Expn-frame
DS,A (λ,Λ)

(pp, ik, ok)← Setup(1λ, Λ); HU := ∅

(pk1,M,Σ)← A(pp, ik, ok : PK, SK,Dlg,PSig)

if PVer(pp, pk,M,Σ) = 0 or Open(pp, ok,M,Σ) = ⊥, return 0

let (pk2, . . . ,pkk) = Open(pp, ok,M,Σ)

if for some 1 ≤ i < k, pki ∈ HU and no query Dlg(pki,warr, pki+1)

with Open(warr) = (pk1, . . . ,pki), return 1

if pkk ∈ HU and no query PSig(pkk,warr,M)

with Open(warr) = (pk1, . . . ,pkk), return 1

return 0

Figure 1. Experiments for anonymity, traceability and non-frameability

We review the slightly adapted security notions from [FP08a]. In particular, we do not consider
delegation for specific tasks (although this can be easily included in our scheme, cf. Remark 3), we
content ourselves to having only one general opener and our version of anonymity is cpa rather than
cca-2 as in their model.

Traceability and non-frameability are defined as any adversary being able to win games Exptrace,
Expn-frame, resp., with at most negligible probability. Anonymity holds if no adversary can distinguish
Expanon-0 from Expanon-1 (see Fig. 1 for the definitions of the experiments).

In the experiments, the adversary disposes over a subset of the following oracles:

Enroll(pk) Enroll pk using the issuer’s key.

PK Create a random public/private key pair (pk, sk) and add it to HU , the list of honest users; output
pk.
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SK(pk) If pk is in HU , delete the entry and return the corresponding sk.

Dlg(pk,warr,pk′) If pk is in HU , look up the corresponding sk and return Dlg(pp, sk,warr,pk′). Oth-
erwise return ⊥.

PSig(pk,warr,M) If pk is in HU , look up the corresponding sk and return PSig(pp, sk,warr,M).
Otherwise return ⊥.

Definition 5 (Anonymity). A signature delegation scheme DS is anonymous if for any p.p.t. adversary
A = (A1,A2), the following is negligible in λ:

∣∣Pr
[
Expanon-1

PS,A (λ) = 1
]
− Pr

[
Expanon-0

PS,A (λ) = 1
]∣∣

Definition 6 (Traceability). A signature delegation scheme DS is traceable if for any p.p.t. adversary
A, Pr

[
Exptrace

PS,A(λ) = 1
]

is negligible in λ.

Definition 7 (Non-frameability). A signature delegation scheme DS is non-frameable if for any p.p.t.
adversary A, Pr

[
Expn-frame

PS,A (λ) = 1
]

is negligible in λ.

D Proofs

D.1 Proof of Lemma 1

Proof of Lemma 1(1). Follows from bilinearity of e(·, ·). ⊓⊔

Proof of Lemma 1(3). Consider E(ajcj ,bjdj)j
:

∏
e
(
ajcj

∏
(XiYi)

δj,i , bjdj
∏

(XiYi)
εj,i

)
=

∏
e
(
aj

∏
X
δj,i

i , bj
∏
X
εj,i

i

)
e
(
aj

∏
X
δj,i

i , dj
∏
Y
εj,i

i

)
e
(
cj

∏
Y
δj,i

i , bj
∏
X
εj,i

i

)
e
(
cj

∏
Y
δj,i

i , dj
∏
Y
εj,i

i

)
=

∏
e
(
aj

∏
X
δj,i

i , bj
∏
X
εj,i

i

) ∏
e
(
cj

∏
Y
δj,i

i , dj
∏
Y
εj,i

i

)
= 1l

where the second equation holds, because the two pairings in the middle of the second line are pairings
of elements of Gp with elements of Gq and are therefore 1. ⊓⊔

Proof of Lemma 1(4). Let (X̃i) satisfy Ẽ(ajcj ,bjdj)j
. H is of order q and consequently so is the right hand

side of the equation, thus raising (Ẽ) to the power of θ2 yields

1l = e
(
Hθ, P θE

)
=

∏
j
e
(
(ajcj)

θ∏
iX̃

θδj,i

i , (bjdj)
θ
∏
jX̃

θεj,i

i

)
=

∏
j
e
(
aj

∏
i(X̃

θ
i )
δj,i , bj

∏
j(X̃

θ
i )
εj,i

)
⊓⊔

Proof of Lemma 1(2). Let g be a generator of G. For all i, define: xi := loggXi, x
′
i := loggX

′
i, αi := logg ai,

βi := logg bi and κ := loggH. Note that for all i, XiH
ρi = X ′

iH
ρ′i implies

x′i − xi = κ(ρi − ρ
′
i). (3)

We show that ∆ := logg PE((Xi), (ρi))− logg PE((X ′
i), (ρ

′
i)) = 0.

∆ =
∑

j

(
(αj +

∑
iδj,ixi)(

∑
iεj,iρi) + (βj +

∑
iεj,ixi)(

∑
iδj,iρi) + κ(

∑
i δj,iρi)(

∑
i εj,iρi)

− (αj +
∑

iδj,ix
′
i)(

∑
iεj,iρ

′
i)− (βj +

∑
iεj,ix

′
i)(

∑
iδj,iρ

′
i)− κ(

∑
i δj,iρ

′
i)(

∑
i εj,iρ

′
i)

)
= A+B
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with A :=
∑(

αj
∑

iεj,i(ρi − ρ
′
i) + βj

∑
iδj,i(ρi − ρ

′
i)

)
and

B :=
∑(∑

iδj,i(xi + κρi)
∑

iεj,iρi −
∑

iδj,i(x
′
i + κρ′i)

∑
iεj,iρ

′
i +

∑
iεj,ixi

∑
iδj,iρi −

∑
iεj,ix

′
i

∑
iδj,iρ

′
i

)
.

Considering the logarithms of E((Xi)) and E((X ′
i)) we get

∑
(αj +

∑
iδj,ixi)(βj +

∑
iεj,ixi) = 0 =

∑
(αj +

∑
iδj,ix

′
i)(βj +

∑
iεj,ix

′
i)

which, subtracting the left-hand from the right-hand side, yields

∑(
αj

∑
iεj,i(x

′
i − xi) + βj

∑
iδj,i(x

′
i − xi) +

∑
iδj,ix

′
i

∑
iεj,ix

′
i −

∑
iδj,ixi

∑
iεj,ixi

)
= 0

and from (3):
∑(

κ
(
αj

∑
iεj,i(ρi − ρ

′
i) + βj

∑
iδj,i(ρi − ρ

′
i)

)
+

∑
iδj,ix

′
i

∑
iεj,ix

′
i −

∑
iδj,ixi

∑
iεj,ixi

)
= 0

thus A =
1

κ

∑ (∑
iδj,ixi

∑
iεj,ixi −

∑
iδj,ix

′
i

∑
iεj,ix

′
i

)
.

On the other hand, since xi + κρi = x′i + κρ′i, (note that we subtract and add
∑
δj,iρi

∑
εj,ix

′
i)

B =
∑(∑

iδj,i(xi + κρi)
∑

iεj,i(ρi − ρ
′
i)−

∑
iδj,iρi

∑
iεj,i(x

′
i − xi) +

∑
iεj,ix

′
i

∑
iδj,i(ρi − ρ

′
i)

)

=
∑( 1

κ

∑
iδj,i(xi + κρi)

∑
iεj,i(x

′
i − xi)−

∑
iδj,iρi

∑
iεj,i(x

′
i − xi) +

1

κ

∑
iεj,ix

′
i

∑
iδj,i(x

′
i − xi)

)

=
1

κ

∑ (∑
iδj,ixi

∑
iεj,i(x

′
i − xi) +

∑
iεj,ix

′
i

∑
iδj,i(x

′
i − xi)

)

=
1

κ

∑ (
−

∑
iδj,ixi

∑
iεj,ixi +

∑
iεj,ix

′
i

∑
iδj,ix

′
i

)
= −A

⊓⊔

D.2 Proof of Claim 2

Relying on the security of Waters signatures, we give an abstracted version of its proof, which in addition
enables us to use some of its components in our proof: Unforgeability of Waters signatures is shown by
specifying three algorithms SimPars, SimSig and Extract in order to employ an euf-cma-adversary A
against a scheme for m-bit messages making ℓ signing queries to solve a cdh-instance (X,Y ) as follows:

(sPar, tr)← SimPar(X,Y,m, ℓ)
(M,σ)← A(sPar,X : SimSig(tr, ·))
Z ← Extract(tr,M, σ)

Some probability analysis then shows that if the adversary never queried M , the above experiment returns
a cdh-solution with probability ε′ ≥ ε

4mℓ , where ε is the adversary’s advantage. In particular, the prob-
ability that all SimSig queries are answered correctly is 1

2 , whereas the probability that Extract actually
transforms a valid forgery to a cdh-solution is 1

2mℓ .

Let A be an adversary against non-frameability of DS making at most κ PK-queries and at most ℓ Dlg

and PSig (together) queries per user. We define a series of games, starting with the original experiment:

Game 0: The Real Game
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Expeuf-nf
DS,A(λ,Λ)(0)

1 gPar := (p,G,GT , e(·, ·), g)← G(1λ)

2 sPar := (ḡ, ū, (ui,j)1≤i≤Λ,1≤j≤m)← GΛm+2

3 for i = 1 . . . Λ : crsi ← KX↔F(gPar, (ui,j)
m
j=1)

4 ik := ω ← Zp; Ω := gω; pp := (gPar, sPar, crs, Ω); HU := ∅





Setup

5
(
(X1, F1,1, P1,1 . . .),M, (σ1, (Xi, Fi,i, Pi,i, certi,i, σi)

k
i=1)

)

← A
(
pp, ω : PK(0), SK(0),Dlg(0),PSig(0)

)

6 if PVer((X1, F1,1, P1,1 . . ),M, (σ1, (Xi, Fi,i, Pi,i, certi,i, σi)
k
i=1)

)
= 0, return 0

7 if ∃ 1 ≤ i < k: Xi ∈ HU and no query Dlg
(
Xi, ((Xj . . .)

i−1
j=1, Xi . . .), Xi+1

)

8 return 1

9 if Xk ∈ HU and no query PSig
(
Xk, ((Xj . . .)

k−1
j=1 , Xk . . .),M

)

10 return 1

11 return 0

with the following oracles:

PK(0)()

x← Z2m ; X := gx

for i = 1 . . . Λ

Fi := Fi(x)

Pi ← PX↔F(crsi, (X, Fi), x)

certi ← FSig(ω,Fi)

add (X, (Fi, Pi, certi), x) to HU

return (X, (Fi, Pi))

SK(0)(X)

if ∃x: (X, . . . , x) ∈ HU

delete the entry

return x

return ⊥

Dlg(0)(X, warr, (X ′, F ′, P ′))

if ∃ iX : HU [iX ] = (X . . .)

return Dlg(HU [iX ], warr, (X ′, F ′, P ′))

return ⊥

PSig(0)(X, warr, M)

if ∃ iX : HU [iX ] = (X . . .)

return PSig(HU [iX ], warr, M)

return ⊥

Game 1: Choosing Target X∗ and Double-Checking the Proofs
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Expeuf-nf
DS,A(λ,Λ)(1)

1 gPar := (p,G,GT , e(·, ·), g)← G(1λ)

1.1 i∗K ← {1, . . . , κ}; iK := 0

1.2 x∗ ← Z2m ; X∗ := gx∗

; for i = 1 . . . Λ : F ∗
i := Fi(x

∗)

2 sPar := (ḡ, ū, (ui,j)1≤i≤Λ,1≤j≤m)← G
Λm+2

3 for i = 1 . . . Λ : crsi ← KX↔F(gPar, (ui,j)
m
j=1)

4 ω ← Zp; Ω := gω; pp := (gPar, sPar, crs, Ω); HU := ∅

5
(
(X1, F1,1, P1,1 . . .),M, (σ1, (Xi, Fi,i, Pi,i, certi,i, σi)

k
i=1)

)

← A
(
pp, ω : PK(1), SK(1),Dlg(1),PSig(1)

)

6 if PVer∗((X1, F1,1, P1,1 . . ),M, (σ1, (Xi, Fi,i, Pi,i, certi,i, σi)
k
i=1)

)
= 0, return 0

7 if ∃ 1 ≤ i < k: Xi = X∗ and no query Dlg
(
X∗, ((Xj . . .)

i−1
j=1, X

∗ . . .), Xi+1

)

8 return 1

9 if Xk = X∗ and no query PSig
(
X∗, ((Xj . . .)

k−1
j=1 , X

∗ . . .),M
)

10 return 1

11 return 0

PK(1)()

1 if iK = i∗K

2 for i = 1 . . . Λ

3 P ∗

i ← PX↔F(crsi, (X
∗, F ∗

i ), x∗)

4 cert
∗

i ← FSig(ω,F ∗

i )

5 define sk
∗ := (X∗, (F ∗

i , P ∗

i ), x∗)

6 iK := iK + 1; return (X∗, (F ∗

i , P ∗

i ))

7 else iK := iK + 1; return PK(0)()

SK(1)(X)

1 if X = X∗
abort game

2 return SK(0)(X)

Dlg(1)(X, warr, (X ′, F ′, P ′))

1 if X = X∗

2 return Dlg∗(x∗, warr, (X ′, F ′, P ′))

3 return Dlg(0)(X, warr, (X ′, F ′, P ′))

PSig(1)(X, warr, M)

1 if X = X∗

2 return PSig∗(x∗, warr, M)

3 return PSig(0)(X, warr, M)

with PVer∗, Dlg∗ and PSig∗ working as their non-starred version, except that VX↔F is replaced by

V∗
X↔F(crsi, (X,F ), P )

1 if VX↔F(crsi, (X,F ), P ) = 0, return 0

2 if (X,F ) = (X∗, F ∗
i ), return 1

3 x← ExtX↔F(eki, (X,F ), P )

4 if X 6= gx or F 6= Fi(x), return 0

5 return 0

Game 0 y Game 1 First of all, soundness of ΠX↔F ensures that replacing VX↔F by V∗
X↔F only results

in a negligible change, since a correct witness can be extracted from a valid proof with overwhelming
probability. Second, since the choice of iK is random and independent of the rest of the game, an adversary
winning Game 0 with probability ε wins Game 1 with probability 1

κ
ε.

Game 2: Simulating the Proofs for X∗
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Expeuf-nf
DS,A(λ,Λ)(2)

...
3 for i = 1 . . . Λ : (crsi, tri, eki)← SimX↔F, 1(gPar, (ui,j)

m
j=1)

...... . . . ← A
(
pp, ω : PK(2), SK(1),Dlg(1),PSig(1)

)

PK(2)()
...
3 P ∗

i ← SimX↔F, 2(tri, (X
∗, F ∗

i ))
...

Game 1 y Game 2 Games Exp(1) and Exp(2) are indistinguishable by a hybrid argument on
extraction zero knowledge ofΠX↔F. Consider hybrid game number i: After receiving crsi, the distinguisher
D simulates Exp(b) using its extraction oracle for Line 3 of V∗

X↔F. When eventually Line 3 of PK(b) is
reached, D outputs (X∗, F ∗

i ) and receives P∗
i from the overlying experiment.

Game 3: Simulating Signatures by X∗

Expeuf-nf
DS,A(λ,Λ)(3)

...
2 Y ∗ ← G;

(
sPar := (ḡ, ū, (ui,j)1≤i≤Λ,1≤j≤m), trS

)
← SimPar(X∗, Y ∗, ℓ)

...... . . . ← A
(
pp, ω : PK(2), SK(1),Dlg(3),PSig(3)

)

Dlg(3)(X,warr, (X ′, F ′, P ′))

1 if X = X∗

2 return Dlg∗(pp, sk∗,warr, (X ′, F ′, P ′)), replacing (3) by

(3’) for j = 1 . . . i+ 1 : xj ← Ext(ekj , (Xj , Fj,j), Pj,j)

σi := SimSig(trS , x1 ‖ . . .‖xi+1 ‖0Λ−i−1)

3 else return Dlg(0)(X,warr, (X ′, F ′, P ′))

PSig(3)(X,warr,M)

1 if X = X∗

2 return PSig∗(pp, sk∗,warr,M), replacing (2) by

(2’) for i = 1 . . . k : xi ← Ext(eki, (Xi, Fi,i), Pi,i)

σk := SimSig(trS , x1 ‖ . . .‖xk ‖0
Λ−k−1 ‖M)

3 else return PSig(0)(X,warr,M)

Game 2 y Game 3 First of all, note that due to the additional checks in PSig∗ introduced in Game
2, extracting and signing yields the same as signing the hash values directly. From the security proof
for Waters signatures follows that the parameters created by SimPar are perfectly indistinguishable from
actual ones and that the simulation is perfect at least half of the time. Since in addition, failure of
simulation is independent from the adversary’s view, an adversary winning Game 2 with probability ε
wins Game 3 with probability at least 1

2ε.
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Game 4: Beyond LX↔F

Expeuf-nf
DS,A(λ,Λ)(4)

...
1.2 x′, x∗ ← Z2m ; X∗ := gx′

; for i = 1 . . . Λ : F ∗
i := Fi(x

∗)
...

Game 3 y Game 4 Note that the private key x∗ in the original game is used to compute (1) the F ∗
i ,

(2) the proofs P ∗
i and (3) the signatures σi. From Game 2 on, we compute P ∗

i without x∗ and from Game
3 on the signatures as well. Thus, a distinguisher between Games 3 and 4 yields a distinguisher for LX↔F,
since after plugging in challenge (X, (Fi)), the games can be simulated without knowledge of x∗.

The CDH-Adversary So far, we showed that any adversary having non-negligible advantage in winning
Game 0 also wins Game 4 with non-negligible probability. If the experiment returns 1 in Line 8 then the
fact that the signature returned by A passes PVer∗ implies that σi is a signature on F1,1 · · ·Fi+1,i+1,
thus actually a Waters signature of x1 ‖ . . . ‖ xi+1, the bits of the logarithms of X1, . . . ,Xi+1. Now the
condition in Line 7 guarantees that this very message has never been submitted to SimSig. (Note that
verifying all proofs Pj,j with V∗

X↔F ensures that the bits in Xj and Fj,j are the same.) An analogous
argumentation holds if the experiment returns 1 in Line 10. Thus, to win the game A must in fact forge a
Waters signature, which means we can use it to define a cdh-adversary by simulating Game 4 and instead
of merely returning 1 extracting the bits from the proofs Pj,j and feeding it to Extract.

ACDH(X∗, Y ∗)

1.1 i∗K ← {1, . . . , n}; iK := 0

1.2 x∗ ← Z2m ; for i = 1 . . . Λ : F ∗
i := Fi(x

∗)

2
(
sPar := (ḡ, ū, (ui,j)1≤i≤Λ,1≤j≤m), trS

)
← SimPar(X∗, Y ∗, ℓ)

3 for i = 1 . . . Λ : (crsi, tri, eki)← SimX↔F, 1(gPar, (ui,j)
m
j=1)

4 ω ← Zp; Ω := gω; pp := (gPar, sPar, crs, Ω); HU := ∅

5
(
(X1, F1,1, P1,1 . . .),M, (σ1, (Xi, Fi,i, Pi,i, certi,i, σi)

k
i=1)

)

← A
(
pp, ω : PK(2), SK(1),Dlg(3),PSig(3)

)

6 if PVer∗((X1, F1,1, P1,1 . . ),M, (σ1, (Xi, Fi,i, Pi,i, certi,i, σi)
k
i=1)

)
= 0, return 0

7 if ∃ 1 ≤ i < k: Xi = X∗ and no query Dlg
(
X∗, ((Xj . . .)

i−1
j=1, X

∗ . . .), Xi+1

)

8.1 for j = 1 . . . i+ 1 : xj ← Ext(ekj , (Xj , Fj,j), Pj,j)

8.2 return Extract(trS , x1 ‖ . . .‖xi+1 ‖0Λ−i−1, σi)

9 if Xk = X∗ and no query PSig
(
X∗, ((Xj . . .)

k−1
j=1 , X

∗ . . .),M
)

10.1 for i = 1 . . . k : xi ← Ext(eki, (Xi, Fi,i), Pi,i)

10 return Extract(trS , x1 ‖ . . .‖xk ‖0Λ−k−1 ‖M,σk)

11 return 0

Game 4 y CDH Game 4 is won if and only if the adversary manages to produce a Waters forgery. Now
Waters’ security proof guarantees that if all oracle queries were correctly simulated and the adversary
returns a valid forgery then Extract computes a cdh solution from it with probability 1

2mℓ . It follows that
if A wins Game 4 with probability ε, then ACDH produces a cdh-instance with probability at least 1

2mℓε.

All in all, we have thus shown that given an adversary A breaking non-frameability of DS, we can
construct an algorithm solving the cdh-problem with non-negligible probability.

26


