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Abstract. The notion of smooth projective hash functions was proposed by Cramer and Shoup and
can be seen as special type of zero-knowledge proof system for a language. Though originally used as a
means to build efficient chosen-ciphertext secure public-key encryption schemes, some variations of the
Cramer-Shoup smooth projective hash functions also found applications in several other contexts, such
as password-based authenticated key exchange and oblivious transfer. In this paper, we first address the
problem of building smooth projective hash functions for more complex languages. More precisely, we show
how to build such functions for languages that can be described in terms of disjunctions and conjunctions
of simpler languages for which smooth projective hash functions are known to exist. Next, we illustrate
how the use of smooth projective hash functions with more complex languages can be efficiently associated
to extractable commitment schemes and avoid the need for zero-knowledge proofs. Finally, we explain
how to apply these results to provide more efficient solutions to two well-known cryptographic problems:
a public-key certification which guarantees the knowledge of the private key by the user without random
oracles or zero-knowledge proofs and adaptive security for password-based authenticated key exchange
protocols in the universal composability framework with erasures.

1 Introduction

In [16], Cramer and Shoup introduced a new primitive called smooth projective hashing and showed
how to use it to generalize their chosen-ciphertext secure public-key encryption scheme [15]. The new
abstraction not only provided a more intuitive description of the original encryption scheme, but
also resulted in several new instantiations based on different security assumptions such as quadratic
residuosity and N -residuosity [31].

The notion of smooth projective hash functions (SPHF, [16], after slight modifications [22]) has
been proven quite useful and has found applications in several other contexts, such as password-based
authenticated key exchange (PAKE, [22]) and oblivious transfer [27]. In the context of PAKE proto-
cols, the work of Gennaro and Lindell abstracted and generalized (under various indistinguishability
assumptions) the earlier protocol by Katz, Ostrovsky, and Yung [28] and has become the basis of sev-
eral other schemes [3, 1, 8]. In the context of oblivious transfer, the work of Kalai [27] also generalized
earlier protocols by Naor and Pinkas [30] and by Aiello, Ishai, and Reingold [2].

To better understand the power of SPHF, let us briefly recall what they are. First, the definition
of SPHF requires the existence of a domain X and an underlying NP language L such that it is
computationally hard to distinguish a random element in L from a random element in X \ L. For
instance, in the particular case of the PAKE scheme in [13], the language L is defined as the set of
triples {(c, ℓ,m)} such that c is an encryption of m with label ℓ under a public key given in the common
reference string (CRS). The semantic security of the encryption scheme guarantees computational
indistinguishability between elements from L and elements from X.

One of the key properties that make SPHF so useful is that, for a point x ∈ L, the hash value can
be computed using either a secret hashing key hk, or a public projected key hp (depending on x [22]
or not [16]) together with a witness w to the fact that x ∈ L. Another important property of these
functions is that, given the projected key hp, their output is uniquely defined for points x ∈ L and
statistically indistinguishable from random for points x ∈ X \ L. Moreover, without the knowledge of
the witness w to the fact that x ∈ L, the output of these functions on x is also pseudo-random.

The first main contribution of this paper is to extend the line of work on SPHF, the element-based
version proposed by Gennaro and Lindell [22], to take into account more complex NP languages. More
precisely, we show how to build SPHF for languages that can be described in terms of disjunctions and
conjunctions of simpler languages for which SPHF are known to exist. For instance, let Hm represent a
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family of SPHF for the language {(c)}, where c is the encryption of m under a given public key. Using
our tools, one can build a family of SPHF for the language {(c)}, where c is the encryption of either 0
or 1, by combining H0 and H1.

One of the advantages of building SPHF for more complex languages is that it allows us to simplify
the design of the primitives to which they are associated. To demonstrate this, we consider in this
paper the specific case of extractable commitment schemes. In most protocols in which extractable
commitments are used, the capability of extracting the committed message usually depends on the
commitment being properly generated. To achieve this goal and enforce the correct generation of the
commitment, it is often the case that additional mechanisms, such as zero-knowledge proofs, may have
to be used. This is the case, for instance, of several protocols where a specific public-key registration
phase is required, such as most of the cryptographic protocols with dynamic groups (multisignatures [9,
29], group signatures [18], etc). Such a framework is sometimes named registered public-key model, where
a proof of knowledge of the secret key is required before any certification.

To be able to build more efficient extractable commitment schemes and avoid the use of possibly
expensive concurrent zero-knowledge proofs, a second main contribution of this paper is to generalize
the concept of extractable commitments so that extraction may fail if the commitment is not properly
generated. More specifically, we introduce a new notion of L-extractable commitments in which extrac-
tion is only guaranteed if the committed value belongs to the language L and may fail otherwise. The
main intuition behind this generalization is that, when used together with a SPHF for the language L,
the cases in which extraction may fail will not be very important as the output of the SPHF will be
statistically indistinguishable from random in such cases.

1.1 Applications

Registered Public-Key Setting. For many cryptographic protocols, for proving the security even
when users can dynamically join the system, the simulator described in the security proof often needs
to know the private keys of the authorized users, which is called the registered public-key setting, in
order to avoid rogue-attacks [9]. This should anyway be the correct way to proceed for a certification
authority: it certifies a public key to a user if and only if the latter provides a proof of knowledge of
the associated private key. However, in order to allow concurrency, intricate zero-knowledge proofs are
required, which makes the certification process either secure in the random oracle model [6] only, or
inefficient in the standard model.

In this paper, we show how SPHF with conditionally extractable commitments can help to solve
this problem efficiently, in the standard model, by establishing a secure channel between the players,
with keys that are either the same for the two parties if the commitment has been correctly built, or
perfectly independent in the other case.

Adaptively-secure PAKE schemes. We thereafter study more involved key exchange schemes. In
1992, Bellovin and Merritt [7] suggested a method to authenticate a key exchange based on simple
passwords, possibly drawn from a space so small that an adversary might enumerate off-line all possible
values. Because of the practical interest of such a primitive, many schemes have been proposed and
studied. In 2005, Canetti et al. [13] proposed an ideal functionality for PAKE protocols, in the univer-
sal composability (UC) framework [11, 14], and showed how a simple variant of the Gennaro-Lindell
methodology [22] could lead to a secure protocol. Though quite efficient, their protocol is not known
to be secure against adaptive adversaries, where they can corrupt players at any time, and learn their
internal states. The first ones to propose an adaptively-secure PAKE in the UC framework were Barak
et al. [3] using general techniques from multi-party computation (MPC). Though conceptually simple,
their solution yields quite inefficient schemes.

Here, we take a different approach. Instead of using general MPC techniques, we extend the
Gennaro-Lindell methodology to deal with adaptive corruptions by using a non-malleable condition-
ally-extractable and equivocable commitment scheme with an associated SPHF family. The new scheme
is adaptively secure in the common reference string model in the UC framework under standard com-
plexity assumptions with erasures.
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1.2 Related work

Commitments. Commitment schemes are one of the most fundamental cryptographic primitives,
being used in several cryptographic applications such as zero-knowledge proofs [25] and secure multi-
party computation [24]. Even quite practical protocols need them, as already explained above in the
public-key registration setting, but also in password-based authenticated key exchange [22]. They allow
a user to commit a value x into a public value C, such that the latter does not reveal any information
about x (the hiding property), but C can be opened later to x only: one cannot change its mind
(the binding property). Various additional properties are often required, such as non-malleability,
extractability and equivocability. Canetti and Fischlin [12] provided an ideal functionality for such a
primitive and showed that achieving all these properties at the same time was impossible in the UC
plain model. They also provided the first candidate in the CRS model. Damgård and Nielsen [17] later
proposed another construction of universally composable commitments, that is more efficient for some
applications. Since we want to avoid the use of possibly inefficient proofs of relations present in the
Damgård-Nielsen construction and given that the Canetti-Fischlin construction is well suited for our
purpose of designing an associated smooth hash function, we opted to use the latter as the starting
point for our constructions.

PAKE. The password-based setting was first considered by Bellovin and Merritt [7] and followed by
many proposals. In 2000, Bellare, Pointcheval, and Rogaway [5] as well as Boyko, MacKenzie, and
Patel [10] proposed security models and proved variants of the Bellovin and Merritt protocol [7], under
ideal assumptions, such as the random oracle model [6]. Soon after, Katz, Ostrovsky, and Yung [28]
and Goldreich and Lindell [23] proposed the first protocols with a proof of security in the standard
model, with the former being based on the decisional Diffie-Hellman assumption and the latter on
general assumptions. Later, Gennaro and Lindell [22] proposed an abstraction and generalization of
the KOY protocol and became the basis of several other variants, including ours in the last section.

1.3 Organization of the Paper

In Section 2, we review the basic primitives needed in this paper. Then, in Section 3, we describe
our first contribution: SPHF families on conjunctions and disjunctions of languages. In Section 4
we combine that with our second contribution, conditionally-extractable commitments. We focus on
the ElGamal-based commitment, since this is enough to build more efficient public-key certification
protocols. Finally, in Section 5, we add equivocability to the commitment, borrowing techniques from
Canetti and Fischlin [12]. Then, we add the non-malleability property, granted the Cramer-Shoup
encryption scheme, which can then be used to build an adaptively-secure PAKE in the UC framework,
based on the Gennaro and Lindell [22] framework. Due to space restrictions, formal definitions, proofs,
and application details were postponed to the appendix.

2 Commitments

In the following, we focus on Pedersen commitments, and certification of Schnorr-like public keys,
hence, we work in the discrete logarithm setting. As a consequence, to get extractable commitments,
we use encryption schemes from the same family: the ElGamal encryption [21] and the labeled version
of the Cramer-Shoup encryption scheme [15] (for achieving non-malleability).

Labeled Public-Key Encryption. Labeled encryption [32] is a variation of the usual encryption
notion that takes into account the presence of labels in the encryption and decryption algorithms.
More precisely, both the encryption and decryption algorithms have an additional input parameter,
referred to as a label, and the decryption algorithm should only correctly decrypt a ciphertext if its
input label matches the label used to create that ciphertext.

The security notion for labeled encryption is similar to that of standard encryption schemes. The
main difference is that, whenever the adversary wishes to ask a query to its Left-or-Right encryption
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oracle in the indistinguishability security game (IND-CPA) [26, 4], in addition to providing a pair
of messages (m0,m1), it also has to provide a target label ℓ to obtain the challenge ciphertext c.
When chosen-ciphertext security (IND-CCA) is concerned, the adversary is also allowed to query its
decryption oracle on any pair (ℓ′, c′) as long as ℓ′ 6= ℓ or the ciphertext c′ does not match the output c
of a query to its Left-or-Right encryption oracle whose input includes the label ℓ. For formal security
definitions for labeled encryption schemes, please refer to [13, 1].

One of the advantages of using labeled encryption, which we exploit in this paper, is that we can
easily combine several IND-CCA labeled encryption schemes with the help of a strongly unforgeable
one-time signature scheme so that the resulting scheme remains IND-CCA [20].

ElGamal and Cramer-Shoup Encryption. We denote by G a cyclic group of prime order q where q
is large (n bits), and g a generator for this group. Let pk = (g1, g2, c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , h = gz

1 ,H) be
the public key of the Cramer-Shoup scheme, where g1 and g2 are random group elements, x1, x2, y1, y2

and z are random scalars in Zq, and H is a collision-resistant hash function (actually, second-preimage
resistance is enough), and sk = (x1, x2, y1, y2, z) the associated private key. Note that (g1, h) will
also be seen as the public key of the ElGamal encryption, with z the associated private key. For the
sake of simplicity, we assume in the following that public keys will additionally contain all the global
parameters, such as the group G.

If M ∈ G, the multiplicative ElGamal encryption is defined as EG×

pk
(M ; r) = (u1 = gr

1, e = hrM),
which can be decrypted by M = e/uz

1. If M ∈ Zq, the additive ElGamal encryption is defined as
EG+

pk(M ; r) = (u1 = gr
1, e = hrgM ). Note that EG×

pk(g
M ; r) = EG+

pk(M ; r). It can be decrypted after
an additional discrete logarithm computation: M must be small enough. Similarly, if M ∈ G, the

multiplicative labeled Cramer-Shoup encryption is defined as CS×

pk

ℓ
(M ; r) = (u1, u2, e, v), such that

u1 = gr
1, u2 = gr

2, e = hrM , θ = H(ℓ, u1, u2, e) and v = (cdθ)r. Decryption works as above, with

M = e/uz
1, but only if the ciphertext is valid: v = ux1+θy1

1 ux2+θy2
2 . If M ∈ Zq, its additive encryption

CS+
pk

ℓ
(M ; r) is such that e = hrgM . The following relation holds CS×

pk

ℓ
(gM ; r) = CS+

pk

ℓ
(M ; r). The

decryption applies as above if M is small enough.

As already noted, from any Cramer-Shoup ciphertext (u1, u2, e, v) of a message M with random-
ness r, whatever the label ℓ is, one can extract (u1, e) as an ElGamal ciphertext of the same message
M with the same randomness r. This extraction applies independently of the additive or multiplica-
tive version since the decryption works the same for the ElGamal and the Cramer-Shoup ciphertexts,
except for the validity check that provides the CCA security level to the Cramer-Shoup encryption
scheme, whereas the ElGamal encryption scheme achieves IND-CPA security level only.

Commitments. With a commitment scheme, a player can commit to a secret value x by publishing
a commitment C = com(x; r) with randomness r, in such a way that C reveals nothing about the
secret x, which is called the hiding property. The player can later open C to reveal x, by publishing x
and a decommitment, also referred to as witness, in a publicly verifiable way: the player cannot open
C to any other value than x, which is the binding property. In many cases, the decommitment consists
of the random r itself or some part of it. In this paper, we only consider commitment schemes in the
common reference string (CRS) model in which the common parameters, referred to as the CRS, are
generated honestly and available to all parties.

Note that an IND-CPA public-key encryption scheme provides such a commitment scheme: the
binding property is guaranteed by the uniqueness of the plaintext (perfectly binding), and the hiding
property is guaranteed by the IND-CPA security (computationally hiding). In this case, the CRS simply
consists of the public-key of the encryption scheme. The Pedersen commitment C = comPed(x; r) =
gxhr provides a perfectly hiding, but computationally binding commitment under the intractability of
the discrete logarithm of h in basis g.

We now present additional properties that can be satisfied by the commitment. First, we say
that a commitment is extractable if there exists an efficient algorithm, called an extractor, capable of
generating a new set of common parameters (i.e., a new CRS) whose distribution is equivalent to that
of an honestly generated CRS and such that it can extract the committed value x from any commitment
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C. This is of course only possible for computationally hiding commitments, such as encryption schemes:
the decryption key is the extraction trapdoor. Second, we say that a commitment is equivocable if there
exists an efficient algorithm, called an equivocator, capable of generating a new CRS and a commitment
with similar distributions to those of the actual scheme and such that the commitment can be opened
in different ways. Again, this is possible for computationally binding commitments only, such as the
Pedersen commitment: the knowledge of the discrete logarithm of h in basis g is a trapdoor that allows
the opening of a commitment in more than one way. Finally, a non-malleable commitment ensures that if
an adversary that receives a commitment C of some unknown value x can generate a valid commitment
for a related value y, then a simulator could perform as well without seeing the commitment C. A
public-key encryption scheme that is IND-CCA provides such a non-malleable commitment [22]. For
formal security definitions for commitment schemes, please refer to [22, 19, 12].

In the following, we use encryption schemes in order to construct commitments, which immediately
implies the hiding, binding and extractable properties, as said above. However, when one uses the
additive versions of ElGamal or Cramer-Shoup encryption schemes, extractability (or decryption) is
only possible if the committed values (or plaintexts) are small enough, hence our notion of L-extractable
commitments (see Section 4) which will mean that the commitment is extractable if the committed
value lies in the language L. More precisely, we will split the value to be committed in small pieces
(that lie in the language L), but we will then need to be sure that they actually lie in this language to
guarantee extractability. We thus introduce smooth hash functions in order to allow communications
if the commitments are valid only.

3 Smooth Hash Functions on Conjunctions and Disjunctions of Languages

3.1 Smooth Projective Hash Functions.

Projective hash function families were first introduced by Cramer and Shoup [16] as a means to design
chosen-ciphertext secure encryption schemes. We here use the definitions of Gennaro and Lindell [22],
who later showed how to use such families to build secure password-based authenticated key exchange
protocols, together with non-malleable commitments. In addition to commitment schemes, we also
consider here families of SPHF associated to labeled encryption as done by Canetti et al. [13] and by
Abdalla and Pointcheval [1].

Let X be the domain of these functions and let L be a certain subset of points of this domain
(a language). A key property of these functions is that, for points in L, their values can be computed
by using either a secret hashing key or a public projected key. While the computation using the secret
hashing key works for all points in the domain X of the hash function, the computation using a public
projected key only works for points x ∈ L and requires the knowledge of the witness w to the fact that
x ∈ L. A projective hash function family is said to be smooth if the value of the function on inputs
that are outside the particular subset L of the domain are independent of the projected key. Another
important property of these functions is that, given the projected key hp, their output is uniquely
defined for points x ∈ L. Moreover, if L is a hard partitioned subset of X (i.e., it is computationally
hard to distinguish a random element in L from a random element in X \ L), this output is also
pseudo-random if one does not know a witness w to the fact that x ∈ L [22]. The interested reader is
referred to Appendix A for more formal definitions.

In the particular case of the Gennaro-Lindell scheme [22], the subset Lpk,m was defined as the
set of {(c)} such that c is a commitment of m using public parameters pk: there exists r for which
c = compk(m; r) where com is the committing algorithm of the commitment scheme. In the case of the
CHKLM scheme [13], the subset Lpk,(ℓ,m) was defined as the set of {(c)} such that c is an encryption of

m with label ℓ, under the public key pk: there exists r for which c = Eℓ
pk

(m; r) where E is the encryption
algorithm of the labeled encryption scheme. In the case of a standard encryption scheme, the label is
simply omitted. The interested reader is referred to [22, 13, 1] for more details.

5



Languages. Since we want to use more general languages, we need more detailed notations. Let LPKE

be a labeled encryption scheme with public key pk. Let X be the range of the encryption algorithm.
Here are three useful examples of languages L in X:

– the valid ciphertexts c of m under pk, L(LPKE,pk),(ℓ,m) = {c|∃r c = Eℓ
pk

(m; r)};

– the valid ciphertexts c of m1 or m2 under pk (that is, a disjunction of two versions of the former
languages), L(LPKE,pk),(ℓ,m1∨m2) = L(LPKE,pk),(ℓ,m1) ∪ L(LPKE,pk),(ℓ,m2);

– the valid ciphertexts c under pk, L(LPKE,pk),(ℓ,∗) = {c|∃m ∃r c = Eℓ
pk

(m; r)}.

If the encryption scheme is IND-CPA, the first two are hard partitioned subsets of X. The last one
can also be a hard partitioned subset in some cases: for the Cramer-Shoup encryption, L  X = G4

and, in order to distinguish a valid ciphertext from an invalid one, one has to break the DDH problem.
However, for the ElGamal encryption scheme, all the ciphertexts are valid, hence L = X = G2.

More complex languages can be defined, with disjunctions as above, or conjunctions: the pairs of
ciphertexts (a, b) such that a ∈ L(LPKE,pk),(ℓ,0∨1) and b ∈ L(LPKE,pk),(ℓ,2∨3). This set can be obtained
by (L(LPKE,pk),(ℓ,0∨1)) ×X) ∩ (X × L(LPKE,pk),(ℓ,2∨3)).

Likewise, we can define more general languages based on other primitives such as commitment
schemes. The definition would be similar to the one above, with pk playing the role of the common
parameters, Epk playing the role of the committing algorithm, (m, ℓ) playing the role of the input
message, and c playing the role of the commitment.

More generally, in the following, we denote the language by the generic notation L(Sch,ρ),aux where
aux denotes all the parameters useful to characterize the language (such as the label used, or a plain-
text), ρ denotes the public parameters such as a public key pk, and Sch denotes the primitive used
to define the language, such as an encryption scheme LPKE or a commitment scheme Com. When
there is no ambiguity, the associated primitive Sch will be omitted.

We now present new constructions of SPHF to deal with more complex languages, such as disjunc-
tions and conjunctions of any languages. The constructions are presented for two languages but can be
easily extended to any polynomial number of languages. We then discuss about possible information
leakage at the end of this section. The properties of correctness, smoothness and pseudo-randomness
are easily verified by these new smooth hash systems. Due to the lack of space, the formal proofs can
be found in Appendix B.

3.2 Conjunction of two Generic Smooth Hashes

Let us consider an encryption or commitment scheme defined by public parameters and a public key
aggregated in ρ. X is the range of the elements we want to study (ciphertexts, tuples of ciphertexts,
commitments, etc), and L1 = L1,ρ,aux and L2 = L2,ρ,aux are hard partitioned subsets of X, which
specify the expected properties (valid ciphertexts, ciphertexts of a specific plaintext, etc). We consider
situations where X possesses a group structure, which is the case if we consider ciphertexts or tuples
of ciphertexts from an homomorphic encryption scheme. We thus denote by ⊕ the commutative law
of the group (and by ⊖ the opposite operation, such that c⊕ a⊖ a = c).

We assume to be given two smooth hash systems SHS1 and SHS2, on the sets corresponding to
the languages L1 and L2: SHSi = {HashKGi,ProjKGi,Hashi,ProjHashi}. Here, HashKGi and ProjKGi

denote the hashing key and the projected key generators, and Hashi and ProjHashi the algorithms that
compute the hash function using hki and hpi respectively.

Let c be an element of X, and r1 and r2 two elements chosen at random. We denote the keys by

hk1 = HashKG1(ρ, aux, r1), hk2 = HashKG2(ρ, aux, r2)

and

hp1 = ProjKG1(hk1; ρ, aux, c), hp2 = ProjKG2(hk2; ρ, aux, c).
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A smooth hash system for the language L = L1 ∩ L2 is then defined as follows, if c ∈ L1 ∩ L2 and wi

is a witness that c ∈ Li, for i = 1, 2:

HashKGL(ρ, aux, r = r1‖r2) = hk = (hk1, hk2) ProjKGL(hk; ρ, aux, c) = hp = (hp1, hp2)

HashL(hk; ρ, aux, c) = Hash1(hk1; ρ, aux, c) ⊕ Hash2(hk2; ρ, aux, c)

ProjHashL(hp; ρ, aux, c; (w1, w2)) = ProjHash1(hp1; ρ, aux, c;w1)⊕ ProjHash2(hp2; ρ, aux, c;w2)

3.3 Disjunction of two Generic Smooth Hashes

Let L1 and L2 be two languages as described above. We assume to be given two smooth hash systems
SHS1 and SHS2 with respect to these languages. We define L = L1 ∪ L2 and construct a smooth
projective hash function for this language as follows:

HashKGL(ρ, aux, r = r1‖r2) = hk = (hk1, hk2)
ProjKGL(hk; ρ, aux, c) = hp = (hp1, hp2, hp∆ = Hash1(hk1; ρ, aux, c) ⊕ Hash2(hk2; ρ, aux, c))

HashL(hk; ρ, aux, c) = Hash1(hk1; ρ, aux, c)
ProjHashL(hp; ρ, aux, c;w) = ProjHash1(hp1; ρ, aux, c;w) if c ∈ L1

or hp∆ ⊖ ProjHash2(hp2; ρ, aux, c;w) if c ∈ L2

where w is a witness of c ∈ Li for i ∈ {1, 2}. Then ProjHashi(hpi; ρ, aux, c;w) = Hashi(hki; ρ, aux, c).
The player in charge of computing this value is supposed to know the witness, and in particular the
language which c belongs to (and thus the index i).

3.4 Uniformity and Independence

In the above definition of SPHF (contrarily to the original Cramer-Shoup [16] definition), the value
of the projected key formally depends on the ciphertext/commitment c. However, in some cases, one
may not want to reveal any information about this dependency. In fact, in certain cases such as in
the construction of a SPHF for equivocable and extractable commitments in Section 5, one may not
even want to leak any information about the auxiliary elements aux. When no information is revealed
about aux, it means that the details about the exact language will be concealed.

We thus add a notion similar to the smoothness, but for the projected key: the projected key
may or may not depend on c (and aux), but its distribution does not: Let us denote by Dρ,aux,c the
distribution {hp | hk = HashKGL(ρ, aux, r) and hp = ProjKGL(hk; ρ, aux, c)}, on the projected keys. If,
for any c, c′ ∈ X, Dρ,aux,c′ and Dρ,aux,c are indistinguishable, then we say that the smooth hash system
has the 1-uniformity property. If, for any c, c′ ∈ X, and any auxiliary elements aux, aux′, Dρ,aux′,c′

and Dρ,aux,c are indistinguishable, we name it 2-uniformity property.
More than indistinguishability of distributions, the actual projected key hp may not depend at all

on c, as in the Cramer and Shoup’s definition. Then, we say that the smooth hash system guaran-
tees 1-independence (resp. 2-independence if it does not depend on aux either). Note that the latter
independence notions immediately imply the respective uniformity notions.

As an example, the smooth hash system associated with the ElGamal cryptosystem (see Sec-
tion 4.1) guarantees 2-independence. On the other hand, the analogous system associated with the
Cramer-Shoup encryption (see Appendix D.1) guarantees 2-uniformity only. For smooth hash sys-
tems combinations, one can note that in the case of disjunctions, one can get, at best, the uniformity
property, since hash computations on the commitment are needed for generating the projected key.
Furthermore, this is satisfied under the condition that the two underlying smooth hash systems already
satisfy this property (see Appendix B for more details and proofs).

Finally, one should note that, in the case of disjunction, the view of the projected hash value could
leak some information about the sub-language in which the input lies, if an adversary sends a fake
hp∆. The adversary could indeed check whether ProjHashL(hp; ρ, aux, c;w) equals Hash1(hk1; ρ, aux, c)
or hp∆ ⊖ Hash2(hk2; ρ, aux, c). But first, it does not contradict any security notion for smooth hash
systems; second, in all the applications below, the projected hash value is never revealed; and third, in
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the extractable commitments below, because of the global conjunction of the languages, an exponential
exhaustive search would be needed to exploit this information, even if the committed value is a low-
entropy one.

4 A Conditionally Extractable Commitment

4.1 ElGamal Commitment and Associated Smooth Hash

The ElGamal commitment is realized in the common reference string model, where the CRS ρ contains
(G, pk), as defined in Section 2, for the ElGamal encryption scheme. In practice, sk should not be
known by anybody, but in the security analysis, sk will be the extraction trapdoor. Let the input of the
committing algorithm be a scalar M ∈ Zq. The commitment algorithm consists of choosing a random r
and computing the following ElGamal encryption under random r: C = EG+

pk
(M, r) = (u1 = gr

1, e =

hrgM ).

The smooth projective hashing, associated with this commitment scheme and the language L =
L(EG+,ρ),M ⊂ X = G2 of the additive ElGamal ciphertexts C of M under the global parameters and
public key defined by ρ, is the family based on the underlying ElGamal encryption scheme, as defined
in [22]:

HashKG((EG
+, ρ),M) = hk = (γ1 , γ3)

$
← Zq × Zq Hash(hk; (EG

+, ρ),M,C) = (u1)
γ1 (eg−M )γ3

ProjKG(hk; (EG
+, ρ),M,C) = hp = (g1)

γ1 (h)γ3 ProjHash(hp; (EG
+, ρ),M,C; r) = (hp)r

First, under the Decisional Diffie-Hellman problem (semantic security of the ElGamal encryption
scheme), L is a hard partitioned subset of X = G2. Then, for C = EG+

pk
(M, r), and thus with the

witness r, the algorithms are defined as above using the same notations as in [22].

4.2 L-extractable Commitments

Note that the value gM would be easily extractable from this commitment (seen as the multiplicative
ElGamal encryption). However, one can extract M itself (the actual committed value) only if its size
is small enough so that it can be found as a solution to the discrete logarithm problem. In order to
obtain “extractability” (up to a certain point, see below), one should rather commit to it in a bit-by-bit
way.

Let us denote M ∈ Zq by
∑m

i=1 Mi · 2
i−1, where m ≤ n. Its commitment is comEGpk(M) =

(b1, . . . , bm), where bi = EG+
pk

(Mi · 2
i−1, ri) = (u1,i = g1

ri , ei = hrigMi·2i−1
), for i = 1, . . . ,m. The

homomorphic property of the encryption scheme allows to obtain, from this tuple, the above simple
commitment of M

C = EG+
pk

(M, r) = (u1, e) = (
∏

u1,i,
∏

ei) =
∏

bi, for r =
∑

ri.
We now precise what we mean by “extractability”: Here, the commitment will be extractable if the
messages Mi are bits (or at least small enough), but we cannot ensure that it will be extractable
otherwise. More generally, this leads to a new notion of L−extractable commitments, which means that
we allow the primitive not to be extractable if the message does not belong to a certain language L
(e.g. the language of encryptions of 0 or 1), which is informally the language of all commitments valid
and “of good shape”, and is included into the set X of all commitments.

Smooth Hash Functions. For the above protocol, we need a smooth hash system on the language
L = L1 ∩ L2, where L1 = {(b1, . . . , bm) | ∀i, bi ∈ L(EG+,ρ),0∨1}, L2 = {(b1, . . . , bm) | C =

∏
i bi ∈

L(EG×,ρ),gM}, to within a factor (corresponding to the offest 2i−1) with

L(EG+,ρ),0∨1 = L(EG+,ρ),0 ∪ L(EG+,ρ),1 L(EG+,ρ),0 = {C | ∃r C = EG+
pk

(0, r)}

L(EG×,ρ),gM = {C | ∃r C = EG×

pk(g
M , r)} L(EG+,ρ),1 = {C | ∃r C = EG+

pk(1, r)}
It is easy to see that this boils down to constructing a smooth hash system corresponding to a

conjunction and disjunction of languages, as presented in the previous section.
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4.3 Certification of Public Keys

Description. A classical application of extractable commitments is in the certification of public keys
(when we want to be sure that a person joining the system actually knows the associated private key).
Suppose that a user U owns a pair of secret and public keys, and would like to have the public key
certified by the authority. A natural property is that the authority will not certify this public key unless
it is sure that the user really owns the related private key, which is usually ensured by a zero-knowledge
proof of knowledge: the user knows the private key if a successful extractor exists.

Here we present a construction that possesses the same property without requiring any explicit
proof of knowledge, furthermore in a concurrent way since there is no need of any rewinding:

– First, the user sends his public key gM , along with a bit-by-bit L-extractable commitment of the
private key M , i.e. a tuple comEGpk(M) = (b1, . . . , bm) as described above, from which one can

derive C =
∏

bi = EG+
pk(M, r) = EG×

pk(g
M , r).

– We define the smooth hash system related to the language L1 ∩ L2, where L1 = ∩iL1,i, with L1,i

the language of the tuples where the i-th component bi is an encryption of 0 or 1, and L2 is the
language of the tuples where the derived C =

∏
bi is an encryption of the public key gM (under

the multiplicative ElGamal, as in Section 4.1).

Note that when the tuple (b1, . . . , bm) lies in L1 ∩ L2, it really corresponds to an extractable
commitment of the private key M associated to the public key gM : each bi encrypts a bit, and can
thus be decrypted, which provides the i-th bit of M .

– The authority computes a hash key hk, the corresponding projected key hp on (b1, . . . , bm) and
the related hash value Hash on (b1, . . . , bm). It sends hp to U along with Cert ⊕ Hash, where Cert

is the expected certificate. Note that if Hash is not large enough, a pseudo-random generator can
be used to expand it.

– The user is then able to recover his certificate if and only if he can compute Hash: this value can
be computed with the algorithm ProjHash on (b1, . . . , bm), from hp. But it also requires a witness
w proving that the tuple (b1, . . . , bm) lies in L1 ∩ L2.

With the properties of the smooth hash system, if the user correctly computed the commitment, he
knows the witness w, and can get the same mask Hash to extract the certificate. If the user cheated, the
smoothness property makes Hash perfectly unpredictable: no information is leaked about the certificate.

Security Analysis. Let us outline the security proof of the above protocol. First, the security model
is the following: no one can obtain a certificate on a public key if it does not know the associated
private key (that is, if no simulator can extract the private key). In other words, the adversary wins if
it is able to output (gM ,Cert) and no simulator can produce M .

The formal attack game can thus be described as follows: the adversary A interacts several times
with the authority, by sending public keys and commitments, and asks for the corresponding certificates.
It then outputs a pair (gM ,Cert) and wins if no simulator is able to extract M from the transcript.

The simulator works as follows: it is given access to a certification (signing) oracle, and generates a
pair of public and private keys (sk, pk) for the ElGamal encryption. The public key is set as the CRS
that defines the commitment scheme. The private key will thus be the extraction trapdoor.

When the simulator receives a certification request, with a public key and a commitment, it first
tries to extract the associated private key, granted the extraction trapdoor. In case of success, the
simulator asks the signing oracle to provide it with the corresponding certificate on the public key, and
complete the process as described in the protocol. However, extraction may fail if the commitments
are not well constructed (not in L1 ∩L2). In such a case, the simulator sends back a random bit-string
of appropriate length. In case of successful extraction, the answer received by the user is exactly the
expected one. In case of failure, it is perfectly indistinguishable too since the smoothness property of
the hash function would make a perfectly random mask Hash (since the input is not in the language).

After several interactions, A outputs a pair (gM ,Cert), which is forwarded by the simulator. Either
gM has been queried to the signing oracle, which means that the extraction had succeeded, the simulator
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knows M and the adversary did not win the attack game, or this is a valid signature on a new message:
existential forgery under chosen-message attack.

5 A Conditionally Extractable Equivocable Commitment

In this section, we enhance the previous commitment schemes with equivocability, which is not a trivial
task when one wants to keep the extraction property. Note that we first build a malleable extractable
and equivocable commitment using the ElGamal-based commitment (see Section 4.1), but one can
address the non-malleability property by simply building the commitment upon the Cramer-Shoup
encryption scheme. All the details of this extension are given in Appendix D. In the following, if b is a
bit, we denote its complement by b (i.e., b = 1 − b). We furthermore denote by x[i] the ith bit of the
bit-string x.

5.1 Equivocability

Commitments that are both extractable and equivocable seem to be very difficult to obtain. Canetti
and Fischlin [12] proposed a solution but for one bit only. Damgård and Nielsen [17] proposed later
another construction. But for efficiency reasons, in our specific context, we extend the former proposal.
In this section, we thus enhance our previous commitment (that is already L-extractable) to make it
equivocable, using the Canetti and Fischlin’s approach. Section 5.3 will then apply a non-malleable
variant of our new commitment together with the associated smooth hash function family in order to
build a password-authenticated key exchange protocol with adaptive security in the UC framework [11].
The resulting protocol is reasonably efficient and, in particular, more efficient than the protocol by
Barak et al. [3], which to our knowledge is the only one achieving the same level of security in the
standard model.

Description of the Commitment. Our commitment scheme is a natural extension of Canetti-
Fischlin commitment scheme [12], in a bit-by-bit way. It indeed uses the ElGamal public-key encryption
scheme, for each bit of the bit-string. Let (y1 , . . . , ym) be random elements in G. This commitment is
realized in the common reference string model, the CRS ρ contains (G, pk), where pk is an ElGamal
public key and the private key is unknown to anybody, except to the commitment extractor. It also
includes this tuple (y1 , . . . , ym), for which the discrete logarithms in basis g are unknown to anybody,
except to the commitment equivocator. Let the input of the committing algorithm be a bit-string
π =

∑m
i=1 πi · 2

i−1. The algorithm works as follows:

– For i = 1, . . . ,m, it chooses a random value xi,πi
=
∑n

j=1 xi,πi
[j] · 2j−1 and sets x

i,πi
= 0.

– For i = 1, . . . ,m, the algorithm commits to πi, using the random x
i,πi

: a
i

= comPed(πi, xi,πi
) =

g
x

i,πi yπi
i

and defining a = (a1 , . . . , am).

– For i = 1, . . . ,m, it computes the ElGamal commitments (see the previous section) of x
i,δ

, for

δ = 0, 1: (bi,δ = (b
i,δ

[j])j = comEGpk(xi,δ
), where b

i,δ
[j] = EG+

pk(xi,δ
[j] · 2j−1, r

i,δ
[j]). One can

directly extract from the computation of the b
i,δ

[j] an encryption B
i,δ

of x
i,δ

: B
i,δ

=
∏

j b
i,δ

[j] =

EG+
pk(x

i,δ
, r

i,δ
), where r

i,δ
is the sum of the random coins r

i,δ
[j].

The entire random string for this commitment is (where n is the bit-length of the prime order q
of the group G) R = (x1,π1

, (r1,0 [1], r1,1 [1], . . . , r1,0 [n], r1,1 [n]), . . . , xm,πm
, (rm,0 [1], . . . , rm,1 [n])). From

which, all the values r
i,πi

[j] can be erased, letting the opening data (witness of the committed value)
become limited to w = (x1,π1

, (r1,π1
[1], . . . , r1,π1

[n]), . . . , xm,πm
, (rm,πm

[1], . . . , rm,πm
[n])). The output of

the committing algorithm, of the bit-string π, using the random R, is comρ(π;R) = (a,b), where a =
(a

i
= comPed(πi, xi,πi

))i,b = (b
i,δ

[j] = EG+
pk

(x
i,δ

[j] · 2j−1, r
i,δ

[j]))i,δ,j .

Opening. In order to open this commitment to π, the above witness w (with the value π) is indeed
enough: one can build again, for all i and j, b

i,πi
[j] = EG+

pk
(x

i,πi
[j] · 2j−1, r

i,πi
[j]), and check them

with b. One can then also compute again all the a
i
= comPed(πi, xi,πi

), and check them with a. The
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erased random elements would help to check the encryptions of zeroes, what we do not want, since the
equivocability property will exploit that.

Properties. Let us briefly check the security properties, which are formally proven in Appendix C.
First, because of the perfectly hiding property of the Pedersen commitment, unless some information
is leaked about the x

i,δ
[j]’s, no information is leaked about the πi’s. And granted the semantic security

of the ElGamal encryption scheme, the former privacy is guaranteed. Since the Pedersen commitment
is (computationally) binding, the a

i
’s cannot be opened in two ways, but only one pair (πi, xi,πi

) is
possible. Let us now consider the new extended properties:

– (conditional) extractability is provided by the bit-by-bit encryption. With the decryption key sk,
one can decrypt all the b

i,δ
[j], and get the x

i,δ
(unless the ciphertexts contain values different from

0 and 1, which will be one condition for extractability). Then, one can check, for i = 1, . . . ,m,
whether a

i
= comPed(0, x

i,0) or a
i
= comPed(1, x

i,1), which provides πi (unless none of the equal-
ities is satisfied, which will be another condition for extractability).

– equivocability is possible using the Pedersen commitment trapdoor. Instead of taking a random
xi,πi

and then x
i,πi

= 0, which specifies πi as the committed bit, one takes a random xi,0 , computes
ai = comPed(0, xi,0), but also extracts xi,1 so that ai = comPed(1, xi,1) too (which is possible with
the knowledge of discrete logarithm of yi in basis g, the trapdoor). The rest of the commitment
procedure remains the same, but now, one can open any bit-string for π, using the appropriate
x

i,πi
and the corresponding random elements (the simulator did not erase).

5.2 The Associated Smooth Projective Hash Function

As noticed above, our new commitment scheme is conditionally extractable (one can recover the x
i,δ

’s,
and then the committed value π), under the conditions that all the ElGamal ciphertexts encrypt either
0 or 1, and the a

i
is a commitment of either 0 or 1, with random x

i,0 or x
i,1 .

As before, one wants to make the two hash values (direct computation and the one from the
projected key) be the same if the two parties use the same input π and perfectly independent if they
use different inputs (smoothness). One furthermore wants to control that each ai is actually a Pedersen
commitment of πi using the encrypted random xi,πi

, and thus g
x

i,πi = ai/y
πi

i : the extracted xi,πi
is

really the private key M related to a given public key gM that is a
i
/yπi

i in our case. Using the same
notations as in Section 4.1, we want to define a smooth hash system showing that, for all i, δ, j,
b

i,δ
[j] ∈ L(EG+,ρ),0∨1 and, for all i, Bi,πi

∈ L(EG×,ρ),(a
i
/yi

πi), where Bi,πi
=
∏

j bi,πi
[j].

Combinations of these smooth hashes. Let C be the above commitment of π using randomness R
as defined in Section 5.1. We now precise the language Lρ,π, consisting informally of all the valid
commitments “of good shape”:

Lρ,π =

{
C

∣∣∣∣
∃R s. t. C = comρ(π,R) and ∀i ∀j b

i,πi
[j] ∈ L(EG+,ρ),0∨1

and ∀i B
i,πi
∈ L(EG×,ρ),a

i
/yi

πi

}

The smooth hash system for this language relies on the smooth hash systems described previ-
ously, using the generic construction for conjunctions and disjunctions as described in Section 3. The
precise definition of this language (which is constructed from conjunctions and disjunctions of sim-
ple languages) can be found in Appendix D, omitting the labels and replacing the Cramer-Shoup
encryption CS

+ by the ElGamal one EG
+.

Properties: Uniformity and Independence. With a non-malleable variant of such a commitment
and smooth hash function, it is possible to improve the establishment of a secure channel between two
players, from the one presented Section 4.3. More precisely, two parties can agree on a common key if
they both share a common (low entropy) password π. However, a more involved protocol than the one
proposed in Section 4.3 is needed to achieve all the required properties of a password-authenticated
key exchange protocol, as it will be explained in Section 5.3 and proven in Appendix E.

Nevertheless, there may seem to be a leakage of information because of the language that depends
on the input π: the projected key hp seems to contain some information about π, that can be used
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in another execution by an adversary. Hence the independence and uniformity notions presented Sec-
tion 3.4, which ensure that hp does not contain any information about π. Proofs of these properties
can be found in Appendix D.

Estimation of the Complexity. Globally, each operation (commitment, projected key, hashing and
projected hashing) requires O(mn) exponentiations in G, with small constants (at most 16).

5.3 UC-Secure PAKE with Adaptive Security

The primitive presented above, but using the Cramer-Shoup encryption scheme (as described in Sec-
tion D) is a non-malleable conditionally extractable and equivocable commitment. We now sketch
how to use this new primitive in order to construct the first efficient adaptively-secure password-
authenticated key exchange protocol in the UC framework with erasures. For lack of space, all the
details can be found in Appendix E. The passwords are not known at the beginning of the simulation:
S will manage to correct the errors (thanks to the equivocability) but without erasures there would
remain clues on how the computations were held, which would give indications on the passwords used.

Our protocol is based on that of Gennaro and Lindell [22]. At a high level, the players in the
KOY/GL protocol exchange CCA-secure encryptions of the password, under the public-key found in
the common reference string, which are essentially commitments of the password. Then, they compute
the session key by combining smooth projective hashes of the two password/ciphertext pairs. The
security of this protocol relies on the properties of smoothness and pseudo-randomness of the smooth
projective hash function. But as noted by Canetti et al in [13], the KOY/GL protocol is not known
to achieve UC security: the main issue is that the ideal-model simulator must be able to extract the
password used by the adversary before playing, which is impossible if the simulator is the initiator
(on behalf of the client), leading to such situation in which the simulator is stuck with an incorrect
ciphertext and will not be able to predict the value of the session key.

To overcome this problem, the authors of [13] made the client send a pre-flow which also contains
an encryption of the password. The server then sends its own encryption, and finally the client sends
another encryption, as well as a zero-knowledge proof showing that both ciphertexts are consistent and
encrypt the same password. This time the simulator, playing as the client or the server, is able to use
the correct password, recovered from the encrypted value sent earlier by the other party. The pre-flow
is never used in the remaining of the protocol, hence the simulator can send a fake one, and simulate
the zero-knowledge proof.

Unfortunately, the modification above does not seem to work when dealing with adaptive adver-
saries, which is the case in which we are interested. This is because the simulator cannot correctly open
the commitment when the adversary corrupts the client after the pre-flow has been sent. A similar
remark applies to the case in which the server gets corrupted after sending its first message. As a
result, in addition to being extractable, the commitment scheme also needs to be equivocable for the
simulator to be able to provide a consistent view to the adversary. Since the use of the equivocable
and extractable commitment schemes also seems to solve the problem of proving the original Gennaro-
Lindell protocol secure in the UC model, we opted to use that protocol as the starting point of our
protocol.

These remarks are indeed enough (along with minor modifications) to obtain adaptive security.
Thus, our solution essentially consists in using our non-malleable extractable and equivocable commit-
ment scheme in the Gennaro-Lindell protocol when computing the first two flows. As presented in the
previous subsections, extractability may be conditional: We include this condition in the language of
the smooth hash function (note that the projected keys sent do not leak any information about the
password). Additional technical modifications were also needed to make things work and can be found
in Appendix E.
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A Formal Definitions for Smooth Projective Hash Functions

As defined in [22], a family of smooth projective hash functions, for a language Lpk,aux ⊂ X, onto
the set G, based on a labeled encryption scheme with public key pk or on a commitment scheme with
public parameters pk consists of four algorithms and is denoted by HASH(pk) = (HashKG,ProjKG,
Hash,ProjHash). Note that X is the range of either the encryption or commitment algorithm.

The probabilistic key-generation algorithm produces hash keys via hk
$
← HashKG(pk, aux). The key

projection algorithm produces projected hash keys via hp = ProjKG(hk; pk, aux, c), where c is either a
ciphertext or a commitment in X. The hashing algorithm Hash computes, on c ∈ X, the hash value
g = Hash(hk; pk, aux, c) ∈ G, using the hash key hk. Finally, the projected hashing algorithm ProjHash

computes, on c ∈ X, the hash value g = ProjHash(hp; pk, aux, c;w) ∈ G, using the projected hash
key hp and a witness w of the fact that c ∈ Lpk,aux.

We now recall the three properties of a smooth hash system.

Correctness. Let c ∈ Lpk,aux and w a witness of this membership. Then, for all hash keys and pro-

jected hash keys hk
$
← HashKG(pk, aux) and hp = ProjKG(hk; pk, aux, c), then Hash(hk; pk, aux, c) =

ProjHash(hp; pk, aux, c;w).

Smoothness. For every c which is not in Lpk,aux, the hash value g = Hash(hk; pk, aux, c) is statistically
close to uniform and independent of the values hp, pk, aux and c: for uniformly-chosen hash key hk,
the two distributions are statistically indistinguishable:

{pk, aux, c, hp = ProjKG(hk; pk, aux, c), g = Hash(hk; pk, aux, c)}

{pk, aux, c, hp = ProjKG(hk; pk, aux, c), g
$
← G}

Pseudorandomness. If c ∈ Lpk,aux, then without a witness w of this membership, the hash value
g = Hash(hk; pk, aux, c)} is computationally indistinguishable from random: for uniformly-chosen hash
key hk, the following two distributions are computationally indistinguishable:

{pk, aux, c, hp = ProjKG(hk; pk, aux, c), g = Hash(hk; pk, aux, c)}

{pk, aux, c, hp = ProjKG(hk; pk, aux, c), g
$
← G}

Let Lpk,aux be such that it is hard to distinguish a random element in Lpk,aux from a random
element not in Lpk,aux. Gennaro and Lindell formalized the latter property by showing in [22] that the
two following experiments are indistinguishable:

Expt-Hash(D): Let D be a adversary that is given access to two oracles: Ω and Hash. The first oracle
receives an empty input and returns x ∈ Lpk,aux chosen according to the distribution of Lpk,aux. The
Hash oracle receives an input x. If x was not previously outputted by Ω, it outputs nothing. Otherwise,
it chooses a key hk and returns the pair (ProjKG(hk; pk, aux, x),Hash(hk; pk, aux, x)). The output of
the experiment is whatever M outputs.
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Expt-Unif(D): This experiment is defined exactly as above except that the Hash oracle is replaced by
the following Unif oracle. On input x, if x was not previously outputted by Ω, it outputs nothing.
Otherwise, it chooses a key hk and a random element g and returns the pair (ProjKG(hk; pk, aux, x), g).
The output of the experiment is whatever M outputs.

In the case where the language Lpk,aux is associated with a labeled encryption scheme, we rename
the oracle Ω to Enc. In the case where the language Lpk,aux is associated with a commitment scheme,
we rename the oracle Ω to Commit.

B Our Smooth Projective Hash Functions: Proofs of Section 3

In this appendix, we prove the properties of the smooth projective hash functions on conjunctions and
disjunctions of languages.

B.1 Disjunction

We first deal with L = L1 ∪ L2, and study the additional information provided by the projected key,
which contains hp1 and hp2, but also hp∆ = Hash1(hk1; ρ, aux, x) ⊕ Hash2(hk2; ρ, aux, x). Since both
SHS1 and SHS2 are smooth projective hash functions, the pseudo-randomness property for each of
them (or even the smoothness, if x does not lie in one of the languages) guarantees that the pairs
(hpi,Hashi(hki; ρ, aux, x)) are (statistically or computationally) indistinguishable from (hpi, gi). As a
consequence, one easily gets that the tuple (hp1, hp2,Hash1(hk1; ρ, aux, x),Hash2(hk2; ρ, aux, x)) is (sta-
tistically or computationally) indistinguishable from (hp1, hp2, g1, g2), where g1 and g2 are independent.
This a fortiori implies that the tuple (hp1, hp2,Hash1(hk1; ρ, aux, x)⊕Hash2(hk2; ρ, aux, x)) is (statis-
tically or computationally) indistinguishable from (hp1, hp2, g): the element hp∆ does not provide any
additional information.

Efficient Hashing from Key. Given any element x ∈ X and a key hk, it is possible to efficiently
compute HashL(hk; ρ, aux, x).

Proof. This follows from the efficient hashings of the two underlying smooth projective hash functions,
and namely SHS1, since HashL(hk; ρ, aux, x) = Hash1(hk1; ρ, aux, x).

Efficient Hashing from Projected Key. Given an element x ∈ L, a witness w of this membership,
and the projected key hp = ProjKGL(hk; ρ, aux, x), it is possible to efficiently compute the projected
hash value ProjHashL(hp; ρ, aux, x,w) = HashL(hk; ρ, aux, x).

Proof. If x ∈ L1, then,

HashL(hk; ρ, aux, x) = Hash1(hk1; ρ, aux, x)

= ProjHash1(hp1; ρ, aux, x,w) = ProjHashL(hp; ρ, aux, x,w),

which can be computed efficiently since SHS1 is a smooth projective hash function. If x ∈ L2, then,

HashL(hk; ρ, aux, x) = Hash1(hk1; ρ, aux, x)

= ProjHash1(hp1; ρ, aux, x,w) = hp∆ ⊖ ProjHash2(hp2; ρ, aux, x,w),

which can be computed efficiently since SHS2 is a smooth projective hash function.

Smoothness. For each element x ∈ X \ L, HashL(hk; ρ, aux, x) is uniformly distributed, given the
projected key.
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Proof. Consider x /∈ L. Then, x /∈ L1 and x /∈ L2. If hk = (hk1, hk2) is a random key, and hp =
(hp1, hp2, hp∆) the corresponding projected key, then the above analysis showed the statistical in-
distinguishability between (hp1, hp2,Hash1(hk1; ρ, aux, x),Hash2(hk2; ρ, aux, x)) and (hp1, hp2, g1, g2),
where g1 and g2 are random and independent elements. This means the statistical indistinguishability
between the tuples (hp1, hp2, hp∆,Hash1(hk1; ρ, aux, x)) and (hp1, hp2, g1, g2). As a consequence, the
tuple (hp,HashL(hk; ρ, aux, x)) is statistically indistinguishable from (hp, g), which is the definition of
the smoothness for the new system.

Pseudo-Randomness. For each element x ∈ L, the value HashL(hk; ρ, aux, x) is computationally
indistinguishable from uniform, given the projected key.

Proof. Exactly the same analysis as in the previous paragraph can be done, but with computational
indistinguishability when x ∈ L1 or x ∈ L2. Hence one gets that the tuple (hp,HashL(hk; ρ, aux, x))
is computationally indistinguishable from (hp, g), which is the definition of the pseudo-randomness for
the new system.

B.2 Conjunction

The case of L = L1 ∩L2, can be dealt as above: (hp1, hp2,Hash1(hk1; ρ, aux, x)⊕Hash2(hk2; ρ, aux, x))
is statistically (if x 6∈ L1 or x 6∈ L2) or computationally (if x ∈ L1 ∩ L2) indistinguishable from the
tuple (hp1, hp2, g).

B.3 Preservation of the Uniformity and Independence Properties.

If the two underlying smooth hash systems verify 1-uniformity (resp. 2-uniformity), then the smooth
hash system for conjunction or disjunction verifies these properties. If the two underlying smooth hash
systems verify 1-independence (resp. 2-independence), then the smooth hash system for conjunction
verifies these properties. We insist on the fact that independence does not propagate to disjunction,
since the hash value (that needs both aux and x) is included in the projected key.

Proof. We only prove the result for 1-uniformity for disjunction (the proof is the same in the other cases
—excepted independence for disjunction, where the result does not hold). Then, if (ρ, aux) are the pa-
rameters of the languages and x and x′ belong to L, D1,ρ,aux,x ≈ D1,ρ,aux,x′ and D2,ρ,aux,x ≈ D2,ρ,aux,x′ .
Due to the form of hp, this ensures that the first two element of hp are indistinguishable. We now have
to consider the third part. Without loss of generality, we can suppose that x ∈ L1. Then, due to the
pseudo-randomness of the first smooth-hash, the value Hash1(hk1; ρ, aux, x) is computationally indistin-
guishable from uniform. This is at least the same for the value Hash2(hk2; ρ, aux, x). Since the projected
keys depend on independent random values and languages, both parts of the ⊕ are independent: the
value HashL(hkL; ρ, aux, x) is then indistinguishable from uniform. As a result, Dρ,aux,x ≈ Dρ,aux,x′.

C Proofs for Commitment in Section 5

Extractability. The extraction key is sk, the ElGamal decryption key (or the Cramer-Shoup one in
the non-malleable version of the primitive, also used for the ElGamal decryption). First, the simulator
tries to decrypt all the b

i,δ
[j] into x

i,δ
[j] and aborts if one of them is not either 0 or 1. It then builds

up the x
i,δ

, and checks whether a
i

= gx
i,0 or a

i
= gx

i,1y
i
, which makes it recover πi (unless none or

both are satisfied). This extraction only fails in three cases:

– First, if the ciphertexts do not encrypt 0 or 1;

– Second, if a
i

satisfies none of the equalities;

– Third, if a
i
satisfies both equalities.
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The two first reasons will be excluded in the language L, while the third one would break the
binding property of the Pedersen commitment, which leads to the discrete logarithm of some y

i
in base

g. It thus happens only with negligible probability.

Equivocability. Note that, with the knowledge of the discrete logarithms of (y1 , . . . , ym), one is able
to compute, for all i ∈ {1, . . . ,m}, both x

i,0 and x
i,1 . The equivocation thus consists in computing, for

all i, an encryption of both x
i,0 and x

i,1 (and not that of 0). Provided one does not erase any random,
this allows one to change its mind and open each commitment on any πi (0 or 1).

We now prove that committing to all the bit-string π in a unique commitment does not change the
view of an adversary. The proof is based on a Left-or-Right hybrid argument, see [4]. We suppose the
existence of an oracle answering with either E(gx) or E(g0) when provided with gx (and g0 is implicitly
given). We then define hybrid games in which the encryptions for x

i,πi
[j] in the commitment are

computed with the help of this oracle. The first hybrid game, in which the oracle always encrypts g0,
is equivalent to the real computation, where only one bit-string is committed (perfectly binding).
Similarly, the last one, in which it always encrypts gx, is equivalent to the simulation, where all the
bit-strings are committed (equivocable).

G1a G1−b = G2−a G2−b = G3−a Gmn−b

1 g
x
1,π1

[1]
g

x
1,π1

[1]
g

x
1,π1

[1]

1 1 g
x
1,π1

[2]
g

x
1,π1

[2]

...
...

... · · ·
...

1 1 1 gx
m,πm

[n]

←→ ←→ ←→
Advcpa(E) Advcpa(E) Advcpa(E)

Hiding. This property simply follows from the equivocability of the commitment.

Binding. First suppose that we do not know the discrete logarithms of (y1, . . . , ym) in base g and that
the adversary has managed to send a commitment that can be opened on π and on π′, then, for some
bit i = 1, . . . ,m, πi 6= π′

i, and the adversary is able to give us xi 6= x′

i such that gxiyπi = gx′

iyπ′

i . This
event thus boils down to breaking the discrete logarithm problem, which happens only with negligible
probability. This means that if equivocability is not used, the commitment is (computationally) binding,
under the discrete logarithm problem.

Now, since a real commitment (with a zero encryption) and an equivocable commitment (with no
zero encryption) are indistinguishable for an adversary, the view of equivocable commitments does not
help the adversary to break the binding property, or otherwise it would break the IND-CPA property
of the underlying encryption scheme.

D A Non-Malleable Conditionally-Extractable Equivocable Commitment

In this section, we show how to enhance the previous commitment schemes as described in Section 5
with non-malleability: briefly, one simply needs to extend the ElGamal commitment to the labeled
Cramer-Shoup one together with one-time signatures. As before, if b is a bit, we denote its complement
by b (i.e., b = 1− b). We furthermore denote by x[i] the ith bit of the bit-string x.

D.1 Non-Malleability

Non-malleability is a usual requirement for encryption schemes or commitments [22]. We thus now
aim at achieving this property. We thus use labeled Cramer-Shoup encryption instead of ElGamal,
and we add a one-time signature. Using the results of Dodis and Katz [20] for chosen-ciphertext
security of multiple encryption, one can easily show that the chosen-ciphertext security (and thus
non-malleability) of the combined encryption scheme used to compute a ciphertext vector (b1, . . . , bm)
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follows trivially from the chosen-ciphertext security of the underlying labeled Cramer-Shoup scheme
and strong unforgeability of the one-time signature scheme used to link all the ciphertexts together.

More precisely, if M is defined as before, and ℓ is a label, the commitment comCSℓ
pk(M) is obtained

as follows. First, the user generates a key pair (VK,SK) for a one-time signature scheme. Then, it
computes the following values, with ℓ′ = ℓ ◦VK:

∀i bi = CS+
pk

ℓ′
(Mi · 2

i−1, ri) = (u1,i = gri
1 , u2,i = gri

2 , ei = hrigMi·2i−1
, vi = (cdθi)ri).

Defining b = (b1, . . . , bm), it computes σ = Sign(SK,b). The final commitment is then defined as
comCSℓ′

pk(M) = (b,VK, σ). One can obtain, from any bi, an ElGamal encryption of Mi · 2
i−1: Bi =

EG+
pk(Mi ·2

i−1, ri) = (u1,i = gri

1 , ei = hrigMi·2
i−1

). The homomorphic property of the encryption scheme

allows to obtain B = EG×

pk(g
M ,
∑

ri) = EG+
pk(M,

∑
ri) = (

∏
u1,i,

∏
ei) =

∏
Bi.

In order to define the smooth projective hashing associated with this commitment scheme, we recall
the family of smooth projective hashing functions for the underlying labeled Cramer-Shoup encryption
scheme, as defined in [22].

Let X ′ = G4 and L′ = L(CS+,ρ),(ℓ,M) be the language of the elements C such that C is a valid
Cramer-Shoup encryption of M under the label ℓ (aux is defined as (ℓ,M)). Under the DDH assump-

tion, this is a hard subset membership problem. Denoting by C = CS+
pk

ℓ
(M, r) = (u1, u2, e, v), the

associated smooth hash system is the following:

HashKG((CS
+, ρ), (ℓ,M)) = hk = (γ1 , γ2 , γ3 , γ4)

$
← Zq × Zq × Zq × Zq

ProjKG(hk; (CS
+, ρ), (ℓ,M), C) = hp = (g1)

γ1 (g2)
γ2 (h)γ3 (cdθ)γ4

Hash(hk; (CS
+, ρ), (ℓ,M), C) = (u1)

γ1 (u2)
γ2 (egM )γ3 (v)γ4

ProjHash(hp; (CS
+, ρ), (ℓ,M), C; r) = (hp)r

From these definitions, we consider the language: L(CS+,ρ),(ℓ,0∨1) = L(CS+,ρ),(ℓ,0) ∪L(CS+,ρ),(ℓ,1), where

L(CS+,ρ),(ℓ,0) = {C | ∃r C = CS+
pk

ℓ
(0, r)} and L(CS+,ρ),(ℓ,1) = {C | ∃r C = CS+

pk

ℓ
(1, r)}, and we want

to define a smooth hash system showing that

∀i bi ∈ L(CS+,ρ),(ℓ′,0∨1) and B =
∏

Bi ∈ L(EG×,ρ),gM .

Note that, for all i, the first membership also implies that Bi ∈ L(EG+,ρ),0∨1, since the ElGamal
ciphertexts Bi are extracted from the corresponding Cramer-Shoup ciphertexts bi: It is thus enough to
check the validity of the latter membership to get extractability, which means that one can extract the
committed private key M , associated to the public key gM . The signature has of course to be verified
too, but this can be publicly performed, from VK.

D.2 Equivocability

We here describe our commitment for completeness, but note that it is very similar to the one described
in Section 5.

Description of the Commitment. Our scheme uses the labeled Cramer-Shoup public-key encryption
scheme and a one-time signature scheme, to achieve non-malleability as explained in the previous
section. More precisely, the specific example given in this section relies on the labeled version of the
Cramer-Shoup encryption scheme [15], used for each bit of the bit-string, seen as an extension of the
homomorphic ElGamal encryption [21].

Let the input of the committing algorithm be a bit-string π =
∑m

i=1 πi · 2
i−1 and a label ℓ. The

algorithm works as follows:

– For i = 1, . . . ,m, it chooses a random value xi,πi
=
∑n

j=1 xi,πi
[j] · 2j−1 and sets x

i,πi
= 0. It also

generates a key pair (VK,SK) for a one-time signature scheme.

– For i = 1, . . . ,m, it commits to πi, using the random x
i,πi

: a
i
= comPed(πi, xi,πi

) = g
x

i,πi yπi
i

and
defining a = (a1 , . . . , am).
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– For i = 1, . . . ,m, using ℓ
i
= ℓ ◦ VK ◦ a ◦ i, it computes the Cramer-Shoup commitments (see the

previous section) of x
i,δ

, for δ = 0, 1:

(bi,δ = (b
i,δ

[j])j ,VK, σi,δ) = comCS
ℓ
i

pk
(x

i,δ
), where b

i,δ
[j] = CS+

pk

ℓ
i (x

i,δ
[j] · 2j−1, r

i,δ
[j]).

The computation of the b
i,δ

[j] implicitly defines B
i,δ

[j] = EG+
pk(xi,δ

[j] · 2j−1, r
i,δ

[j]), from which

one can directly extract an encryption B
i,δ

of x
i,δ

: B
i,δ

=
∏

j B
i,δ

[j] = EG+
pk

(x
i,δ

, r
i,δ

), where r
i,δ

is
the sum of the random coins r

i,δ
[j].

The entire random string for this commitment is (where n is the bit-length of the prime order q of
the group G) R = (x1,π1

, (r1,0 [1], r1,1 [1], . . . , r1,0 [n], r1,1 [n]), . . . , xm,πm
, (rm,0 [1], . . . , rm,1 [n]),SK). From

which, all the values r
i,πi

[j] can be erased, letting the opening data (witness of the committed value)
become w = (x1,π1

, (r1,π1
[1], . . . , r1,π1

[n]), . . . , xm,πm
, (rm,πm

[1], . . . , rm,πm
[n])).

The output of the committing algorithm, of the bit-string π, with the label ℓ, and using the
random R, is comρ(ℓ, π;R) = (ℓ,a,b,VK, σ), where a = (a

i
= comPed(πi, xi,πi

))i, b = (b
i,δ

[j] =

CS+
pk

ℓ
i (x

i,δ
[j] · 2j−1, r

i,δ
[j]))i,δ,j , and σ = (σi,δ = Sign(SK, (b

i,δ
[j])j))i,δ.

Properties. This commitment is opened as in Section 5 and the proofs given in Section C still hold.

Furthermore, let us show now that the view of equivocable commitments does not help the adversary
to build a valid but non-extractable commitment (it could be open in any way, and thus extraction
leads to many possibilities) due to the CCA property of the encryption. As in Appendix C, we use a
Left-or-Right argument, see [4]. The “left” oracle, which always provides the player with an encryption
E(g0), is equivalent to the game where no equivocable commitments are available, and the “right”
oracle, which always provides him with E(gx), is equivalent to the game where the commitments are
equivocable. Then, if the adversary was more likely to build a valid but non-extractable commitment in
the latter case than in the former one, one could construct a distinguisher to the Left-or-Right oracles.
However, contrarily to the proof in Appendix C, a decryption oracle is required to check whether the
commitment is valid but non-extractable (whereas in Appendix C the adversary breaks the binding
property with two different opening values).

As a consequence, producing valid but non-extractable commitments is not easier when equivocable
commitments are provided to the adversary, than when no equivocable commitments are provided,
under the IND-CCA security of the encryption scheme. Furthermore, a valid but non-extractable
commitment, with a decryption oracle leads to two different opening values for the commitment, and
thus to an attack against the binding property, which relies on the discrete logarithm problem.

The additional property is non-malleability, and it is guaranteed by the labeled Cramer-Shoup
encryption scheme (IND-CCA) and the one-time signature, as already explained [20]. More precisely,
for the results of Dodis and Katz [20] for chosen-ciphertext security of multiple encryption, one can
easily show that the chosen-ciphertext security of the combined encryption scheme used to compute
ciphertext vector b follows trivially from the chosen-ciphertext security of the underlying labeled
Cramer-Shoup scheme and strong unforgeability of the one-time signature scheme used to link all the
ciphertexts together.

D.3 The Associated Smooth Projective Hash Function

As noticed above, our new commitment scheme is conditionally extractable (one can recover the x
i,δ

’s,
and then π), under the conditions that all the Cramer-Shoup ciphertexts encrypt either 0 or 1, and
the a

i
is a commitment of either 0 or 1, with random x

i,0 or x
i,1 .

Since we want to apply it later to the password-based setting, we want to make the two hash
values (direct computation and the one from the projected key) to be the same if the two parties use
the same password π, but perfectly independent if they use different passwords: using their password
π =

∑m
i=1 πi ·2

i−1, one furthermore wants to ensure that each a
i
is actually a Pedersen commitment of

πi using the encrypted random x
i,πi

, and thus g
x

i,πi = a
i
/yπi

i : the extracted x
i,πi

is really the private

key M related to a given public key gM that is a
i
/yπi

i in our case. Using the same notations as in
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Section D.1, we want to define a smooth hash system showing that, for all i, δ, j, b
i,δ

[j] ∈ L(CS+,ρ),(ℓ
i
,0∨1)

and, for all i, B
i,πi
∈ L(EG×,ρ),(a

i
/yi

πi ), where B
i,πi

=
∏

j B
i,πi

[j]. As before, note that, for all i, δ, j,
the first membership also implies that B

i,δ
[j] ∈ L(EG+,ρ),0∨1 since this value is extracted from the

corresponding value b
i,δ

[j]: It is thus enough to check the validity of the latter.

Combinations of these smooth hashes. Let C be the above commitment of π using label ℓ and
randomness R as defined in Section D.2. We now precise the language Lρ,(ℓ,π), consisting informally of
all the valid commitments “of good shape”:

Lρ,(ℓ,π) =




C

∣∣∣∣∣∣

∃R such that C = comρ(ℓ, π,R)
and ∀i ∀δ ∀j b

i,δ
[j] ∈ L(CS+,ρ),(ℓ

i
,0∨1)

and ∀i B
i,πi
∈ L(EG×,ρ),a

i
/yi

πi






The smooth hash system for this language relies on the smooth hash systems described in the previous
subsection, using the generic construction for conjunctions and disjunctions as described in Section 3.
More precisely, adding the values B

i,δ
easily computed from the values b

i,δ
[j], the commitment can be

converted into a tuple of the following form (we omit the signature part, since it has to be verified
before applying any hashing computation):

(ℓ, a1 , . . . , am , b1,0 [1], b1,1 [1], . . . , b1,0 [n], b1,1 [n], . . . , bm,0 [1], bm,1 [1], . . . , bm,0 [n], bm,1 [n],
B1,0 , B1,1 , . . . , Bm,0 , Bm,1) ∈ {0, 1}

∗ ×Gm × (G4)2mn × (G2)2m.

We denote by Li,δ,j
(CS+,ρ),(ℓ

i
,0∨1)

the language that restricts the value b
i,δ

[j] to be a valid Cramer-Shoup

encryption of either 0 or 1:

{0, 1}∗

︸ ︷︷ ︸
ℓ

× Gm

︸︷︷︸
a

× (G4)2n

︸ ︷︷ ︸
b1,∗ [∗]

× . . . ×( G4

︸︷︷︸
b
i,0 [1]

× G4

︸︷︷︸
b
i,1 [1]

× . . .× L(CS+,ρ),(ℓ
i
,0∨1)︸ ︷︷ ︸

b
i,δ

[j]

× . . .× G4

︸︷︷︸
b
i,0 [n]

× G4

︸︷︷︸
b
i,1 [n]

)

× . . .× (G4)2n

︸ ︷︷ ︸
b1,m [∗]

× (G2)2m

︸ ︷︷ ︸
B

∗,∗

and by Li
(EG×,ρ) the language that restricts the Bi,πi

ElGamal ciphertexts:

if πi = 0, Li
(EG× ,ρ) = {0, 1}∗

︸ ︷︷ ︸
ℓ

× Gm

︸︷︷︸
a

× (G4)2mn

︸ ︷︷ ︸
b
∗,∗ [∗]

× (G2)2

︸ ︷︷ ︸
B1,∗

× . . .× (L(EG×,ρ),a
i︸ ︷︷ ︸

B
i,0

× G2

︸︷︷︸
B

i,1

)× . . . × (G2)2

︸ ︷︷ ︸
Bm,∗

if πi = 1, Li
(EG× ,ρ) = {0, 1}∗

︸ ︷︷ ︸
ℓ

× Gm

︸︷︷︸
a

× (G4)2mn

︸ ︷︷ ︸
b
∗,∗ [∗]

× (G2)2

︸ ︷︷ ︸
B1,∗

× . . .× ( G2

︸︷︷︸
B

i,0

×L(EG×,ρ),a
i
/yi︸ ︷︷ ︸

B
i,1

)× . . .× (G2)2

︸ ︷︷ ︸
Bm,∗

.

Then, our language Lρ,(ℓ,π) is the conjunction of all these languages, where the Li,δ,j
(CS+,ρ),(ℓ

i
,0∨1)

’s are

disjunctions:

Lρ,(ℓ,π) =




⋂

i,δ,j

Li,δ,j
(CS+,ρ),(ℓ

i
,0∨1)



 ∩

(
⋂

i

Li
(EG×,ρ)

)

.

Properties: Uniformity and Independence. With such a commitment and smooth hash function,
it is possible to improve the establishment of a secure channel between two players, from the one
presented Section 4.3. More precisely, two parties can agree on a common key if they both share
a common (low entropy) password π. However, a more involved protocol than the one proposed in
Section 4.3 is needed to achieve all the required properties of a password-authenticated key exchange
protocol, as it will be explained and proven in the next appendix.
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Nevertheless, there may seem to be a leakage of information because of the language that depends
on the password π: the projected key hp seems to contain some information about π, that can be used
in another execution by an adversary. Hence the independence and uniformity notions presented Sec-
tion 3.4, which ensure that hp does not contain any information about π:

– for the languages Li
(EG×,ρ), the smooth hash functions satisfy the 2-independence property, since

the projected key for a language L(EG×,ρ),M depends on the public key (and thus ρ) only. One
thus generates one key for each pair (Bi,0 , Bi,1) only, and uses the correct ciphertext according to
actual/wanted πi when evaluating the hash value. But this distinction on πi appears in the com-
putation of the hash value only, that is pseudo-random. The projected key is totally independent
of πi.

– for the languages Li,δ,j
(CS+,ρ),(ℓ

i
,0∨1)

, the smooth hash functions satisfy the 2-uniformity property only,

but not 2-independence. Therefore, the projected key and (aux, ρ) are statistically independent,
but the former depends, in its computation, of the latter. If we want the equivocability property
for the commitment (as needed in the next section), we have to include all the pairs (bi,0 [j], bi,1 [j]),
and not only the b

i,πi
[j], so that we can open later in any way. Because of 2-uniformity instead of

2-independence, we need a key for each element of the pair, and not only one has above.

Estimation of the Complexity. Globally, each operation (commitment, projected key, hashing and
projected hashing) requires O(mn) exponentiations in G, with small constants (at most 16).

Let us first consider the commitment operation, on a m-bit secret π, over a n-bit group G. One has
first to make m Pedersen commitments of one bit (m exponentiations) and then 2mn additive Cramer-
Shoup encryptions (2 exponentiations and 2 multi-exponentiations each, and thus approximately the
cost of 8mn exponentiations).

About the smooth hash function, the hash key generation just consists in generating random
elements in Zq: 8 for each Cramer-Shoup ciphertext, in order to show that they encrypt either 0 or
1, and 2 for each pair of ElGamal ciphertexts, then globally 2m(8n + 1) random elements in Zq. The
projected keys need exponentiations: m(4n+1) multi-exponentiations, and 4mn hash evaluations (one
multi-exponentiation each). Then, globally, the cost of m(8n + 1) exponentiations in G is required
for the projected key. Finally, the hash computations are essentially the same using the hash key or
the projected key, since for the sub-functions, the former consists of one multi-exponentiation and the
latter consists of 1 exponentiation. They both cost m(4n+1) exponentiations, after the multiplications
needed to compute the B

i,πi
, which are negligible.

E A New Adaptively-Secure PAKE Protocol in the UC Framework

E.1 Password-Based Key Exchange and Universal Composability

The Password-Based Key Exchange Functionality. In this section, we present the password-
based key-exchange functionality FpwKE (see Figure 1) first described in [13]. The main idea behind
this functionality is as follows: If neither party is corrupted, then they both end up with the same
uniformly-distributed session key, and the adversary learns nothing about it (except that it was indeed
generated). However, if one party is corrupted, or if the adversary successfully guessed the player’s
password (the session is then marked as compromised), then it is granted the right to fully determine
its session key. Note that as soon as a party is corrupted, the adversary learns its key: There is in fact
nothing lost by allowing it to determine the key.

In addition, the players become aware of a failed attempt of the adversary at guessing a pass-
word. This is modeled by marking the session as interrupted. In this case, the two players are given
independently-chosen random keys.

A session that is nor compromised nor interrupted is called fresh. In such a case, the two parties
receive the same, uniformly distributed session key.

Finally notice that the functionality is not in charge of providing the password(s) to the participants.
The passwords are chosen by the environment which then hands them to the parties as inputs. This
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guarantees security even in the case where two honest players execute the protocol with two different
passwords: This models, for instance, the case where a user mistypes its password. It also implies that
the security is preserved for all password distributions (not necessarily the uniform one) and in all
situations where the password is used in different protocols. Also note that allowing the environment
to choose the passwords guarantees forward secrecy.

The functionality FpwKE is parameterized by a security parameter k. It interacts with an adversary S and a set of
parties P1,. . . ,Pn via the following queries:

– Upon receiving a query (NewSession, sid, Pi , Pj , pw, role) from party Pi:

Send (NewSession, sid, Pi, Pj , role) to S . If this is the first NewSession query, or if this is the second NewSession

query and there is a record (Pj , Pi, pw′), then record (Pi, Pj , pw) and mark this record fresh.

– Upon receiving a query (TestPwd, sid, Pi, pw′) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark the record compromised

and reply to S with “correct guess”. If pw 6= pw′, mark the record interrupted and reply with “wrong guess”.

– Upon receiving a query (NewKey, sid, Pi, sk) from the adversary S:

If there is a record of the form (Pi, Pj , pw), and this is the first NewKey query for Pi, then:

• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk) to player Pi.
• If this record is fresh, and there is a record (Pj , Pi, pw′) with pw′ = pw, and a key sk′ was sent to Pj , and

(Pj , Pi, pw) was fresh at the time, then output (sid, sk′) to Pi.
• In any other case, pick a new random key sk′ of length k and send (sid, sk′) to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Fig. 1. The password-based key-exchange functionality FpwKE

The KOY/GL Protocol. The starting point of our protocol is the password-based key exchange pro-
tocol of Katz, Ostrovsky and Yung [28], generalized by Gennaro and Lindell in [22]. At a high level, the
players in the KOY/GL protocol exchange CCA-secure encryptions of the password, under the public-
key found in the common reference string, which is essentially a commitment of the password. Then,
they compute the session key by combining smooth projective hashes of the two password/ciphertext
pairs. More precisely, each player chooses a hashing key for a smooth projective hash function and
sends the corresponding projected key to the other player. Each player can thus compute the output
of its own hash function with the help of the hashing key, and the output of the other one using the
projected key and its knowledge of the randomness that was used to generate the ciphertext of the
password. All the flows generated by a party are linked together with a one-time signature, generated
in the last flow, but which public key is included in the label of the CCA-secure encryption of the
password.

To understand informally why this protocol is secure, first consider the case in which the adversary
plays a passive role. In this case, the pseudo-randomness property of the smooth hash function ensures
that the value of the session key will be computationally indistinguishable from uniform since the
adversary does not know the randomness that was used to encrypt the password. Now imagine the
case in which the adversary provides the user with an encryption of the wrong password. In this case,
the security of the protocol will rely on the smoothness of the hash functions, which ensures that
the session key will be random and independent of all former communication. Thus, in order to be
successful, the adversary has to generate the encryption of the correct password. To do so, the adversary
could try to copy or modify existing ciphertexts. Since the encryption scheme is CCA-secure, and thus
non-malleable, modifying is not really a possibility. Copying does not help either since either the
label used for encryption will not match (making the session key look random due to the smoothness
property) or the signature will be invalid (in the case where the adversary changes the projection keys
without changing the label and hence the verification key). As a result, the only successful strategy left

22



for the adversary is essentially to guess the password and perform the trivial online dictionary attack,
as desired.

Extending the protocol to the UC Framework (Static Case). As noted by Canetti et al in [13],
the KOY/GL protocol is not known to achieve UC security: the main issue is that the ideal-model
simulator must be able to extract the password used by the adversary. One could think that, since the
simulator has control over the common reference string, it knows all private keys corresponding to the
public keys and can thus decrypt all ciphertexts sent by the adversary and recover its password.

But indeed, this doesn’t not seem to be sufficient. In the case where the adversary begins to play
(i.e. it impersonates the client), everything works well: The simulator decrypts the ciphertext generated
by the adversary and can thus recover the password it has used. If the guess of the adversary is incorrect
(that is, the password is the wrong one), then the smoothness of the hash functions leads to random
independent session keys. Otherwise, if the guess is correct, the execution can continue as an honest
one would do (the simulator has learned which password to use).

However, let’s now suppose that the simulator has to start the game, on behalf of the client. Here,
the simulator needs to send an encryption of the password before having seen anything coming from
the adversary. As described above, it recovers the password used by the adversary as soon as the latter
has sent its value, but this is too late. If it turns out that the guess of the adversary is incorrect,
there is no problem thanks to the smoothness, but otherwise, the simulator is stuck with an incorrect
ciphertext and will not be able to predict the value of the session key.

To overcome this problem, the authors of [13] made the client send a pre-flow which also contains
an encryption of the password. The server then sends its own encryption, and finally the client sends
another encryption (this time the simulator is able to use the correct password, recovered from the value
sent by the adversary), as well as a zero-knowledge proof claiming that both ciphertexts are consistent
and encrypt the same password. The first flow is never used in the remaining of the protocol. This
solves the problem since on the one hand, the simulator is of course able to give a valid proof of a false
statement, and on the other hand, the first flow will never be used afterwards.

E.2 Description of the Protocol

As explained above, Canetti et al. [13] proposed a simple variant of the Gennaro-Lindell methodol-
ogy [22] that is provably secure in the UC framework. Though quite efficient, their protocol is not
known to be secure against adaptive adversaries. The only one PAKE adaptively-secure in the UC
framework was proposed by Barak et al. [3] using general techniques from multi-party computation. It
thus leads to quite inefficient schemes.

In the following, we use our non-malleable conditionally-extractable and equivocable commitment
scheme with an associated smooth projective hash function family, in order to build an efficient PAKE
scheme, adaptively-secure in the common reference string model under standard complexity assump-
tions, in the UC framework.

The complete description of the protocol can be found in Figure 3, whereas an informal sketch is
presented in Figure 2. We use the index I for a value related to the client Alice, and J for a value
related to the server Bob.

Correctness. In an honest execution of the protocol, if the players share the same password (pwI =
pwJ = pw), it is easy to verify that both players will terminate by accepting and computing the same
values for the session key, equal to Hash(hkI; pw, ℓJ, comJ

) + Hash(hkJ; pw, ℓI, comI
).

Security. The intuition behind the security of our protocol is quite simple and builds on that of
Gennaro-Lindell protocol. The key point in order to achieve adaptive security is the use of the commit-
ment, which allows for extraction and equivocation at any moment, thus not requiring the simulator to
be aware of future corruptions. The following theorem, which full proof will be given in Appendix E.3,
states that the protocol is UC-secure. The ideal functionality FpwKE has been presented in Figure 1
and described in Appendix E.1. Since we use the joint state version of the UC theorem, we implicitly
consider the multi-session extension of this functionality. In particular, note that the passwords of the
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Client U Server S

(U1) (VKI, SKI)← SKG

ℓI = J ◦ I ◦ ssid ◦VKI

com
I
= comρ(ℓI, pwI; RI)

(flow-one,com
I
,VKI)

−−−−−−−−−−−−→

(S2) (publicly) checks the validity of com
I

(VKJ, SKJ)← SKG

ℓJ = J ◦ I ◦ ssid ◦ VKJ

hkJ = HashKG(ρ, (ℓI, pwJ), rJ)
com

J
= comρ(ℓJ, pwJ; RJ)

hpJ = ProjKG(hkJ; ρ, (ℓI, pwJ), comI
)

HashJ = Hash(hkJ; ρ, (ℓI, pwJ), comI
)

(flow-two,com
J

,VKJ,hpJ)
←−−−−−−−−−−−−−−− erases hkJ

(U3) (publicly) checks the validity of com
J

hkIHashKG(ρ, (ℓJ, pwI), rI)
hpI = ProjKG(hkI; (ℓJ, pwI), comJ

)
σI = Sign(SKI, (comI

, com
J
, hpI, hpJ))

skI = ProjHash(hpJ; ρ, (ℓI, pwI), comI
;wI)

+ Hash(hkI; ρ, (ℓJ, pwI), comJ
)

erases hkI
(flow-three,σI,hpI)
−−−−−−−−−−−→

(S4) aborts if
Ver(VKI, (comI

, com
J
, hpI, hpJ), σI) = 0

σJ = Sign(SKJ, (comI
, com

J
, hpI, hpJ))

skJ = ProjHash(hpI; ρ, (ℓJ, pwJ), comJ
; wJ)

+ HashJ

outputs (sid, ssid, skJ)
erases everything

(flow-four,σJ)
←−−−−−−−−− sets the session as accepted

(U5) aborts if
Ver(VKJ, (comI

, com
J
, hpI, hpJ), σJ) = 0

outputs (sid, ssid, skI)
erases everything
sets the session as accepted

Fig. 2. Description of the protocol for players (PI, ssid), with index I and password pwI and (PJ, ssid), with index J and
password pwJ. At the end of rounds 1 and 2, the players will erase the part of the random values RI and RJ used in the
commitment which is not needed in the following rounds, keeping only wI and wJ.

players depend on the session considered. For sake of simplicity, we denote them by pwI and pwJ, but
one should implicitly understand pwI,ssid and pwJ,ssid.

Theorem 1. Let com be the non-malleable (conditionally) extractable and equivocable committing
scheme described in Section D, H be a family of smooth hash functions with respect to this com-
mitment, and SIG be a one-time signature scheme. Denote by F̂pwKE the multi-session extension of
the functionality FpwKE of password-based key-exchange, and let FCRS be the ideal functionality that
provides a common reference string (G, pk, (y1 , . . . , ym),Extract) to all parties, where G is a cyclic
group, y1, . . . , ym random elements from this group, pk a public key for the Cramer-Shoup scheme and
Extract a randomness extractor. Then, the above protocol securely realizes F̂pwKE in the FCRS-hybrid
model, in the presence of adaptive adversaries.

E.3 Proof of Theorem 1

Sketch of Proof. In order to prove Theorem 1, we need to construct, for any real-world adversary
A (interacting with real parties running the protocol), an ideal-world adversary S (interacting with
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Common reference string. A tuple (G, pk, (y
1
, . . . , y

m
), Extract), where G is a cyclic group, y

1
, . . . , y

m
random

elements from this group, pk a public key for the Cramer-Shoup scheme, and Extract a randomness extractor.

Protocol steps.

1. When PI is activated with input (NewSession, sid, ssid, I,J, pwI, role), we face two cases: If role = server,
it does nothing. If role = client, it uses SKG to generate a key pair (VKI, SKI) for a one-time sig-
nature scheme, sets the (public) label ℓI = J ◦ I ◦ ssid ◦ VKI, computes com

I
= comρ(ℓI, pwI; RI) and

sends the message (flow-one, com
I
, VKI) to PJ. From this point on, assume that PI is a party ac-

tivated with input (NewSession, sid, ssid, I, J, pwI, client) and that PJ is a party activated with input
(NewSession, sid, ssid, I, J, pwJ, server). Recall that PI erases nearly all the randoms (in RI) used in the com-
putation of com

I
(see Section D). More precisely, it only keeps from RI the values present in the witness wI

that will be used in the computation of the smooth hash function.

2. When PJ receives a message (flow-one, com
I
, VKI), it (publicly) checks that com

I
is well constructed. Otherwise,

it aborts. Then it uses SKG to generate a key pair (VKJ, SKJ) for a one-time signature scheme, and HashKG

to generate a key hkJ for the smooth projective hash function family H with respect to ρ. It sets the (public)
label ℓJ = J ◦ I ◦ ssid ◦VKJ and computes the projection hpJ = ProjKG(hkJ; ρ, (ℓI, pwJ), comI

). Next it computes
com

J
= comρ(ℓJ, pwJ; RJ) and sends the message (flow-two, com

J
, VKJ, hpJ) to PI. It finally computes HashJ =

Hash(hkJ; ρ, (ℓI, pwJ), comI
) and erases hkJ and the values of RJ that are not present in the witness wJ.

3. When PI receives a message (flow-two, com
J
, VKJ, hpJ), it (publicly) checks that com

J
is well constructed.

Otherwise, it aborts. Then it uses HashKG to generate a key hkI for the smooth projective hash function
family H with respect to pk and computes the projection hpI = ProjKG(hkI; ρ, (ℓJ, pwI), comJ

). Next it computes
σI = Sign(SKI, (comI

, com
J
, hpI, hpJ)) and sends the message (flow-three, σI, hpI) to PJ. It computes the session

key skI = ProjHash(hpJ; ρ, (ℓI, pwI), comI
;wI) + Hash(hkI; ρ, (ℓJ, pwI), comJ

), and erases all private data except
pwI and skI, keeping all public data in memory.

4. When PJ receives a message (flow-three, σI, hpI), it checks that Ver(VKI, (comI
, com

J
, hpJ), σI) = 1. If

not, it aborts the session outputting nothing. Otherwise, it computes σJ = Sign(SKJ, (comI
, com

J
, hpI, hpJ))

and sends the message (flow-four, σJ) to PI. Then, it computes the session key skJ = HashJ +
ProjHashI(hpI; ρ, (ℓJ, pwJ), comJ

;wJ), outputs (sid, ssid, skJ), sets the session as accepted, which means in par-
ticular that it erases everything except pwJ and skJ and then terminates (i.e., publishes the session key).

5. When PI receives a message (flow-four, σJ), it checks that Ver(VKJ, (comI
, com

J
, hpI, hpJ), σJ) = 1. If not, it

aborts the session outputting nothing. Otherwise, it terminates the session (i.e., publishes the session key).

Fig. 3. Description of the protocol for two players Alice and Bob. Alice is the client PI, with index I and password pwI,
and Bob is the server PJ, with index J and password pwJ.

dummy parties and the functionality FpwKE) such that no environment Z can distinguish between an
execution with A in the real world and S in the ideal world with non-negligible probability.

We first describe two hybrid queries that are going to be used in the games. The GoodPwd query
checks whether the password of some player is the one we have in mind or not. The SamePwd query
checks if the players share the same password, without disclosing it. In some games the simulator has
actually access to the players. In such a case, a GoodPwd (or a SamePwd) query can be easily implemented
by letting the simulator look at the passwords owned by the oracles. When the players are entirely
simulated, S will replace the queries above with TestPwd and NewKey queries.

We say that a flow is oracle-generated if it was sent by an honest player and arrives without any
alteration to the player it was meant to. We say it is non-oracle-generated otherwise, that is either if it
was sent by an honest player and modified by the adversary, or if it was sent by a corrupted player or
a player impersonated by the adversary (more generally denoted by attacked player, that is, a player
whose password is known to the adversary).

We incrementally define a sequence of games starting from the one describing a real execution of
the protocol and ending up with game G8 which we prove to be indistinguishable with respect to the
ideal experiment. For the sake of clarity, we will use the following notation: the client is Alice (hence
She), the server is Bob (hence He), and we use It for the adversary A and the simulator S.

– G0 is the real game.
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– From G1, S is allowed to program the CRS.

– From G2, S always extracts the password committed to by the adversary and aborts when the
extraction fails due to the commitment being valid for two or more passwords. This would lead to
an attack against the binding property of the commitment scheme.

– From G3, S simulates all the commitments and makes them equivocable granted the simulated
CRS. The commitment remains binding and hiding for the environment and the adversary, which
follows from the CCA2-property of the encryption. As a side note, the knowledge of the passwords
is not necessary anymore for the simulation of the committing step.

– From G4, S simulates the honest client without using her password anymore (except for the hybrid
queries). She is given a random key in (U3) in the case where flow-two was oracle-generated and
the server was not corrupted. If the server was corrupted, S recovers his password pwJ and makes
a call to the GoodPwd functionality for Alice. If it is incorrect, Alice is also given a random key, but
if it is correct, the key is computed honestly using that password. If no password is recovered, Alice
is also given a random key. Alice then aborts in (U5) if the signature of the server is invalid. If the
server was corrupted before (U5), S recovers his password and does exactly the same as previously
described. This is indistinguishable from the former game due to the pseudo-randomness of the
hash function.

– From G5, in the case where flow-two was not oracle-generated, S extracts pwJ from com
J

and
proceeds as described in G4: it asks a GoodPwd query for Alice and provides her with either a
random value or a value computed honestly for skI. Similarly, if no password is recovered, Alice is
given a random key. Alice aborts in (U5) if the signature of the server is invalid. A corruption of
the server before (U5) is dealt with as in G4. This is indistinguishable from the former game due
to the smoothness of the hash function.

– From G6, S simulates the server without using his password anymore. It aborts if the signature
received from the client is invalid. Otherwise, the server is given a random key in (S4) in the case
where flow-one was oracle-generated and the client was not corrupted. A corruption of the client
before (S4) is dealt with as in G4: S asks a GoodPwd query for Bob and provides him with either
a random value or a value computed honestly for skJ (if no password is recovered, Bob is given
a random key). This is indistinguishable from the former game due to the pseudo-randomness of
the hash function.

– From G7, in the case where flow-one was not oracle-generated, S extracts pwI from com
I

and
proceeds as described in G4: it asks a GoodPwd query for Bob and provides him with either a
random value or a value computed honestly for skJ (if no password is recovered, Bob is given a
random key). This is indistinguishable from the former game due to the smoothness of the hash
function.

– Finally, the hybrid queries are replaced by the real ones in G8, which is shown to be indistinguish-
able to the ideal-world experiment.

Description of the simulator The description of our simulator is based on that of [13]. When
initialized with security parameter k, the simulator first runs the key-generation algorithm of the
encryption scheme E , thus obtaining a pair (sk, pk). It also chooses at random m elements (y1, . . . , ym)
in G and a randomness extractor Extract. It then initializes the real-world adversary A, giving it
(pk, (y1, . . . , ym),Extract) as common reference string.

From this moment on, the simulator interacts with the environment Z, the functionality FpwKE and
its subroutine A. For the most part, this interaction is implemented by the simulator S just following
the protocol on behalf of all the honest players. The main difference between the simulated players and
the real honest players is that S does not engage on a particular password on their behalf. However,
if A modifies a flow-one or a flow-two message that is delivered to player P in session ssid, then
S decrypts that ciphertext (using sk) and uses the recovered message pw in a TestPwd query to the
functionality. If this is a correct guess, then S uses this password on behalf of P , and proceeds with
the simulation. More details follow.
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Corruptions. Since we consider adaptive corruptions, that can occur at any moment during the
execution of the protocol, our simulator, given the password of a player, needs to be able to provide
the adversary with an internal state consistent with any data already sent (without the knowledge of
the player’s password at that time). To handle such corruptions, the key point relies in the equivocable
property of our commitment. More precisely, instead of committing to a particular password, the
simulator commits to all passwords, being able in the end to open to any of them. In a nutshell,
committing to all passwords means to simulate the commitment in such a way that encryptions of
all xi, corresponding to all pwi, are sent instead of encryptions of 0 (see the “equivocability” part
of Section D for details). Recall that the values hk and hp do not depend on the password, so that it
does not engage the player on any of them.

Session Initialization. When receiving a message (NewSession, sid, ssid, I, J, role) from FpwKE, S
starts simulating a new session of the protocol for party PI, peer PJ, session identifier ssid, and common
reference string (pk, (y1, . . . , ym),Extract). We denote this session by (PI, ssid). If role = client, then
S generates a flow-one message by committing to all the passwords, choosing a key pair (SKI,VKI)
for a one-time signature scheme. It gives this message to A on behalf of (PI, ssid).

If (PI, ssid) gets corrupted at this stage, then S recovers his password pwI and is able to open his
commitment in such a way that it is a commitment on pwI. It can thus provide A with consistent data.

Protocol Steps. Assume that A sends a message m to an active session of some party. If this
message is formatted differently from what is expected by the session, then S aborts that session and
notifies A. Otherwise, we have the following cases (where we denote a party in the client role as PI

and a party in the server role as PJ):

1. Assume that the session (PJ, ssid) receives a message m = (flow-one, com
I
,VKI). Then, PJ is

necessarily a server and m is the first message received by PJ. If com
I

is not equal to any com-
mitment that was generated by S for a flow-one message, S uses its secret key sk to decrypt
the ciphertext and obtain pwI or nothing. Obtaining nothing is considered similar to an invalid
password below due to the construction of the smooth hash function related to the commitment.
When the extraction succeeds, because of the binding property, only one pwI is possible (on-line
dictionary attack), then S makes a call (TestPwd, sid, ssid, J, pwI) to the functionality. If this is a
correct guess, then S sets the password of this server session to pwI, otherwise, this is an invalid
password. In both cases, S produces a commitment comJ on all the passwords (it makes use of the
equivocable property), chooses a key pair (SKJ,VKJ) for a one-time signature scheme, runs the
key generation algorithms of the smooth hash function on com

I
to produce (hkJ, hpJ) and sends

the flow-two message (com
J
,VKJ, hpJ) to A on behalf of (PJ, ssid).

If the sender (PI, ssid) of this message, or if (PJ, ssid) gets corrupted at the end of this step,
S handles this corruption just as when this player gets corrupted at the end of the initialization
step. Note in addition that S is able to compute and give to A a correct value for HashJ, the
projected key being independent of the password (see discussion in Section D.3).

2. Assume that a session (PI; ssid) receives a message m = (flow-two, com
J
,VKJ, hpJ). Then, PI must

be a client who sent a flow-one message and is now waiting for the response. We say that (PJ, ssid)
is a peer session to (PI, ssid

′) if ssid = ssid′, if session (PI, ssid) has peer PJ, session (PJ, ssid) has
peer PI, and these two sessions have opposite roles (client /server). If the pair (com

J
,VKJ) is not

equal to the pair (com
J
,VKJ) that was generated by S for a flow-one message from peer session

(PJ, ssid) (or if no such ciphertext was generated yet, or no such peer session exists) then S uses its
secret key sk to compute pwJ, or nothing which is considered similar to an invalid password below
(as before). Also note that S can recover pwJ if (PJ, ssid) has been corrupted after having sent
its commitment. In case of recovery of pwJ, S then makes a call (TestPwd, sid, ssid, I, pwJ) to the
functionality. If this is a correct guess, S sets the password of this client session to pwJ, otherwise,
this is an invalid password.
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Then, it runs the key generation algorithms of the smooth hash function on com
J

to produce
(hkI, hpI), as well as the signing algorithm with SKI to compute σI and sends the flow-three

message (σI, hpI) to A on behalf of (PI, ssid).

Note that in the former case (correct password guess), S computes honestly the session key using
password pwJ, without issuing it yet. Otherwise, PI is provided with a key chosen at random.

If (PJ, ssid) gets corrupted at the end of this step, S handles this corruption just as when this
player gets corrupted at the end of the previous step.

If it is (PI, ssid) that gets corrupted, we face two cases. If a correct password guess occurred in
this step, then S has computed everything honestly and can provide every value to A (recall that
the projection key does not depend on the password). Otherwise, if S has set the session key at
random, recall that it has not sent anything yet, so that the adversary totally ignores the values
computed. S then recovers the password of (PI, ssid) and is able to compute the data and give
them to the adversary.

3. Assume that a session (PJ, ssid) receives a message m = (flow-three, σI, hpI). Then, (PJ, ssid)
must be a server who sent a flow-two message and is now waiting for the response. S aborts if the
signature σI is not valid. If flow-one was not oracle-generated, then S has extracted the password
pwI from the commitment (or failed to extract it). Similarly, if the peer session PI (exists and) was
corrupted sooner in the protocol, then S knows its password pwI (which was in particular used
in the commitment). In both cases, the simulator makes a call (TestPwd, sid, ssid, J, pwI) to the
functionality to check the compatibility of the two passwords. In case of a correct answer, S sets
the password of this server session to pwI, and computes honestly the session key using password
pwI. Otherwise, PJ is provided with a key chosen at random.

Next, S runs signing algorithm with SKJ to compute σJ and sends this flow-four message to A
on behalf of (PJ, ssid).

S handles a corruption of (PI, ssid) just as it did at the end of the former step. And recall that no
more corruption of (PJ, ssid) can occur since it claimed its session as “completed” and erased its
data.

4. Assume that a session (PI, ssid) receives a message m = (flow-four, σJ). (PI, ssid) must then be a
client who sent a flow-three message and is now waiting for the response. S aborts if the signature
σJ is not valid. If flow-two was not oracle-generated, then S has extracted the password pwJ from
the commitment (or failed to). Similarly, if the peer session PJ (exists and) was corrupted sooner
in the protocol, then S knows its password pwJ (which was in particular used in the commitment).
In both cases, the simulator makes a call (TestPwd, sid, ssid, J, pwJ) to the functionality to check
the compatibility of the two passwords. In case of a correct answer, S sets the password of this
client session to pwJ and computes honestly its session key. Otherwise, it sets its session key at
random. Finally note that no corruption can occur at this stage.

If a session aborts or terminates, S reports it to A. If the session terminates with a session key sk,
then S makes a NewKey call to FpwKE, specifying the session key. But recall that unless the session
is compromised or corrupted, FpwKE will ignore the key specified by S, and thus we do not have to
bother with the key in these cases.

Description of the games We now provide the complete proof by a sequence of games. The detailed
proof of some gaps are provided in Appendix F.

Game G0: G0 is the real game.

Game G1: From this game on, we allow the simulator to program the common reference string,
allowing it to know the trapdoors for extractability and equivocability.

Game G2: This game is almost the same as the previous one. The only difference is that S always tries
to extract the password committed to by the adversary (without taking advantage of the knowledge
of this password for the moment) whenever the latter attempts to impersonate one of the parties.

28



We allow the simulator to abort whenever this extraction fails because the adversary has generated a
commitment which is valid for two or more passwords. Due to the binding property of the commitment
(see Section D), the probability that the adversary achieves this is negligible. Note that the extraction
can also fail if the values sent were not encryptions of 0 or 1 but we do not abort in this case; For the
moment we still assume that the simulator knows the passwords of the players. In the following games,
when it will not have this knowledge anymore, we will show that the smooth hashes will be random
so that this failure will have no bad consequences. This shows that G2 and G1 are indistinguishable.

Game G3: In this game, S still knows the passwords of both players, but it starts simulating the
commitments by committing to all possible passwords (in order to be able to equivocate afterwards,
see Section D for details). Note that since the commitment is hiding, this does not change the view
of an environment, and that the commitment remains binding (even under access to equivocable
commitments —see Section D and Appendix C). Also note that the generation of the projected keys
for the smooth hash function (see Section D) is done without requiring the knowledge of the password.
Hence, G3 and G2 are indistinguishable.

As a side note, we have just proven that the knowledge of the passwords is not necessary anymore
for steps (U1) and (S2). If a player gets corrupted, the simulator recovers its password and is able to
equivocate the commitment and thus provide the adversary with consistent data (since the projected
key for the smooth hash function does not depend on the password committed).

Game G4: In this game, we suppose that flow-one was oracle-generated. We are now at be-
ginning of round (U3) and we want to simulate the (honest) client. We suppose that the simu-
lator still knows the password of the server but not that of the client anymore. Let’s first con-
sider the case in which Alice received a flow-two which was oracle-generated. In such a case, the
simulator chooses a random value Hash(hkI; ρ, (ℓJ, pwI), comJ). Then, if the server remains honest
until (S4), the simulator asks a SamePwd query to the functionality. If the answer is yes (that is
pwI = pwJ), it gives Bob the same random value for ProjHash(hpI; ρ, (ℓJ, pwJ), comJ

;wJ) and com-
putes honestly Hash(hkJ; ρ, (ℓI, pwJ), comI

), thus completely determining skJ. Otherwise, it computes
correctly the entire key. If both remain honest until (U5), then, if they have the same password,
S sets ProjHash(hpJ; ρ, (ℓI, pwI), comI

;wI) = Hash(hkJ; ρ, (ℓI, pwJ), comI
). Otherwise, S sets skI at ran-

dom.

The description of the corruptions and the proof of the indistinguishability between G4 and G3

can be found in Appendix F.1 (it follows from the pseudo-randomness of the smooth hash function).

Game G5: In this game, we still suppose that flow-one was oracle-generated, but we now consider
the case in which flow-two was non-oracle-generated. We are now at beginning of round (U3) and we
want to simulate the (honest) client. The simulator still knows the password of the server.

comJ , VKJ or hkJ has been generated by the adversary. If comJ is a replay, then the adversary could
not modify VKJ, because of the label used for com

J
, and then the signature verification will fail. com

J

is thus necessarily a new commitment. Recall that from G2, the simulator extracts the password from
the commitment of the server, with the help of the secret key. The extraction can fail with negligible
probability if S recovers two different passwords (thanks to the binding property, see G2 and G3). In
such a case, the simulator aborts the game. It can also happen that the extraction issues no password
or that it fails if the values sent were not encryptions of 0 or 1.

Then, if it has recovered a password, the simulator asks a GoodPwd query to the functionality. If it
is correct, then it computes honestly the session key of the client. Otherwise, or if it has not recovered
any password in the extraction, it sets the value Hash(hkI; ρ, (ℓJ, pwI), comJ

) at random (the entire
key skI will be set in round (U5)). Note that the smooth hash value will necessarily be random by
construction if the values sent in the commitment were not encryptions of 0 or 1.

The corruptions which can follow this step are dealt with as in the former game (recall that the
projected keys sent do not depend on the password). Due to the smoothness of the hash function, this
game is indistinguishable from the previous one (see Appendix F.2).
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Game G6: In this game, we deal with the case in which all flows received by the client up to (S4)
were oracle-generated. We are now at beginning of round (S4) and we want to simulate the (honest)
server. We suppose that the simulator doesn’t know any passwords anymore. Let’s first consider the
case in which flow-three was oracle-generated. Note that flow-one must have been oracle-generated
too, otherwise the signature σ1 would have been rejected.

Then, the simulator asks a SamePwd query to the functionality. If it is correct, it sets the value for
ProjHash(hpI; ρ, (ℓJ, pwJ), comJ

;wJ) equal to Hash(hkI; ρ, (ℓJ, pwJ), comJ
), and it also sets the value for

Hash(hkJ; ρ, (ℓI, pwJ), comI
) at random. Otherwise, it sets these values at random.

In (U5), if the passwords of Alice and Bob are the same and both remain honest, we set the
value ProjHash(hpJ; ρ, (ℓI, pwI), comI

;wI) = Hash(hkJ; ρ, (ℓI, pwJ), comI
): skI and skJ are thus equal, as

required. Note that since Hash(hkI; ρ, (ℓJ, pwI), comJ
) is already set at random since G4 or G5, all the

keys are already random.

If their passwords are not the same but both remain honest, Alice will be given in (U5) a key chosen
independently at random: Here, ProjHash(hpJ; ρ, (ℓI, pwI), comI ;wI) doesn’t have to be programmed,
since the keys do not have any reason to be identical. In this case, as in G4, the pseudo-randomness of
the hash functions ensures the indistinguishability (see Appendix F.3 for the treatment of corruptions).

Game G7: In this game, we still deal with the case in which all flows received by the client up to (S4)
were oracle-generated. We are now at beginning of (S4) and we want to simulate the (honest) server,
without knowing any password, but we now suppose that flow-three was not oracle-generated. Note
that in this case flow-one cannot have been oracle-generated. Otherwise, the signature σ1 would have
been rejected.

Recall that from G2, the simulator extracts the password from the commitment of the client,
with the help of the secret key. The extraction can fail with negligible probability if S recovers two
different passwords (thanks to the binding property, see G2 and G3). In such a case, the simulator
aborts the game. It can also happen that the extraction issues no password (for example if the values
sent in the commitment were not encryptions of 0 or 1). Then, if it has recovered a password, the
simulator asks a GoodPwd query to the functionality. If it is correct, then it computes honestly the
session key of the server. Otherwise, or if it has not recovered any password in the extraction, it sets
the values Hash(hkJ; ρ, (ℓI, pwJ), comI) and ProjHash(hpI; ρ, (ℓJ, pwJ), comJ ;wJ) at random. Recall that
if the values sent in the commitment were not encryptions of 0 or 1, the smooth hash value will be
random.

The corruptions which can follow this step are dealt with as in the former game. Due to the
smoothness of the hash function, this game is indistinguishable from the previous one: The proof is
exactly the same as in G5, but it is made more easier, since the key of the client is already random.

Game G8: In this game, we replace GoodPwd queries by TestPwd ones, and SamePwd by NewKey ones.
If a session aborts or terminates, S reports it to A. If a session terminates with a session key sk, then
S makes a NewKey call to the functionality, specifying the session key sk. But recall that unless the
session is compromised, the functionality will ignore the key specified by S.

We show in Appendix F.4 that this game is indistinguishable from the ideal-world experiment.

F Details of the Proof

F.1 Indistinguishability of G4 and G3

We now describe what happens in case of corruptions. First, if Alice gets corrupted after the execution
of (U3), then the simulator will recover her password and thus be able to compute everything correctly.
Recall that the projection key did not depend on the password.

Second, if Bob gets corrupted after (U3) or after (S4), then the simulator will be able to compute
everything correctly. In particular in the second case, the adversary will get a coherent value of skJ.
Then, the simulator asks a GoodPwd query for Alice with Bob’s password to the functionality. If they
are the same, S recovers the password of Alice, and since it hasn’t really erased her data, it will be
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able to compute skI exactly as the adversary should have done it for Bob (in particular because the
projection key does not depend on the password). Otherwise, it gives Alice a random key: there is no
need that the players get the same key if they don’t share the same password – recall that all private
data is erased so that the adversary cannot verify anything.

Finally, if Alice gets corrupted by the end of (U5), the simulator will recover her password and
ask a SamePwd query to the functionality. If σJ is correct and they share the same password, then
the simulator computes skI exactly as the adversary should have done it for Bob (one again because
the projection key does not depend on the password). Otherwise, if the signature is correct but their
passwords are different, then Alice is provided with a random value (recall that her data is supposed
to be erased, so that the adversary is not supposed to be able to verify it). Otherwise, if the signature
is incorrect, the simulator aborts the game. We can see here the necessity of step (U5) in order to
guarantee adaptive security.

We now show that an environment that distinguishes G4 from G3 can be used to construct a
distinguisher between Expt-Hash and Expt-Unif as described in [22] (see Appendix A), violating their
Corollary 3.3.

We first define hybrid games Hi as follows. First note that the sessions are ordered with re-
spect to the rounds (U1). In all sessions before the ith one, the computation is random, and in
all the sessions afterwards (i, i + 1, . . .), the values are set as real. In all “random” cases, we set
ProjHash(hpI ; ρ, (ℓJ, pwJ), comJ ;wJ) to the same value during the simulation of the server if everything
goes well, that is, if no corruption occurred and the passwords are the same. With these notations, the
i = 1 case is exactly G3 and i = qs + 1 is exactly G4. Pictorially,

{
Random 1, . . . , i− 1
Real i, . . . , qs

Our aim is now to prove the indistinguishability of Hi and Hi+1. We define the event Ei, stating
that there exists a corruption between the committing (U1) and hashing (U3) steps in the ith session.
Notice that the probability of this event is the same in the two following games Hi and Hi+1. This
is true despite the fact that we consider concurrent sessions. To see this, notice that even though
Ei may depend on sessions with a larger index, the only difference between these two games concerns
round (U3) of the ith session: everything is identical before this step. Since the corruption occurs before
this round, the probability that the adversary corrupts a player in the ith session, which only depends
on what happened before, is the same in both cases.

We now denote by outZ the output of the environment at the end of the execution and compute
the difference between Pr [outZ = 1] in the two different games:

∣∣PrHi+1 [outZ = 1]− PrHi
[outZ = 1]

∣∣

=
∣∣PrHi+1 [outZ = 1 ∧ Ei] + PrHi+1 [outZ = 1 ∧ ¬Ei]

− PrHi
[outZ = 1 ∧ Ei]− PrHi

[outZ = 1 ∧ ¬Ei]|

≤
∣∣PrHi+1 [outZ = 1 ∧ Ei]− PrHi

[outZ = 1 ∧ Ei]
∣∣

+
∣∣PrHi+1 [outZ = 1 ∧ ¬Ei]− PrHi

[outZ = 1 ∧ ¬Ei]
∣∣

≤
∣∣PrHi+1 [outZ = 1|Ei]− PrHi

[outZ = 1|Ei]
∣∣ |PrHi

[Ei]|

+
∣∣PrHi+1 [outZ = 1|¬Ei]− PrHi

[outZ = 1|¬Ei]
∣∣ |PrHi

[¬Ei]|

First consider the first term of this sum. If there is a corruption, we learn the password and also
(in fact, we simulate in a coherent way) the randomness, enabling us to compute everything correctly.
Thus, this term is equal to zero.

We now consider the second term, corresponding to the case where there is no corruption, and
show that |Pr [Expt-Hash(D) = 1]− Pr [Expt-Unif(D) = 1]| bounds (to within a negligible amount)
the probability that the environment distinguishes Hi+1 from Hi. More precisely, let’s consider the
following game H (as described below) in which the oracles Commit and Hash appear in the ith session
only under the assumption ¬Ei.
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H is as follows: Let D be a machine that receives a randomly chosen public key pk2 and emulates the
game Hi with the following changes for the ith session. On receiving a valid oracle-generated flow-one,
D does not directly compute c2 but it queries instead the oracle Commit() and sets c2 to the value
returned. If Alice receives the unmodified comJ in the flow-two message, then D queries Hash(comJ)
and receives a pair (sI , ηI). Then it sets hpI = sI and ProjHash(hpI ; ρ, (ℓJ, pwI), comJ ;wJ ). Note that
wJ was here the randomness used by the oracle Commit in the query that generated com

J
. Then, if Bob

receives the unmodified projected key hpI , D also uses ηI for the appropriate portion of the session
key – in the case they have the same password. Finally, D outputs whatever the environment outputs.
It is easy to see that H = Hi+1 in the case where the oracle Hash returns a random value, and it is
equal to Hi otherwise. �

F.2 Indistinguishability of G5 and G4

First note that the corruptions which can follow this step are dealt with as in the former game, and
that this simulation is compatible with the former game.

If the password recovered from the server is correct, the simulation is done honestly, so that this
game is perfectly equivalent to the previous one. Otherwise, if the password is incorrect, or if no
password was recovered, then com

J
is invalid.

Given an invalid com
J
, with (PI, ssid)’s password pwI and the label ℓI, the distribution {pkI, comI

, ℓI,
pwI, hpI,Hash(hkI; ρ, (ℓJ, pwI), comJ

)} is statistically close to the distribution {pkI, comI
, ℓI, pwI, hpI, z}

where z is a random element of the group G (due to the smoothness of the hash function). Since
Hash(hkI; ρ, (ℓJ, pwI), comJ

) is a component of the session key skI for (PI, ssid), then the session key
generated is statistically close to uniform.

Then, since com
J

is invalid, (PJ, ssid) will compute honestly the key, but he will not obtain the
same session key since the passwords are different. This behavior is equivalent to what happens in the
ideal functionality: the corresponding sessions of (PI, ssid) and (PJ, ssid) either do not have a matching
conversation, or were given different passwords by the environment, so that (PJ, ssid) will not be given
the same session key as (PI, ssid).

F.3 Indistinguishability of G6 and G5

The pseudo-randomness of the hash functions shows the indistinguishability between G6 and G5.
Indeed, the environment cannot become aware that the keys were chosen at random. More precisely,
we do the same manipulation as in the proof of G4, but this time considering the smooth projective
hash function Hash with respect to com

J
. Note that in the hybrid games, the sessions are ordered with

respect to the rounds (S2).

We now consider the case where Bob gets corrupted between (S4) and (U5). Then, the simulator
recovers his password and it is able to compute everything correctly (recall that the projection keys
do not depend on the passwords). It then asks a GoodPwd query for the client. If their passwords are
different, Alice is provided with a random key. Otherwise, S gives her the same key as Bob.

Finally note that for sake of simplicity, we only compute HashJ in (S4) in the simulation. But, if the
server is corrupted after (S2), the simulator recovers his password and is able to provide the adversary
with a correct HashJ (once more because the projection key does not depend on the password).

F.4 Indistinguishability between G8 and the Ideal Game

The only difference between G7 and G8 is that the GoodPwd queries are replaced by TestPwd queries to
the functionality and the SamePwd by a NewKey query. We say that the players have matching sessions
if they share the same ssid and if they agree on the values of com

I
, com

J
, hpI and hpJ (that is, all the

values that determine the key). We now show that G8 and IWE are indistinguishable.
First, if both players share the same password and remain honest until the end of the game, and

if there are no impersonations, they will obtain a random key, both in G8 (from G6) and IWE, as
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there are no TestPwd queries and the sessions remain fresh. Second, if they share the same password
but there are impersonation attempts, then they receive independently-chosen random keys (from G5

or G7). Third, if they don’t share the same password, then they get independently-chosen random
keys. Now, we need to show that two players will receive the same key in G8 if and only if it happens
in IWE.

First consider the case of players with matching session and the same password. If both players
remain honest until the end of the game, they will receive the same key from G6. If not, it will still be
the same from G5 or G7. Recall that if there are some impersonation attempts, the keys will be random
and independent, both in G8 and IWE. In IWE, the functionality will receive two NewSession queries
with the same password. If both are honest, it will not receive any TestPwd query, so that the key will
be the same for the two players. And if one is corrupted and a TestPwd query is done (and correct,
since they have the same password), then they will also have the same key, chosen by the adversary.

Then, consider the case of players with matching session but not the same password. If both players
remain honest until the end of the game, they will receive independently-chosen random keys from G6.
If not, it will still be the same from G7. In IWE, the functionality will receive two NewSession queries
with different passwords. It will give them different keys by definition.

Finally, consider the case of players with no matching session. It is clear that in G8 the session keys
of those players will be independent because they are not set in any of the games. In IWE, the only
way that they receive matching keys is that the functionality receives two NewSession queries with
the same password, and S sends a NewKey query for these sessions without having sent any TestPwd

queries. But if the two sessions do not have a matching conversation, they must differ in either com
I
,

com
J
, hpI or hpJ . In this case, they will refuse the signature of the other player and abort the game.

If one of the player is corrupted by the end of the game, the simulator recovers its password and
uses it in a TestPwd query for the other player to the functionality, as explained in G4. If the result
is correct, then both players are give the same key. Otherwise, they are given independently-chosen
random keys. This is exactly the behavior of the functionality in IWE.
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