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Abstract. Adaptively-secure key exchange allows the establishment of secure channels even in the pres-
ence of an adversary that can corrupt parties adaptively and obtain their internal states. In this paper, we
give a formal definition of contributory protocols and define an ideal functionality for password-based group
key exchange with explicit authentication and contributiveness in the UC framework. As with previous
definitions in the same framework, our definitions do not assume any particular distribution on passwords
or independence between passwords of different parties. We also provide the first steps toward realizing this
functionality in the above strong adaptive setting by analyzing an efficient existing protocol and showing
that it realizes the ideal functionality in the random-oracle and ideal-cipher models based on the CDH
assumption.

1 Introduction

Motivation. The main goal of an authenticated key exchange (AKE) protocol is to allow users to
establish a common key over a public channel, even in the presence of adversaries. The most common
way to achieve this goal is to rely either on a public-key infrastructure (PKI) or on a common high-
entropy secret key [38]. Unfortunately, these methods require the existence of trusted hardware capable
of storing high-entropy secret keys. In this paper, we focus on a different and perhaps more realistic
scenario where secret keys are assumed to be short passwords.

Since the seminal work by Bellovin and Merritt [11], password-based key exchange has become
quite popular. Due to their low entropy, passwords are easily memorizable by humans and avoid the
need for trusted hardware. On the other hand, the low entropy of passwords makes them vulnerable
to exhaustive search: perfect forward secrecy thus becomes quite important. This notion means that,
even if the password of a user is later guessed or leaked, keys established before the leakage of the
password remain private. Depending on the security model, the privacy of the common key has been
modeled via either “semantic security” [9] or the indistinguishability of the actual protocol and an
ideal one [26]. In both cases, the leakage of the long-term secret (password in our case) has been
modeled by “corruption” queries. Unfortunately, the long-term secret may not be the only information
leaked during a corruption. Ephemeral secret leakage has also been shown to cause severe damages in
some contexts [36, 35], and thus “strong corruptions” should also be considered [39]. However, it may
not be very realistic to allow the designer of a protocol to decide which information is revealed by
such a strong corruption query. The universal composability (UC) framework [24], on the other hand,
allows for a different approach: whenever a strong corruption occurs, the adversary breaks into the
corrupted players, learns whatever information is required to complete the session, and controls the
player thereafter. This seems to be a more realistic scenario.

In this paper, we consider stronger corruptions for password-based group key exchange protocols
in the adaptive setting, in which adversaries are allowed to corrupt parties adaptively based on the
information they have gathered so far. Despite numerous works on group key exchange protocols, very
few schemes have been proven to withstand strong corruptions in case of adaptive adversaries. In the
context of group AKE, Katz and Shin [34] proposed a compiler that converts any protocol that is secure
in a weak corruption model into one that is secure in a strong corruption model, but their protocol relies
on signatures and does not work in the password-based scenario. In the case of password-based group
AKE protocols, to the best of our knowledge, the only scheme shown to withstand adaptive corruptions
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is due to Barak et al. [6] using general techniques from multi-party computation. Unfortunately, their
scheme is not practical.

Another issue being considered here is contributiveness [13, 28, 21]. In the security model of Katz
and Shin [34], one just wants to prevent the adversary from fully determining the key, unless it has
corrupted one player in the group. However, it would be better to ensure the randomness of the key,
unless it has compromised the security of a sufficient number of players: If the adversary has not
compromised too many players, it should not be able to bias the key. There are several advantages
in adopting a stronger notion of contributiveness for group key exchange protocols. First, it creates
a clear distinction between key distribution and key agreement protocols by describing in concrete
terms the notion that, in a group key agreement protocol, each player should contribute equally to
the session key. Second, it renders the protocol more robust to failures in that the session key is
guaranteed to be uniformly distributed even if some of the players do not choose their contributions
correctly (due to hardware malfunction, for instance). Third, it avoids scenarios in which malicious
insiders secretly leak the value of a session key to a third party by either imposing specific values for
the session key or biasing the distribution of the latter, so that the key can be quickly derived, and
then the communication eavesdropped in real-time. For instance, we can imagine the third party to be
an intelligence agency, such as the CIA, and the malicious insiders to be malicious pieces of hardware
and software (pseudo-random generator) installed by the intelligence agency. Finally, if the absence
of subliminal channels [40] can be guaranteed during the lifetime of the session key starting from the
moment at which the players have gathered enough information to compute this key (a property that
needs to be studied independently), then no malicious insider would be able to help an outsider to
eavesdrop on the communication in real-time. Interestingly, since all the functions used in the later
rounds are deterministic, this property seems to be satisfied by our scheme. Of course, one cannot keep
an insider from later revealing this key, but by then it might already be too late for this information to
be useful. On the other hand, physical protections or network surveillance can ensure that no stream of
data can be sent out by the players during a confidential discussion. Contributiveness and the absence
of subliminal channels therefore guarantee no real-time eavesdropping, thus yielding a new security
property. However, the study of subliminal channels is out of the scope of the present paper.

Contributions. There are three main contributions in this paper. First, we investigate a stronger
notion of security for password-based group AKE. This is done by combining recent results on the
topic of AKE in the UC framework, including the work of Canetti et al. [25], Katz and Shin [34], and
Barak et al. [6]. The first one described the ideal functionality for the password-based AKE, and proved
that a variant of the KOY/GL scheme [33, 31] securely realizes the functionality, only against static
adversaries (no strong corruptions available during the protocol, but at the beginning only). Katz and
Shin [34] provided the ideal functionality for the group AKE, and proved that the new, derived, security
notion is actually stronger than the usual Bresson et al. one [20]. Furthermore they formalized a strong
corruption model, where honest players may be compromised at any point during the execution of the
protocol, and leak their long-term and ephemeral secrets (the entire internal state). Barak et al. [6]
considered protocols for general multi-party computation in the absence of authenticated channels. In
particular, they provided a general and conceptually simple solution (though inefficient) to a number
of problems including password-based group AKE.

In Section 2, we propose an ideal functionality for password-based group AKE. Our new functional-
ity guarantees mutual authentication, which explicitly ensures that, if a player accepts the session key,
then all his intended partners have been involved in the protocol and obtained the key material. Note
however that the adversary may modify subsequent flows and eventually make some of the players
reject while others accept. The protocol also inevitably leaks some information to the adversary, who
ends up learning whether the parties share a common secret key or not. Following the approach sug-
gested in [25], we assume that the passwords are chosen by the environment, who then hands them to
the parties as input. This is the strongest security model, since it does not assume any distribution on
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passwords. Furthermore, it allows the environment to force players to run the protocol using different
(possibly related) passwords. This is useful, for example, to model the situation where users mistype
their passwords.

Vulnerability of the passwords (whose entropy may be low) is modeled via split functionalities [6]
and TestPwd queries. The use of split functionalities captures the fact that the adversary can always
partition the players into disjoint subgroups and engage in separate executions of the protocols with
each of these subgroups, playing the role of the other players. This is because, in the absence of strong
authentication mechanisms such as signatures, honest parties cannot distinguish the case in which they
interact with each other from the case in which they interact with the adversary. The use of TestPwd
queries captures the fact that, within a particular subgroup, the adversary may be able to further
divide the set of honest users into smaller groups and locally test the passwords of these users. In fact,
in most password-based protocols based on the Burmester-Desmedt group key exchange [23] such as
the one by Abdalla et al. [2], the adversary can test the value of the password held by a user by simply
playing the role of the neighbors of this user. We note, however, that even though TestPwd queries may
be avoided depending on the particular protocol being considered, its use does not severely weaken the
security model since the adversary is still limited to at most two password tests per honest user for
each session in which it plays an active role, by splitting the group into subgroups of one honest user
each. Hence, one just needs to add one more bit of entropy to the password as a countermeasure.

A second contribution of this paper is to strengthen the original security model of Katz and Shin [34]
by incorporating the notion of contributiveness in the functionality described above. A protocol is said
to be (t, n)-contributory if no adversary can bias the key as long as (strictly) less than t players in
the group of n players have been corrupted. This is stronger than the initial Katz-Shin model, which
prevents the adversary from choosing the key, but as long as there is no corrupted player in the game
(t = 1), only. Of course, one cannot prevent an insider adversary from learning the key, and possibly
revealing it or the communication itself to outside. But we may hope to prevent “subliminal” leakage
of information that would allow eavesdropping in real-time.

Our last contribution is to show that a slight variant of the password-based group AKE protocol by
Abdalla et al. [2] based on the Burmester-Desmedt protocol [22, 23] and briefly described in Section 3,
securely realizes the new functionality, even against adaptive adversaries. The proof is given in Section 4
(the details can be found in Appendix C) and is in the ideal-tweakable-cipher and random-oracle
models [8]. Even though, from a mathematical point of view, it would be preferable to have a proof
in the standard model, we point out that the protocol presented here is the first group key exchange
protocol realizing such strong security notions, namely adaptive security against strong corruptions in
the UC framework and (n/2, n)-contributiveness. In addition, our protocol is quite efficient. We also
provide a modification to achieve (n − 1, n)-contributiveness.

Related work. Since the seminal Diffie-Hellman key exchange protocol [29], several extensions of
that protocol to the group setting were proposed in the literature [22, 5] without a formal security
model. The first security model for group key exchange was proposed by Bresson et al. [20], who later
extended it to dynamic and concurrent setting [15, 16], using the same framework as Bellare et al. [9,
10]. In the UC framework [24], the first security model in the group setting was proposed by Katz
and Shin [34]. Their model is quite strong, allowing the adversary to corrupt players adaptively and
learn their internal state. In the password-based scenario, most of the previous work focused on the
2-party case. The first security models to appear [7, 14] were based on the frameworks by Bellare et
al. [9, 10] and by Shoup [39]. In the UC framework, the first ones to propose an ideal functionality for
password-based AKE were Canetti et al. [25]. More recently, Abdalla et al. [3] showed that the 2-party
password-based authenticated key exchange protocol in [18] is also secure in the UC model against
adaptive adversaries assuming the random-oracle and ideal-cipher models. In the group password-
based AKE scenario, there has been a few protocols proposed in the literature, from the initial work
by Bresson et al. [17, 19] to the more recent proposals by Dutta and Barua [30], Abdalla et al. [1,
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2, 4], and Bohli et al. [12]. However, none of them appear to satisfy the security requirements being
considered in this paper.

2 Definition of Security

Notations. We denote by k the security parameter. An event is said to be negligible if it happens

with probability less than the inverse of any polynomial in k. If G is a finite set, x
R
← G indicates the

process of selecting x uniformly and at random in G (thus we implicitly assume that G can be sampled
efficiently).

The UC Framework. Throughout this paper we assume basic familiarity with the universal com-
posability framework. The interested reader is referred to [24, 25] for details. The model considered in
this paper is the UC framework with joint state proposed by Canetti and Rabin [27].

Adaptive Adversaries. In this paper, we consider adaptive adversaries which are allowed to arbitrar-
ily corrupt players at any moment during the execution of the protocol, thus getting complete access
to their internal memory. In a real execution of the protocol, this is modeled by letting the adversary A
obtain the password and the internal state of the corrupted player. Moreover, A can arbitrarily modify
the player’s strategy. In an ideal execution of the protocol, the simulator S gets the corrupted player’s
password and has to simulate its internal state, in a way that remains consistent to what was already
provided to the environment.

Contributory Protocols. In addition, we consider a stronger corruption model against insiders than
the one proposed by Katz and Shin in [34], where one allows the adversary to choose the session key
as soon as there is a corruption. On the contrary, we define here a notion of contributory protocol
which guarantees the distribution of the session keys to be random as long as there are enough hon-
est participants in the session: the adversary cannot bias the distribution unless it controls a large
number of players. More precisely, we say that a protocol is (t, n)-contributory if the group consists
of n people and if the adversary cannot bias the key as long as it has corrupted (strictly) less than
t players. More concretely, we claim that our proposed protocol is (n/2, n)-contributory, which means
that the adversary cannot bias the key as long as there are at least half honest players. We even show
in Appendix B.2 that (n− 1, n)-contributiveness can be fulfilled by running parallel executions of our
protocol.

The Random Oracle and Ideal Tweakable Cipher. In [25], Canetti et al. showed that there doesn’t
exist any protocol that UC-emulates the two-party password-based key-exchange functionality in the
plain model (i.e. without additional setup assumptions). Here we show how to securely realize a similar
functionality without setup assumption but working in the random-oracle and ideal-tweakable-cipher
models instead. The random oracle [8] ideal functionality was already defined by Hofheinz and Müller-
Quade in [32] (see Appendix A). Similarly, it is straightforward to derive the functionality for the ideal
tweakable cipher primitive [37], see Appendix A. Note that for both, since the session identifier sid will
be included either in the input for the random oracle, or in the tweak for the ideal-tweakable cipher,
we can have one instantiation of each only, in the joint state, and not different instantiations for each
session, which is more realistic. Note however that in some cases (in the first flow, see Figure 3), only
some part of the session identifier will be included, which could lead to collisions with other sessions
sharing this part of the sid (which by construction of the protocol are the sessions generated by the
split functionality, see below). It could lead to a problem in the simulation, and more precisely in case
of programming the random oracle or the ideal cipher. But programming is used in the proof only for
honest players in a session. And with the split functionality, honest players are separated into various
sets that make a partition (they are all disjoint): since a player cannot belong to two distinct sessions,
this means that the simulator will have to program the random oracle or the decryption only once and
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that no problem occurs (except, of course, if the adversary has already asked the critical query, e.g. an
encryption leading to the particular ciphertext, but this happens with negligible probability only).

Split Functionalities. Without any strong authentication mechanisms, the adversary can always
partition the players into disjoint subgroups and execute independent sessions of the protocol with
each subgroup, playing the role of the other players. Such an attack is unavoidable since players
cannot distinguish the case in which they interact with each other from the case where they interact
with the adversary. The authors of [6] addressed this issue by proposing a new model based on split
functionalities which guarantees that this attack is the only one available to the adversary.

Given a functionality F , the split functionality sF proceeds as follows:
Initialization:

– Upon receiving (Init, sid) from party Pi, send (Init, sid, Pi) to the adversary.
– Upon receiving a message (Init, sid, Pi, H, sidH) from A, where H is a set of party identities, check that Pi has

already sent (Init, sid) and that for all recorded (H ′, sidH′), either H = H ′ and sidH = sidH′ or H and H ′

are disjoint and sidH 6= sidH′ . If so, record the pair (H, sidH), send (Init, sid, sidH) to Pi, and invoke a new
functionality (F , sidH) denoted as FH and with set of honest parties H .

Computation:

– Upon receiving (Input, sid, m) from party Pi, find the set H such that Pi ∈ H and forward m to FH .
– Upon receiving (Input, sid, Pj , H,m) from A, such that Pj /∈ H , forward m to FH as if coming from Pj .
– When FH generates an output m for party Pi ∈ H , send m to Pi. If the output is for Pj /∈ H or for the adversary,

send m to the adversary.

Fig. 1. Split Functionality sF

The split functionality is a generic construction based upon an ideal functionality: Its description
can be found on Figure 1. In the initialization stage, the adversary adaptively chooses disjoint subsets
of the honest parties (with a unique session identifier that is fixed for the duration of the protocol).
More precisely, the protocol starts with a session identifier sid. Then, the initialization stage generates
some random values which, combined together and with sid, create the new session identifier sid′,
shared by all parties which have received the same values – that is, the parties of the disjoint subsets.
The important point here is that the subsets create a partition of the players, thus forbidding commu-
nication among the subsets. During the computation, each subset H activates a separate instance of
the functionality F . All these functionality instances are independent: The executions of the protocol
for each subset H can only be related in the way the adversary chooses the inputs of the players it
controls. The parties Pi ∈ H provide their own inputs and receive their own outputs (see the first item
of “computation” in Figure 1), whereas the adversary plays the role of all the parties Pj /∈ H (see the
second item).

The Group Password-Based Key Exchange Functionality with Mutual Authentication. In
this section, we discuss the FGPAKE functionality (see Figure 2). The multi-session extension of our
functionality would be similar to the one proposed by Canetti and Rabin [27]. Our starting points are
the group key exchange functionality described in [34] and the (two party) password-based key exchange
functionality given in [25]. Our aim is to combine the two of them and to add mutual authentication
and (t, n)-contributiveness. The new definition still remains very general: letting t = 1, we get back the
case in which the adversary may manage to set the key when it controls at least a player, as in [25].

First, notice that the functionality is not in charge of providing the passwords to the participants.
Rather we let the environment do this. As already pointed out in [25], such an approach allows to
model, for example, the case where some users may use the same password for different protocols and,
more generally, the case where passwords are chosen according to some arbitrary distribution (i.e. not
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necessarily the uniform one). Moreover, notice that allowing the environment to choose the passwords
guarantees forward secrecy, basically for free. More generally, this approach allows to preserve security1

even in those situations where the password is used (by the same environment) for other purposes.

In the following we denote by n the number of players involved in a given execution of the protocol.
The functionality starts with an initialization step during which it basically waits for each player to
notify its interest in participating to the protocol. More precisely, we assume that every player starts a
new session of the protocol with input (NewSession, sid, Pi, Pid, pwi), where Pi is the identity of the
player, pwi is its password and Pid represents the set of (identities of) players with whom it intends
to share a session key. Once all the players (sharing the same sid and Pid) have sent their notification
message, FGPAKE informs the adversary that it is ready to start a new session of the protocol.

In principle, after the initialization stage is over, all the players are ready to receive the session
key. However the functionality waits for S to send an “ok” message before proceeding. This allows S to
decide the exact moment when the key should be sent to the players and, in particular, it allows S to
choose the exact moment when corruptions should occur (for instance S may decide to corrupt some
party Pi before the key is sent but after Pi decided to participate to a given session of the protocol,
see [34]).

Once the functionality receives a message (sid, P id, ok, sk) from S, it proceeds to the key generation
phase. This is done as follows. If all players in Pid share the same password and less than t players are
corrupted, the functionality chooses a key sk′ uniformly and at random in the appropriate key space. If
all players in Pid share the same password but t or more players are corrupted, then the functionality
allows S to fully determine the key by letting sk′ = sk. In all the remaining cases no key is established.

Remark. For sake of simplicity, we chose to integrate the contributiveness in the UC-functionality.
However, one could say that this is not necessary and that one could have kept the original functionality
for group password-based key exchange, and then studying the contributiveness as an extra property.
But then, two security proofs would be needed.

Our definition of the FGPAKE functionality deals with corruptions of players in a way quite similar
to that of FGPAKE in [34], in the sense that if the adversary has corrupted some participants, it may
determine the session key, but here only if there are enough corrupted players. Notice however that
S is given such power only before the key is actually established. Once the key is set, corruptions
allow the adversary to know the key but not to choose it. Following [25], a correct password test is
captured by marking the corresponding record as compromised, and a failed attempt by marking it as
interrupted. Records that are neither compromised nor interrupted are initially marked as fresh.
Once a key is established, all records in Pid are marked as complete. Changing the fresh status of a
record whenever a password test occurs or a (valid) key is established, is aimed at limiting the number
of password tests to at most one per player. However, the TestPwd queries seem unnecessary in the
context of split functionalities, since by splitting the whole group in subgroups of one player each, the
adversary can already test one password per player. However, adding this query just allows A to test
an additional password per player, which does not change significantly its power in practice. Besides,
these queries are needed in the security analysis of our protocol, which we tried to keep as efficient
as possible. Designing an efficient protocol while getting rid of theses queries is an interesting open
problem.

In any case, after the key generation, the functionality informs the adversary about the result,
meaning with this that the adversary is informed on whether a key was actually established or not.
In particular, this means that the adversary is also informed on whether the players share the same
password or not. At first glance this may seem like a dangerous information to provide to the adversary.
We argue, however, that this is not the case in our setting. Indeed, being all the passwords chosen by
the environment, such an information could be available to the adversary anyway. Moreover, it does

1 By “preserved” here we mean that the probability of breaking the scheme is basically the same as the probability of
guessing the password.
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not seem critical to hide the status of the protocol (i.e. if it completed correctly or not), as in practice
this information is often easily obtained by simply monitoring its execution (if the players suddenly
stop their communications, there must have been some problem).

Finally the key is sent to the players according to the schedule chosen by S. This is formally
modeled by means of key delivery queries. We assume that, once S asks to deliver the key to a player,
the key is sent immediately.

The functionality FGPAKE is parameterized by a security parameter k and the parameter t of the contributiveness.
It interacts with an adversary S and a set of parties P1,. . . ,Pn via the following queries:

– Initialization. Upon receiving (NewSession, sid, Pi, P id, pwi) from player Pi for the first time, where Pid is a set
of at least two distinct identities containing Pi, record (sid, Pi, P id, pwi), mark it fresh, and send (sid, Pi, P id)
to S . Ignore any subsequent query (NewSession, sid, Pj , P id′, pwj) where Pid′ 6= Pid.
If there are already |Pid| − 1 recorded tuples (sid, Pj , P id, pwj) for players Pj ∈ Pid \ {Pi}, then record
(sid, P id,ready) and send it to S .

– Password tests. Upon receiving a query (TestPwd, sid, Pi, P id, pw′) from the adversary S , if there exists a record
of the form (sid, Pi, P id, pwi) which is fresh:

• If pwi = pw′, mark the record compromised and reply to S with “correct guess”.
• If pwi 6= pw′, mark the record interrupted and reply to S with “wrong guess”.

– Key Generation. Upon receiving a message (sid, P id, ok, sk) from S where there exists a recorded tuple
(sid, P id,ready), then, denote by nc the number of corrupted players, and

• If all Pi ∈ Pid have the same passwords and nc < t, choose sk′ ∈ {0, 1}k uniformly at random and store
(sid, P id, sk′). Next, for all Pi ∈ Pid mark the record (sid, Pi, P id, pwi) complete.

• If all Pi ∈ Pid have the same passwords and nc ≥ t, store (sid, P id, sk). Next, for all Pi ∈ Pid mark the
record (sid, Pi, P id, pwi) complete.

• In any other case, store (sid, P id, error). For all Pi ∈ Pid mark the record (sid, Pi, P id, pwi) error.

When the key is set, report the result (either error or complete) to S .

– Key Delivery. Upon receiving a message (deliver, b, sid, Pi) from S , then if Pi ∈ Pid and there is a recorded
tuple (sid, P id, α) where α ∈ {0, 1}k ∪ {error}, send (sid, P id, α) to Pi if b equals yes or (sid, P id,error) if b

equals no.

– Player Corruption. If S corrupts Pi ∈ Pid where there is a recorded tuple (sid, Pi, P id, pwi), then reveal pwi

to S . If there also is a recorded tuple (sid, P id, sk), that has not yet been sent to Pi, then send (sid, P id, sk) to S .

Fig. 2. Functionality FGP AKE

Notice that, the mutual authentication indeed means that if one of the players accepts, then all
players share the key material; but, it doesn’t mean that they all accept. Indeed, we cannot assume
that all the flows are correctly forwarded by the adversary: it can modify just one flow, or at least omit
to deliver one flow. This attack, called denial of service, is modeled in the functionality by the key
delivery: the adversary can choose whether it wants the player to receive or not the good key/messages
simply with the help of the keyword b set to yes or no.

3 Our Scheme

Description. Our solution builds on an earlier protocol by Abdalla et al. [2] and is described in Fig-
ure 3. Let E and D be the encryption and decryption schemes of an ideal tweakable cipher scheme.
We denote by Eℓ

pw(m) an encryption of the message m using the ideal tweakable cipher, label ℓ and

password pw. Similarly, the decryption is denoted as Dℓ
pw(c). The protocol uses five different random

oracles, denoted by Hi for all i = 0, . . . , 4. We denote by qhi
the number of queries made to the ora-

cle Hi (qh = qh0
+ · · · + qh4

), and by ki = 2ℓi the output size: Hi : {0, 1}
k → {0, 1}ℓi . For an optimal

instantiation, we will assume that for all i, ℓi = 2k (collisions), where k is the security parameter. Fi-
nally let (SKG,Sign,Ver) be a one-time signature scheme, SKG being the signature key generation, Sign
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the signing algorithm and Ver the verifying algorithm. Note that we do not require a strong one-time
signature: Here, the adversary is allowed to query the signing oracle at most once, and should not be
able to forge a signature of another authenticator.

Informally, and omitting the details, the algorithm can be described as follows: First, each player
chooses a random exponent xi and computes zi = gxi and an encryption z∗i of zi. It then applies SKG

to generate a pair (SKi,VKi) of signature keys, and commits to the values VKi and z∗i . In the second
round, it reveals these values (the use of the commitment will be explained later in this section).
We stress that the second round does not begin until all commitments have been received. At this
point, the session identifier becomes ssid′ = ssid‖c1‖. . . ‖cn. It will be included, and verified, in all the
subsequent hash values. Then, after verifying the commitments of the others, each couple (Pi, Pi−1)
of players computes a common Diffie-Hellman value Zi = gxi xi−1 , leading to a hash value Xi for each
player. Each player then commits to this Xi, and once all these commitments have been received,
it reveals the value Xi. In the next round, the players check this second round of commitments and
compute an authenticator and the associated signature. Finally, the players check these authenticators
and signatures, and if they are all correct, they compute the session key and mark their session as
complete.

As soon as a value received by Pi doesn’t match with the expected value, it aborts, setting the
key ski = error. In particular, every player checks that ci = H3(ssid, z∗i ,VKi, i), c′i = H4(ssid

′,Xi, i)
and Ver(VKi,Authi, σi) = 1.

We now highlight some of the differences between the scheme of [2] and our scheme, described
in Figure 3. First, our construction does not require any random nonce in the first round (the session id
constructed after the first flow is enough). Moreover, to properly implement the functionality, we return
an error message to the players whenever they don’t share the same password (mutual authentication).
For sake of simplicity, two additional modifications are not directly related to the functionality. First,
we use an ideal tweakable cipher rather than a different symmetric key for each player. Second, the
values Xi’s are here computed as the xor of two hashes.

Due to the split functionality, the players are partitioned according to the values they received
during the first round (i.e. before the dotted line in Figure 3). All the ci are shared among them –
and thus the z∗i and V Ki due to the random oracle H3 – and their session identifier becomes ssid′ =
ssid‖c1‖. . . ‖cn. In round 3, the signature added to the authentication flow prevents the adversary
from being able to change an authenticator to another value. At the beginning of each flow, the players
wait until they have received all the other values of the previous flow before sending their new one.
This is particularly important between flow(1a) and flow(1b) and similarly between flow(2a) and
flow(2b). Since the session identifier ssid′ is included in all the hash values, and in the latter signature,
only players in the same subset can accept and conclude with a common key.

Finally, the contributory property is ensured by the following modification: In the first and second
rounds, each player starts by sending a commitment of the value it has just computed (using a random
oracle), denoted as ci and c′i. Due to this commitment, it is impossible for a player to compute its z∗i
(or Xi) once it has seen the others: Every player has to commit its z∗i (or Xi) at the same time as the
others, and this value cannot depend on the other values sent by the players.

Finally we point out that, in our proof of security, we don’t need to assume that the players erase
any ephemeral value before the end of the computation of the session key.

Computational Diffie-Hellman Assumption. Denote by G = 〈g〉 a finite cyclic (multiplicative)
group of prime order q. If x, y are chosen uniformly at random in Z

∗
q, the CDH assumption states it is

computationally intractable to output gxy given g, gx and gy .

It is easy to see that if Pi and Pi+1 have the same passwords, they will compute in round 2 the
same Zi+1 = (zi+1)

xi = gxixi+1 = (zi)
xi+1 . If the passwords are different, we denote by ZR

i a value
computed by Pi on its right side, and ZL

i+1 a value computed by Pi+1 on its left side. We have:
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(1a) xi
R
← Z

∗

q zi = gxi z∗

i = Essid,i
pwi

(zi)

(VKi, SKi)← SKG ci = H3(ssid, z∗

i , VKi, i)
ci−−−−−−−→

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
After this point, the session identifier becomes ssid′ = ssid‖c1‖. . . ‖cn.

(1b) sends z∗

i and VKi

z∗

i , VKi
−−−−−−−→

(2a) checks cj = H3(ssid, z∗

j , VKj , j) ∀j 6= i
and aborts if one of these values is incorrect

zi−1 = Dssid,i−1
pwi

(z∗

i−1) Zi = (zi−1)
xi

zi+1 = Dssid,i+1
pwi

(z∗

i+1) Zi+1 = (zi+1)
xi

hi = H2(Zi) hi+1 = H2(Zi+1)
Xi = hi ⊕ hi+1 c′i = H4(ssid

′, Xi, i)
c′i−−−−−−−→

(2b) sends Xi
Xi−−−−−−−→

(3) checks c′j = H4(ssid
′, Xj , j) ∀j 6= i

and aborts if one of these values is incorrect

hj+1 = Xj ⊕ hj ∀j = i, . . . , n + i− 1 (mod n)
Authi = H1(ssid

′, (z∗

1 , X1, h1), . . . , (z
∗

n, Xn, hn), i)

σi = Sign(SKi,Authi)
σi−−−−−−−→

(4) computes all the Authj and checks Ver(VKj ,Authj , σj). If they are correct, then marks the
session as complete and
sets ski = H0(ssid

′, h1, . . . , hn). Otherwise, sets ski = error.

Fig. 3. Description of the protocol for player Pi , with index i and password pwi

ZR
i = CDHg(D

ssid,i−1
pwi (z∗i−1),D

ssid,i
pwi (z∗i )) hR

i = H2(Z
R
i )

ZL
i+1 = CDHg(D

ssid,i
pwi (z∗i ),Dssid,i+1

pwi (z∗i+1)) hL
i+1 = H2(Z

L
i+1)

(here CDHg denotes the Diffie-Hellman function in base g that given on input ga, gb outputs gab), and
then ZL

i+1 and ZR
i+1 are likely different.

Pictorially, the situation can be summarized as follows

Pi−1 ←
ZL

i 6= ZR
i−−−−−−−→ Pi ←

ZL
i+1
6= ZR

i+1

−−−−−−−−−→ Pi+1

Each Pi computes Xi = hR
i ⊕hL

i+1 and thus, once the values Xj ’s are published, all the players can
iteratively compute all the hj ’s required to compute the authenticators Authi and later the session key
ski.

Our Main Theorem. Let ŝFGPAKE be the multi-session extension of the split functionality sFGPAKE

and let FRO and FITC be the ideal functionalities that provide a random oracle and an ideal tweakable
cipher to all parties.

Theorem 1 The protocol presented in Figure 3 securely realizes ŝFGPAKE in the (FRO,FITC)-hybrid
model, in the presence of adaptive adversaries, and is (n/2, n)-contributory.

Corollary 1. This protocol, along with small modifications described in Appendix B.2 (with n/2 par-

allel executions of the original scheme), securely realizes ŝFGPAKE in the (FRO,FITC)-hybrid model,
in the presence of adaptive adversaries, and is (n− 1, n)-contributory.

Note that if the signature scheme is subliminal channel free [40] (e.g. only one signature σ is valid
for a given pair (VK,Auth)), then after the first round (1a), everything is deterministic, and thus no
subliminal channel is available for an adversary to leak any information to an eavesdropper.
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4 Proof of Theorem 1

We prove the protocol to be (n/2, n)-contributory, and show in Appendix B.2 how to get the (n−1, n)-
contributiveness, with some parallel executions. Note that n/2 here implicitly means ⌊n/2⌋ when n is
odd.

We start by giving an attack showing that the (n/2 + 1)-contributory cannot be satisfied. For sake
of simplicity, assume that n is odd and consider the following situation in which there are ⌊n/2⌋ honest
players (denoted as Pi) and ⌊n/2⌋ + 1 corrupted players (denoted as Ai, since they are under the
control of the adversary A):

A1 P1 A2 P2 A3 . . . P⌊n/2⌋ A⌊n/2⌋ A⌊n/2⌋+1

Since A knows the random values of the corrupted players, it learns, from flows (1b), the values
Zi, and thus hi = H2(Zi) for i = 1, . . . , n − 1, before it plays on behalf of A⌊n/2⌋+1. Even if it cannot
modify anymore zn in flow (1b) (already committed to in cn), it can choose Zn to bias the value hn,
and thus the final key, that is defined as sk = H0(ssid

′, h1, . . . , hn): this is introduced in flow (2a).
Such an inconsistent value is possible since no honest player can verify the value of Zn: this is the
Diffie-Hellman value between two corrupted players.

More generally, if A controls enough players so that each honest player is between two corrupted
players, then it can learn, from flows (1b), the values Xi that will be sent in flows (2b). If two corrupted
players are neighbors, they can send a value Xi of their choice, since it comes from a Diffie-Hellman
value between these two corrupted players. In the attack above, the adversary could learn all the hi

early enough, so that its control on hn could bias the key. If it can control an hi, without knowing the
other values, there is still enough entropy in the key derivation: the final key is uniformly distributed:
contributiveness.

We now prove the (n/2, n)-contributiveness, using the above intuition. We need to construct, for any
real-world adversary A (interacting with real parties running the protocol), an ideal-world adversary

S (interacting with dummy parties and the functionality ŝFGPAKE) such that no environment Z can
distinguish between an execution with A in the real world and S in the ideal world with non-negligible
probability.

We incrementally define a sequence of games starting from the one describing a real execution of
the protocol in the real world, and ending up with game G8 which we prove to be indistinguishable
with respect to the ideal experiment. The key point will be G7. G0 is the real-world game. In G1, we
start by simulating the encryption, decryption and hash queries, canceling some unlikely events (such
as collisions). Granted the ideal tweakable cipher model (see details in Appendix C), we can extract
the passwords used by A for players corrupted from the beginning of the session. G2 and G3 allow
S to be sure that the authenticators for non-corrupted players are always oracle-generated. In G4, we
show how to deal with the simulation of the first flows. In G5, we deal with only oracle-generated
flows. In G6, we deal with (possibly) non-oracle-generated flows from round 2. G7 is the crucial game,
where we show how to simulate the non-corrupted players without the knowledge of their passwords,
even in the case of corruptions before round 2. Finally, we show that G8, in which we only replace the
hybrid queries by the real ones, is indistinguishable from the ideal game.

To this aim, we first describe three hybrid queries that are going to be used in the games. The
GoodPwd query checks whether the password of some player is the one we have in mind or not. The
SamePwd query checks if the players share the same password, without disclosing it. The Delivery

query provides the player with the session key. In some games, the simulator has actually access to
the honest players, and thus to their passwords (and always knows the passwords committed by the
adversary for corrupted users granted the ideal tweakable cipher). In such a case, these queries can
be easily implemented by letting S look at these passwords. When the players are entirely simulated,
S will replace the queries above with TestPwd, Key Generation and Key Delivery queries to the ideal
functionality.
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Following [25], we say that a flow is oracle-generated if it was sent by an honest player (our
simulation) and arrives without any alteration to the player it was meant to. We say it is non-oracle-
generated otherwise, that is either if it was sent by an honest player and modified by the adversary,
or if it was sent by a corrupted player or a player impersonated by the adversary: in all these cases,
we say that the sender is an attacked player. In brief, our simulation controls the random coins of
oracle-generated flows, whereas the adversary may control them in non-oracle-generated flows.

Note that since we consider the split functionality, the players have been partitioned in sets accord-
ing to what they received during the very first flow flow(1a). In the following, we can thus assume
that all the players have received the same flow(1a) and flow(1b) (under the binding property of the
commitment H3). Oracle-generated flows flow(1a) have been sent by players that will be considered
honest in this session, whereas non-oracle-generated flows have been sent by the adversary, the corre-
sponding players are thus assumed corrupted from the beginning of the session, since the adversary
has chosen the password. Note that an advantage of this model (using both a random oracle for the
commitment, and an ideal tweakable cipher for the encryption) is that we know the passwords used
by the adversary (and thus corrupted players) in this first round, by simply looking in the tables that
will be defined in G2, and they are the same in the view of any honest player. The extraction of the
password may fail, if the adversary has computed either the ciphertext or the commitment at random,
but then it has no chance to make the protocol conclude successfully. Also note that if flow(2a) is
oracle-generated, then flow(2b) must be oracle-generated also with overwhelming probability, due
to H4, as above. As a result, we set ski = error whenever an inconsistency is noted by a player
(incorrect commitment opening, or invalid signature). The latter then aborts its execution.

Adaptive Corruptions and Connected Components. For simplicity, we consider that the simu-
lator maintains, for each honest player, a list symbolizing its internal state:

Λi = (pwi, SKi, xi, zi, z
∗
i , ci, Z

R
i , ZL

i+1, h
R
i , hL

i+1,Xi, c
′
i),

where the superscripts L and R denote the neighbor with whom the value is shared (the left or the
right neighbor). When a player gets corrupted, the simulator has to provide the adversary with this list.
Most of the fields will be chosen at random during the simulation, with the remaining values initially
set to ⊥. As soon as a player gets corrupted, the simulator recovers its password, which will help to fill
the other fields in a consistent way, granted the programmability of the random oracle and the ideal
tweakable cipher.

The knowledge of Pi’s password indeed helps the simulator to fill in the internal state (see below).
Note that this allows S to send the values (in particular the Xi) in a way that remains consistent
with respect to the view of the adversary, and even the environment. Informally, S does this by
partitioning the set of players into a number of connected components. Each component consists of all
the connected players sharing the same password (the one used to generate the first flow). Below, we
show that all S has to do for the simulation to work is to make sure the produced values are consistent
only for the players belonging to the same components. Indeed, for neighbor players belonging to
different components, S can basically produce completely unrelated values, without worrying about
being caught, since the decrypted values zi are unrelated, from the beginning of the protocol.

Simulator: Session Initialization. The aim of the first flow is to create the subsets H of players
involved in the same protocol execution (see the split functionality, Section 2 and Figure 1). S chooses
the values (SKi,VKi) on behalf of the honest players and the value z∗i at random, rather than asking
an encryption query (it does not know the passwords of the players), then computes and sends the
commitments ci to A. The environment initializes a session for each honest (dummy) player, which is
modeled by the Init queries sent to the split functionality. The adversary (from the view of the ci of
the honest players) makes its decision about the subgroups it wants to make: it sends ci on behalf of
the players it wants to impersonate (they will become corrupted from the beginning of the session).
We then define the H sets according to the received {cj}: the honest players that have received the
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same {cj} (possibly modified by the adversary) are in the same subgroup H. The simulator forwards
these sets H (which make a partition of all the honest players) to the split functionality. The latter
then initializes ideal functionalities with sidH , for each subgroup H: all the players in the same session
received and thus use the same {cj}. The environment gets back this split, via the dummy players,
and then sends the NewSession queries on behalf of the latter, according to the appropriate sidH . The
simulator uses the commitments sent from the adversary to extract the password used (granted the
ideal tweakable cipher), and thus sends the appropriate NewSession queries on behalf of the corrupted
players (note that in case that no password can be extracted, a random one is used). Then, we can
focus on a specific session ssid′ = sidH for some set H.

Simulator: Main Idea. In a nutshell, the simulation of the remaining of the protocol depends on
the knowledge of the passwords by the simulator. First, if the simulator knows the password of a
player, it does everything honestly for every player belonging to its connected component. Otherwise,
it sets everything at random. In case of corruption, S learns the password, and can program the oracles
(random oracle and ideal tweakable cipher) and fill in the internal state of the player (and of all the
players in its connected component) in a consistent way. This last phase, which consists in programming
the oracle, may fail, but only if the adversary can solve an intractable problem (computational Diffie-
Hellman).

More precisely, in most of the cases, the simulator S just follows the protocol on behalf of all the
honest players. The main difference between the simulated players and the real honest players is that S
does not engage on a particular password on their behalf. However, if A generates/modifies a flow(1a)

or a flow(2a) message that is delivered to player P in session ssid′, then S extracts the password
pw, granted the ideal tweakable cipher, and uses it in a TestPwd query to the functionality. If this is a
correct guess, then S uses this password on behalf of P , and proceeds with the simulation.

The key point of the simulation consists in sending coherent Xi’s, whose values completely determine
the session key. To this aim, we consider two cases. First, if the players are all honest and share the
same password, the hi’s are chosen at random, but identically between two neighbors. If they do not
share the same passwords, they are simply set at random. Second, if there are corrupted players among
the players, the simulator determines the connected components, as described above, and the trick
consists in making the simulation coherent within those components since the adversary has no means
of guessing what happens between two components (the passwords are different).

If a session aborts or terminates, S reports it to A. If the session terminates with a session key
sk, then S makes a Key Delivery call to F̂GPAKE, specifying the session key. But recall that unless
enough players are corrupted, F̂GPAKE will ignore the key specified by S, and thus we do not have to
bother with the key in these cases.

5 Conclusion

This paper investigates a stronger security notion against insider adversaries, for password-based group
AKE. The protocol as presented in Section 3 achieves (n/2, n)-contributiveness; We also show how to
achieve (n− 1, n)-contributiveness in Appendix B.2.
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A The Ideal Functionalities

The Random Oracle Functionality. The random oracle ideal functionality has already been defined
by Hofheinz and Müller-Quade in [32]. We recall it in Figure 4.

Functionality FRO

The functionality FRO proceeds as follows, running on security parameter k, with parties P1,. . . ,Pn and an adversary S :

– FRO keeps a list L (which is initially empty) of pairs of bitstrings.
– Upon receiving a value (sid, m) (with m ∈ {0, 1}∗) from some party Pi or from S , do:

• If there is a pair (m, h̃) for some h̃ ∈ {0, 1}k in the list L, set h := h̃.
• If there is no such pair, choose uniformly h ∈ {0, 1}k and store the pair (m, h) in L.

Once h is set, reply to the activating machine (i.e., either Pi or S) with (sid, h).

Fig. 4. Functionality FRO

The Ideal Tweakable Cipher Functionality. Very informally, a tweakable cipher is a block cipher
that allows for a second input, called the tweak, on top of the key and the usual plaintext or ciphertext
input. The tweak is essentially a label that, along with the key, selects the permutation computed by
the cipher. The basic idea is that if changing tweaks is sufficiently lightweight (with respect to a key
setup operation), then some interesting new operation modes become possible.

As for random oracles, it is straight-forward to derive the ideal functionality for the ideal tweakable
cipher primitive. The functionality FITC takes as input the security parameter k, and keeps a (initially
empty) list L containing 4−tuples of bitstrings and a number of (initially empty) sets Ckey,label and
Mkey,label defined by

Ckey,label = {c | ∃m (key, label,m, c) ∈ L}

Mkey,label = {m | ∃c (key, label,m, c) ∈ L}.

It interacts with an adversary S and with a set of (dummy) parties P1,. . . ,Pn by means of several
queries. For more details, please refer to Figure 5.
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Functionality FIT C

The functionality FITC takes as input the security parameter k, and interacts with an adversary S and with a set of
(dummy) parties P1,. . . ,Pn by means of the following queries:

– FITC keeps a (initially empty) list L containing 4−tuples of bitstrings and a number of sets Ckey,label, Mkey,label

(initially empty).
– Upon receiving a query (sid, ENC, key, label, m) (with m ∈ {0, 1}k) from some Pi or S:

• If there is a 4−tuple (key, label, m, c̃) for some c̃ ∈ {0, 1}k in the list L, set c := c̃.
• If there is no such record, choose uniformly c in {0, 1}k \Ckey,label which is the set consisting of ciphertexts

not already used with key and label. Next, it stores the 4−tuple (key, label,m, c) in the list L.

Once c is set, reply to the activating machine with (sid, c).
– Upon receiving a query (sid, DEC, key, label, c) (with c ∈ {0, 1}k) from some party Pi or S:

• If there is a 4−tuple (key, label, m̃, c) for some m̃ ∈ {0, 1}k in the list L, set m := m̃.
• If there is no such record, choose uniformly m in {0, 1}k \Mkey,label which is the set consisting of plaintexts

not already used with key and label. Next, it stores the 4−tuple (key, label,m, c) in the list L.

Once m is set, reply to the activating machine with (sid, m).

Fig. 5. Functionality FIT C

B Generalization

B.1 Means of Authentication

When defining the ideal functionality for password-based group AKE in Section 2, we require all users
to have the same password in order to establish a common secret key. There are, however, other ways
of defining the ideal functionality which may be better suited to a particular application at hand. For
example, consider the case in which each pair of users has a different password associated with it. In
this scenario, we could envisage a definition which allows users to establish a common secret as long as
each user in the group shares a common password with its neighbors (assuming a particular ordering
of the users). We opted for the first formulation in this paper due to its simplicity.

As in [6], our results can also be extended to the case of partially authenticated networks, where
some of the parties involved in the protocol may have authenticated links available to them. As noted
by Barak et al. [6], this seems to be a much more realistic setting than the standard one that assumes
that either all pairs of parties or none of them are connected via authenticated channels.

B.2 (n − 1, n) Contributiveness

We have just shown that if there are two non-corrupted neighbors at some place in the cycle (see G7a),
then the key is completely unpredictable to the adversary, which is exactly (n/2, n)-contributiveness.
We now show how to extend this result to (n − 1, n)-contributiveness.

Note that one can construct p =
(
n
2

)
rings such that all pairs of players will be neighbors in one of

them. To achieve this result, one simply considers all possible pairs of players and then complete the
rings in an arbitrary way. It is actually possible to obtain a linear number of rings (see Lemma 2)

We now prove how such a construction can help the protocol achieve the (n−1, n)-contributiveness.
Consider a protocol consisting of p parallel executions of the protocol, in which the ssid includes the
number of the execution. To avoid malleability attacks in which the adversary replays messages in
different orders within the same session, we also ask players not to send separate values of ci and c′i for
each execution, but rather send unique values of ci and c′i for all executions. Similarly, a unique signing
and verification key is enough: a player signs an authenticator that involves the key material of all the
parallel executions. At the end of these parallel executions, each player has obtained p keys. If one of
them is an error message, it is given an error message. Otherwise, the final session key is defined as
the hash of all these keys.
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Assume that the players all have the same password. Then, if there are at least two non-corrupted
players, we consider the execution in which they are neighbors. We showed in G7 that, in this case, the
key of this execution is unpredictable to the adversary. This leads to a final key which is unpredictable
to the adversary, and thus to the (n− 1, n)-contributiveness.

Lemma 2. We can construct ⌈n/2⌉ rings of the n players such that for every pair (Pi, Pj) of players,
Pi and Pj are neighbors in at least one ring.

Proof. One can easily verify this result for n = 2 and 3, and we prove it recursively. Consider an odd
number n and assume that the result is true for n− 1 players. Denote by An−1 the algorithm for n− 1
players. We prove that the result is true for n and then for n + 1.

We first apply An−1 for the players P1, . . . , Pn−1 and we insert in each ring the player Pn between
two neighbors it has never seen until possible. We now prove that this manipulation will be possible
until the i0 = ⌊n/2⌋th ring.

Mark “s” a player which has already been a neighbor of Pn and “n” a player who has never been.
We want to show that there always exist two neighbors of type “n” until ring i0. The worst situation
is “(sn)(sn). . . (sn)nn. . . nn”, where the seen players are always between two non-seen players, thus
providing Pn from going into this place in the next ring.

Let i be a ring in which we could find a place for Pn between two “n” players. Since Pn sees two
more different players in each ring, it has seen 2(i − 1) players until ring i. The number of free places
(between two “n”) thus equals to (n-1) − [2(i − 1)] = n + 1 − 2i. To be able to insert Pn, we need at
least one free place, so that n + 1− 2i ≥ 1 and i ≤ n/2.

We do this manipulation from rings 1 to (n−1)/2. Then, Pn has seen n−1 players as neighbors, that
is, everyone. And An−1 is finished, too, since it consists of (n−1)/2 rings. Now, the only players which
have not met are those which should have met if we had not inserted Pn between them. But the pairs
separated by Pn are all distinct by construction, so that we are able to make them all meet in only one
ring (we simply juxtapose them). Finally, we found an algorithm for n players in (n−1)/2+1 = ⌈n/2⌉
rings.

We now show that the result is also true for n + 1 under the same assumptions. As before, we
use An and we insert Pn+1 between two never seen players until possible. Similarly, the last possible
ring is (n + 1)/2, but we choose to stop at ring (n − 1)/2. At this stage, Pn+1 has seen n − 1 players
as neighbors, that is, everybody except one. But the last ring of An consists of a juxtaposition of
independent pairs. Thus, we can insert Pn+1 next to the last neighbor, without changing anything to
the correctness of An. Finally, if n is odd, we showed how to obtain An and An+1 given An−1.

C Further Details on the Proof

C.1 Description of the Games

Game G0: Game G0 is the real game in the random-oracle and ideal-tweakable-cipher models:
the simulator simulates all the honest players as they would do according to the protocol, using the
passwords sent by the environment.

Game G1: We modify the previous game by simulating the hash and the encryption/decryption ora-
cles, in a quite natural and usual way. For the ideal tweakable cipher, we allow S to maintain a list Λε of
entries (queries, responses) of length qε + qD, composed of the two sub-lists: {(pw, (ssid, i), Y, α, E , Y ∗)}
for the encryption queries, and {(pw, (ssid, i), Y, α,D, Y ∗)} (for decryption). The first (resp. second)
sub-list is indeed used to indicate that the element Y (respectively Y ∗) has been encrypted (“E”)
(respectively decrypted (“D”)) to produce the ciphertext Y ∗ (resp. the plaintext Y ) via a symmetric
encryption algorithm that uses the key pw and tweak (ssid, i). Actually, for a new encryption query,
Y ∗ is randomly chosen, and α is set to ⊥. For a new decryption query, α is randomly chosen in Z

∗
q,
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and Y is set to gα. Such a list is used by S to be able to provide answers which are consistent with the
following requirements: 1) the same question for the same password/tweak pair will receive the same
answer; 2) the simulated scheme (for each password/tweak) is actually a permutation over G; 3) in
order to help S to later extract the password used in the first flow, there should not be two encryption
entries of the form (question, answer) with identical ciphertext and tweak, but different passwords:
a ciphertext (obtained by encryption) should correspond to a unique password. On the other hand,
any decryption of a ciphertext not obtained by encryption will provide the discrete logarithm at the
same time. S also maintains a list ΛH of tuples (i, q, r) where Hi(q) = r, used to properly manage the
queries for the random oracles Hi, excluding the collisions too. More precisely, we cancel the games
where these two kinds of collisions appear.

More precisely, the list Λε described above is actually composed of the two following sublists:
{(pw, (ssid, i), Y, α, E , Y ∗)} and {(pw, (ssid, i), Y, α,D, Y ∗)}. The first (resp. second) sublist is used to
indicate that the element Y (respectively Y ∗) has been encrypted (“E”) (respectively decrypted (“D”))
to produce the ciphertext Y ∗ (resp. Y ) via a symmetric encryption algorithm that uses the key pw for
user i in session ssid (with tweak (ssid, i)). The role of α will be explained later on. The simulator
manages the list of encryption and decryption queries through the following rules:

– For an encryption query Essid,i
pw (Y ) such that (pw, (ssid, i), Y, ∗, ∗, Y ∗) appears in the list Λε, the

answer is Y ∗. Otherwise, choose a random Y ∗ ∈ G∗. If (∗, (ssid, i), ∗, ∗, ∗, Y ∗) already belongs
to Λε, then abort, else add the new record (pw, (ssid, i), Y,⊥, E , Y ∗) to the list.

– For a decryption query Dssid,i
pw (Y ∗) such that (pw, (ssid, i), Y, ∗, ∗, Y ∗) appears in the list Λε, the

answer is Y . Otherwise, choose a random Y ∈ G∗. If (∗, (ssid, i), Y, ∗, ∗, Y ∗) already belongs to Λε,
then abort, else add the new record (pw, (ssid, i), Y,⊥,D, Y ∗) to the list.

The simulator also updates ΛH for the hash queries using the following general rule (where n stands
for 0, . . . , 4):

– For a hash query Hn(q) such that (n, q, r) appears in the list ΛH, the answer is r. Otherwise,
choose a random r ∈ {0, 1}ℓn . If (n, ∗, r) already belongs to ΛH, abort, else add (n, q, r) to the list.

The birthday paradox bound implies that G1 and G0 are statistically indistinguishable for properly
chosen oracle-output length.

Game G2: In this game, we reject an authenticator that is sent without having been asked to the
oracle H1. It makes a difference if one rejects such an authenticator that is actually valid. But this, of
course, happens only with negligible probability: G2 and G1 are statistically indistinguishable.

Game G3: We now furthermore reject any signed-authenticator that is non-oracle-generated whereas
the player is still honest: the adversary does not know the signing key, and thus cannot correctly sign
the authenticator. One can easily show that a difference between G2 and G3 would lead to an attack
against the one-time signature scheme.

Game G4: In this game, we formally modify the way we simulate the honest players. The simulator
still knows their passwords. In round 1, S sends a random value ci on behalf of Pi and afterwards, when
all cj have been sent, it sends a random value z∗i (chosen without asking the encryption oracle, since
we try to avoid the use of the password), and the verification key VKi, generated honestly. Finally, S
sets ci = H3(ssid, z∗i ,VKi, i) by programming the oracle. There is a negligible risk that the simulation
fails, if the adversary has already asked this query to the oracle, which probability is bounded by qh3

/q.
In round 2, S proceeds by using the password pwi: it asks for the three decryption queries, on z∗i , z∗i−1,
and z∗i+1, with key pwi and appropriate tweaks. Granted the way we simulate the decryption oracle, we
learn zi−1, zi, and zi+1, together with the discrete logarithm xi in base g of zi, unless the corresponding
encryption queries have been asked. Our simulation does not make any encryption, xi is not initialized
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if z∗i has been obtained has a ciphertext by the adversary: This happens with negligible probability.
Once we have xi, one can thus conclude by computing the Zi and Zi+1, and then hi, hi+1 and Xi.
Such a change in the process does not alter the view of the adversary, in any way, since this is a purely
syntactic rewriting, with negligible probability of failure.

Corruptions. If Pi gets corrupted, the simulator has to provide its internal state (in particular its
private exponent xi) to A. This is actually the discrete logarithm obtained during the simulation of
the decryption oracle on z∗i .

G4 is thus statistically indistinguishable from G3. Note that we do not use the password before
round 2. We will now try to avoid to use it before a corruption.

Game G5: In this game, we first deal with the passive case, in which all the flows are oracle-generated.
The simulation of the first three rounds is done as in G4 and we then consider two cases. If all the
flows were oracle-generated up to round 4, we require S to simulate the end of the execution of the
protocol on behalf of all the players. Otherwise, it simply follows the protocol (as above).

In the former case (with only oracle-generated flows up to round 4), the simulator starts round 4
by asking a SamePwd-query. Notice that since we are assuming that S knows all the passwords, this
boils down to verify that all the passwords are actually the same. Now we distinguish two cases: If
all passwords are the same, S asks a Delivery query with a random key and keyword yes to the
functionality for each player. Otherwise, all the players receive an error message. A problem only
appears if A asks the corresponding query to H0, but then it must have obtained the values hi and
event AskH, as described below, appears.

Remark 1. Note that if all the players have the same password, such a strategy makes this
game (almost) indistinguishable with respect to previous one. If, conversely, the players do not have all
the same password, they will end-up computing different Authi’s, thus getting an error message with
overwhelming probability. However, a problem may arise if the adversary asks the correct queries to
H2, which is the only way, given all the Xi, to have enough information about all the hi. Indeed, all
the Xi form (n− 1) independent linear combinations of the n variables hi. Fixing one hi0 to a random
value is another independent equation. More precisely, we have a unique solution (h1, . . . , hn) to this
system of n equations and n unknown, whatever value we give to this hi0 . This means that the value
of hi0 is unpredictable and cannot be guessed without having asked the correct query to H2. However,
such an event happens only with negligible probability, we call it AskH:

AskH: A queries the oracle H2 on the value r where there exists i such that r =
CDHg(D

ssid,i−1
pwi (z∗i−1),D

ssid,i
pwi (z∗i )) and there is no record of the form (pwi, (ssid, i −

1), ∗, ∗, E , z∗i−1) or (pwi, (ssid, i), ∗, ∗, E , z∗i ) in the list Λε.

The condition on the encryption queries is important: if z∗i−1 was obtained from an encryption
query, the adversary would know the secret exponent and could then compute the CDH in a trivial
way. Since this probability of AskH is negligible under the CDH assumption (see proof in Appendix C.2),
G5 and G4 are (computationally) indistinguishable.

Game G6: In this game, we suppose that S still knows the players’ passwords and we consider
two cases. Either some party has already been corrupted before round 2, then the simulator executes
the whole protocol honestly, as in G4. Or no corruption occurred before round 2, we will modify the
simulation in order not to use the passwords anymore. Their knowledge is still needed in the first case
(which will be dealt with in G7). We focus on the second case in this game: No corruption before the
second round.
S starts the protocol by sending, on behalf of each non-corrupted player Pi, random values ci,

z∗i and VKi, as in the previous game. If no corruption occurred, it then starts round 2 by asking a
SamePwd query. For simplicity we consider two cases here depending on whether it gets answer ’yes’ or
’no’. Recall that the players can only get a shared valid key in the first case; otherwise, they will get
an error.
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Case 1 – They all Share the Same Password (G6a): The simulator sends a random value c′i on
behalf of each player Pi. Once all values have been sent, it chooses at random the values hL

i and hR
i , with

the constraints that hL
i = hR

i−1 and hR
i = hL

i+1 (this is to ensure that X1⊕ . . .⊕Xn will be equal to 0 as
it has to). Finally, it programs the oracle H4 so that H4(ssid

′,Xi, i) = c′i. This simulation only fails if
A has already asked the query to the oracle for at least one Xi, which probability is bounded by qh4

/2ℓ2 .
At this stage every list contains at least the following values: (⊥, SKi,⊥,⊥, z∗i , ci,⊥,⊥, hR

i , hL
i+1,Xi, c

′
i).

Corruptions. If a player Pi gets corrupted afterwards, the simulator learns its password pwi and
asks for the decryption queries on z∗i , z∗i−1, and z∗i+1 with key pwi and the appropriate tweaks, as in
G4, recovering xi with overwhelming probability. S can then compute all the values in the list and
provide A with the internal state of the player. S finally programs the random oracle H2 so that the
computed values ZR

i and ZL
i+1 are consistent with the hR

i and hL
i+1 already sent, i.e. H2(Z

R
i ) = hR

i and
H2(Z

L
i+1) = hL

i+1. Event AskH can make this programming fail, see Remark 1.

Since we are assuming all players to have the same password (only one connected component), by
a similar reasoning we can fill the lists of each remaining player in exactly the same way (and with the
same, negligible, probability of failure).

Note that if a player receives a non-oracle-generated Xi, then it will receive a non-oracle-generated
Authi and σi, which will be refused, due to G3. Similarly, if a player receives a non-oracle-generated
Authi, it will refuse the corresponding signature.

In round 3, the simulator asks honestly the queries toH1, in order to provide the players with correct
authenticators, and computes (honestly) the corresponding signatures. In round 4, the simulator asks
a Delivery query with a random key to the functionality for each player. The keyword b is set to
yes except for the players who received non oracle-generated values of the authenticators. If a player
was corrupted before, S gets back the session key and can thus reprogram the oracle H0 accordingly.
Otherwise, event AskH must have appeared if A asks the corresponding query to H0, as in the former
game.

Corruptions. Note that in case of corruptions in rounds 3 or 4, the simulator can easily compute the
internal state as above, by only programming H2.

Case 2 – Some Players Have Different Passwords (G6b): The simulator provides each player Pi

with an independently-chosen random c′i. When all values have been sent, it gives them a value Xi

chosen at random and programs H4 in order that c′i = H4(ssid
′,Xi, i). This programming fails with

probability qh4
/2ℓ2 . (Note that as in the real game, it can happen that

∑
Xi = 0 with negligible

probability.) We then fill in the lists with z∗i and Xi: all other values are unknown to the simulator.
The corruptions are dealt as in Case 1 (this time however there will be some index j for which hR

j 6= hL
j+1

or hL
j 6= hR

j−1).

In round 3, the simulator provides the players with independently-chosen random values for the
authentication queries and the corresponding correct signatures. Finally, all the players are given an
error message in round 4. The corruptions are dealt with as in the former game.

Game G7: We will now conclude, by dealing with sessions where some corruption happened before
the second round. We will try not to make use of the knowledge of the password of the honest players.
Due to the use of the split functionality model of [6], we can assume that all the players received the
same values during the first round since we split the groups according to the first-round messages. In
particular, no flow was modified, and S can extract the password used in non-oracle-generated flow(1a)

and flow(1b) (corrupted players, from the beginning), granted z∗i and the list Λε. This extraction is
unique granted the collision-restriction included in the simulation (see G1). One can argue that this
strategy may fail if A never asked the corresponding encryption query. However, in such a case, A has
no control over the plaintext (and in particular no idea about the discrete logarithm), and we deal
with this case as if A had an incorrect password with respect to its neighbors (see below).
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We compare each corrupted player with the neighbor-sets of “consecutive” honest players belonging
to the same connected component (sharing the same password). Considering all the possible situations
in which a non-corrupted Pi can be, with respect to its neighbors (see Figure 6), we thus distinguish
6 mutually exclusive situations. In the first scheme of this figure, “=” means that the simulator knows
that Pi has the same password as the two nearest (on the left and on the right) corrupted players
(according to the passwords extracted from the encryption queries), whereas “ 6=” stands for different
passwords and “?” for unknown relation between the passwords. Corrupted players are denoted by A.
Some cases share the same index to denote the fact that they are actually symmetric and can be
studied as a single case.

A ... ← = → . . . Pi . . . ← = → ... A (1) A ... ← 6= → . . . Pi . . . ← = → ... A (2)

A ... ← = → . . . Pi . . . ← 6= → ... A (2) A ... ← 6= → . . . Pi . . . ← 6= → ... A (4)

A ... ← = → . . . Pi . . . ← ?→ ... A (3) A ... ← 6= → . . . Pi . . . ← ?→ ... A (5)

A ... ← ?→ . . . Pi . . . ← = → ... A (3)

A ... ← ?→ . . . Pi . . . ← 6= → ... A (5)

A ... ← ?→ . . . Pi . . . ← ?→ ... A (6)

(1) ZR
0

ZL
1
=ZR

1
ZL

2
=ZR

2
ZL

i =ZR
i ZL

i+1
=ZR

i+1
ZL

k
=ZR

k
ZL

k+1
=ZR

k+1
ZL

k+2

→ A ←→ P1 ←→ . . . ←→ Pi ←→ . . . ←→ Pk ←→ A ←
X0 X1 Xi Xk Xk+1

(2) ZR
0 ZL

1 =ZR
1 ZL

2 =ZR
2 ZL

k
=ZR

k
ZL

k+1
6=ZR

k+1
ZL

k+2

→ A ←→ P1 ←→ . . . ←→ Pk ← 6=→ Pk+1 ←
X0 X1 Xk

(3) ZR
0

ZL
1
=ZR

1
ZL

2
=ZR

2
ZL

k
=ZR

k
ZL

k+1
? ZR

k+1
ZL

k+2

→ A ←→ P1 ←→ . . . ←→ Pk ← ?→ Pk+1 ←
X0 X1 Xk

(4) (4a)→A←→ . . .← 6=→ . . .← ?→Pi← 6=→A← or (4b)→A← 6=→Pi← 6=→A←

or (4c)→ A ←→ . . . ← 6=→ . . . ← ?→ Pi ← ?→ . . . ← 6=→ . . . ←→ A ←

(5) ZR
0 ZL

1 =ZR
1 ZL

2 =ZR
2 ZL

i−1
=ZR

i−1
ZL

i 6=ZR
i ?

→ A ←→ P1 ←→ . . . ←→ Pi−1 ← 6=→ Pi ←
X0 X1 Xi−1

(6) → A . . . ← ?→ Pi ← ?→ . . . A ←

Fig. 6. The different cases of connected components

It is easy to verify that such cases cover the entire spectrum of possibilities. Notice that the simulator
can easily determine to which case each player belongs by means of the GoodPwd queries already asked.
This is because, as soon as S recovers the password used by some corrupted player, it asks a GoodPwd

query to the player’s two neighbors. For each query, if it returns “no”, S stops. Otherwise, it asks a
GoodPwd query to the next neighbor. This process is iterated until either a query returns “no”, or S
ends up having to query a player for which a GoodPwd query was already asked (recall that it is not
allowed to ask more than one GoodPwd query per player). This is why we can have a “?”, even next
to a corrupted player. Note that in the special case where we cannot recover a password used by a
corrupted player, we consider (without asking a GoodPwd query) that it is in Case (4b) on both sides:
the corrupted player does not share the same password with any of its neighbors.
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Now we proceed by describing the simulation of round 2 in all the cases. First note that only the
first case can lead to a real shared key. In all other cases, at least one password is different from the
others, thus the players all receive an error message. But we still have to be able to open correctly the
internal states, in case of corruption.

Case 1 (G7a): There exists a sequence P1, . . . , Pk of players (including Pi we are simulating), between
two corrupted players, all sharing the same password (case 1 in Figure 6). If there are more than
n/2 corrupted players, recall that A is granted the right to choose the session key. Since S knows the
password of this connected component, it can compute everything correctly. In addition, before sending
any Xi, it gets back the hi of the corrupted players due to the c′i and the random oracle lists, and
queries the oracle H0 to obtain the session key. It then queries the functionality with a SamePwd, which
either sets the key to this value or to error. This way, S has set the key to the value that A has chosen
by the means of the values sent by the corrupted players. It will be able to reply back to A with this
particular key when the former asks the corresponding query to H0 – which query is unpredictable
to A until it receives the Xi.

If there are at most ⌊n/2 − 1/2⌋ corrupted players, there exists at least one component of honest
players P1, . . . , Pk in which k ≥ 2. This is the key point of the generalization presented in Appendix B.2.
In the components where k = 1, since the simulator knows the password of P1, it can simulate it
perfectly. In the components where k ≥ 2, the simulator thus provides the players with independently
chosen random c′j . Once step (2a) is finished, it computes honestly the values hL

1 and hR
k but chooses

at random all the other ones, with the constraint that hL
i = hR

i everywhere iteratively (see Remark 1).
As before, S also programs the oracle H4 so that H4(ssid

′,Xj , j) = c′j , with negligible probability of
failure. Before sending any Xi, S asks a SamePwd and a Delivery query for a corrupted player, with a
random key and keyword yes, this way getting either the value of the key or an error. If a key was
set, S recovers the hi of the corrupted players and programs H0 to this value. This programming only
fails if AskH appears. In this component, all the Xj are thus unpredictable to the adversary. At this
stage every list contains at least the following values: (⊥,⊥,⊥, z∗i , ci,⊥,⊥, hR

i , hL
i+1,Xi, c

′
i). In case of

later corruption, one proceeds as in G6a.

Cases 2 and 3 (G7b): There exists a sequence P1, . . . , Pk of players (including Pi we are simulating),
next to a corrupted player, all sharing the same password, but not necessarily with Pk+1 (the sequence
of successful GoodPwd queries stopped with it or a GoodPwd query already failed from the right side of
Pk+1). See cases 2 and 3 in Figure 6.

Again, the simulation is perfect for the k first players, since the simulator knows the password
shared among P1 . . . Pk. Then, S sends a random Xk+1 on behalf of Pk+1.

In case of later corruption, we point out that in round 1, the two (not yet corrupted) players Pk

and Pk+1, sent the values z∗k and z∗k+1 without having asked any encryption query. This means that there
is a negligible probability that A has asked the corresponding encryption query with tweaks (ssid, k)
and (ssid, k + 1), respectively. In fact, querying H2(Zk+1) in this context is exactly event AskH, which
means that A cannot distinguish Xk+1 from the exact value, and the later programming will succeed,
with all but with negligible probability, as in G5.

Cases 4, 5 and 6 (G7c): Pi doesn’t share the same password with any of its two nearest corrupted
neighbors (see Case 4 in Figure 6), or with one of them (see Case 5), or we do not know (Case 6). In
this case, we let Xi be random, but nothing else is known except z∗i and Xi for Pi. First note that Pi

is uncorrupted and has sent z∗i without asking any encryption query. First case, if Pi’s neighbor (say
Pi+1) is a corrupted player, the latter did not ask an encryption query resulting in z∗i+1 with password
pwi and tweak (ssid, i) (simply because it queried the encryption oracle with pw, tweak (ssid, i + 1),
and we are assuming pwi 6= pw). Second case, if Pi+1 is an honest player, then it must have sent z∗i+1

without having invoked the encryption oracle. Thus, in both cases, A can realize that Xi was not
properly chosen only if AskH occurs. Later corruptions are dealt with as in G5.
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Last Steps: These are dealt with exactly as in the previous game, according to the SamePwd-query
answer. Only the first case must be dealt with care: S does not give a random key, but the key obtained
by the first Delivery query asked above.

Thus, ignoring the event AskH, whose (negligible) probability is computed in Appendix C.2, G7

and G6 are indistinguishable.

Game G8: This game is almost the same as the previous one, except that we formalize the behavior
of the simulator by introducing the queries to the functionality, in place of the GoodPwd, SamePwd
and Delivery-queries. More precisely, we only replace the hybrid queries GoodPwd and SamePwd with
their ideal equivalents. Informally, S behaves not according to the messages sent, but to the messages
received (probably modified by the adversary). In round 1, S sends a random z∗i on behalf of each
non-corrupted player. For round 2, see games G6 and G7. In round 3, S asks key delivery queries with
a random key, or the key obtained before, see G7a. In round 4, S sets b to no for the players receiving
a non-oracle generated flow in round 3, and to yes for the others. If a session aborts or terminates,
then S reports it to A. We now show that G8 is indistinguishable from the ideal game. Say that the
players have matching sessions if they share the same ssid′ (which implies that they share the same
V Ki and z∗i due to the use of the split functionality).

It is clear that players sharing the same password will obtain a random key, both in G8 (from G5)
and IWE (except for players receiving non-oracle generated flows, modeled by the bit b). This key
will be not chosen by the adversary unless there are enough corrupted players (since there will always
be two honest players next to each others, see G7). Finally, players not sharing the same password will
receive an error. Now, we need to show that two players will receive the same key in G8 if and only if
it happens in IWE.

This is clearly the case for players with matching session (with or without the same password).
This follows from G5 or G7 in the real world, and from the NewSession queries mentioning the same
group of players in the ideal world. Finally, consider the case of players with no matching sessions. It is
clear that in G8 the session keys of those players will be independent because they are not set in any
of the games. In IWE, the only way that they receive matching keys is that the functionality receives
two NewSession queries with the same ssid′ and a group where all players share the same passwords.

C.2 Probability of AskH

We now show that event AskH happens with negligible probability, with the help of a reduction to
the CDH problem, given one CDH instance (U, V ). At the beginning of the game, globally for all
sessions, S chooses two decryption queries. With probability 1/(q2

D), qD being the number of de-
cryption queries, these queries will correspond to those really asked by the adversary. For these
two queries, we use U and V to simulate them. More precisely, for the first decryption query z∗i ,
if (∗, (ssid, i), ∗, ∗, ∗, z∗i ) ∈ Λε, abort. Otherwise, add (pw, (ssid, i), U,⊥,D, z∗i ) to the list. For the sec-
ond one, z∗j , if (∗, (ssid, j), ∗, ∗, ∗, z∗j ) ∈ Λε, abort. Otherwise, add (pw, (ssid, j), V,⊥,D, z∗j ) to the
list.

Let AskH′ be the event in which A has queried the random oracle H2 on the value

CDH(D(ssid,i)
pw (z∗i ),D(ssid,j)

pw (z∗j )).

This implies that |Pr (AskH′)| = q2
D qH2

|Pr (AskH)|, qH2
being the number of queries to the random

oracle H2. As we know that CDH(zi, zj) = CDH(U, V ), we finally note that if A raises event AskH,
it has solved the CDH problem, which happens only with negligible probability.
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