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Abstract. In the security chain the weakest link is definitely the human one: human beings cannot
remember long secrets and often resort to rather insecure solutions to keep track of their passwords or
pass-phrases. For this reason it is very desirable to have protocols that do not require long passwords
to guarantee security, even in the case in which exhaustive search is feasible. This is actually the goal
of password-based key exchange protocols, secure against off-line dictionary attacks: two people share a
password (possibly a very small one, say a 4-digit number), and after the protocol execution, they end-up
sharing a large secret session key (known to both of them, but nobody else). Then an adversary attacking
the system should try several connections (on average 5,000 for the above short password) in order to be
able to get the correct password. Such a large number of erroneous connections can be prevented by various
means.
Our results can be highlighted as follows. First we define a new primitive that we call trapdoor hard-to-invert
group isomorphisms, and give some candidates. Then we present a generic password-based key exchange
construction, that admits a security proof assuming that these objects exist. Finally, we instantiate our
general scheme with some concrete examples, such as the Diffie-Hellman function and the RSA function,
but more interestingly the modular square root function, which leads to the first scheme with security
related to the integer factorization problem. Furthermore, the latter variant is very efficient for one party
(the server). Our results hold in the random-oracle model.
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1 Introduction

Shortly after the introduction of the revolutionary concept of asymmetric cryptography, proposed in
the seminal paper by Diffie and Hellman [11], people realized that properly managing keys is not a
trivial task. In particular private keys tend to be pretty large objects that have to be safely stored in
order to preserve any kind security. Specific devices have thus been developed in order to help human
beings in storing their secrets, but it is clear that even the most technologically advanced device may
become useless if lost or stolen. In principle the best way to store a secret is to keep it in memory. In
practice, however, human beings are very bad at remembering large secrets (even if they are passwords
or pass-phrases) and very often they need to write passwords down on a piece of paper in order to
be able to keep track of them. As a consequence, either one uses a short (and memorable) password,
or writes/stores it somewhere. In the latter case, security eventually relies on the mode of storage
(which is often the weakest part in the system: a human-controlled storage). In the former case, a
short password is subject to exhaustive search.

Indeed, by using a short password, one cannot prevent a brute force on-line exhaustive search
attack: the adversary just tries some passwords of its own choice in order to try to impersonate a
party. If it guesses the correct password, it can get in, otherwise it has to try with another password.
In many applications, however, the number of such active attacks can be limited in various ways. For
example one may impose some delay between different trials, or even closing the account after some
fixed number of consecutive failures. Of course the specific limitations depend very much on the context
– other kind of attacks, such as Denial of Service ones, for example, should be made hard to mount
also. In any case, the important point we want to make here is that the impact of on-line exhaustive
search can be limited. However on-line attacks are not the only possible threats to the security of
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a password-based system. Imagine for example an adversary who has access to several transcripts
of communication between a server and a client. Clearly the transcript of a “real” communication
somehow depends on the actual password. This means that a valid transcript (or several ones) could
be used to “test” the validity of some password: the adversary chooses a random password and simply
checks if the produced transcript is the same as the received one. In this way it is possible to mount
an (off-line) exhaustive search attack that can be much more effective than the on-line one, simply
because, in this scenario, the adversary can try all the possible passwords until it finds the correct
one. Such an off-line exhaustive search is usually called a “dictionary attack”.

1.1 Related Work

A password-based key exchange is an interactive protocol between two parties A and B, who initially
share a short password pw , that allows A and B to exchange a session key sk. One expects this
key to be semantically secure w.r.t. any party, except A and B who should know it at the end of
the protocol. The study of password-based protocols resistant to dictionary attacks started with the
seminal work of Bellovin and Merritt [4], where they proposed the so-called Encrypted Key Exchange
protocol (EKE). The basic idea of their solution is the following: A generates a public key and sends
it to B encrypted—using a symmetric encryption scheme—with the common password. B uses the
password to decrypt the received ciphertext. Then it proceeds by encrypting some value k using the
obtained public key. The resulting ciphertext is then re-encrypted (once again using the password)
and finally sent to A. Now A can easily recover k, using both his own private key and the common
password. A shared session key is then derived from k using standard techniques.

A classical way to break password-based schemes is the partition attack [5]. The basic idea is
that if the cleartexts encrypted with the password have any redundancy, or lie in a strict subset, a
dictionary attack can be successfully mounted: considering one flow (obtained by eavesdropping) one
first chooses a password, decrypts the ciphertext and checks whether the redundancy is present or
not (or whether the plaintext lies in the correct range). This technique allows one to select probable
passwords quickly, and eventually extract the correct one.

The partition attack can be mounted on many implementations of EKE, essentially because a
public key usually contains important “redundancy” (as a matter of fact a public key—or at least its
encoding—is not in general a random-looking string). Note that in the described approach (for EKE),
the same symmetric encryption (using the same password) is used to encrypt both the public key, and
the ciphertext generated with this key. This may create additional problems basically because these
two objects (i.e. the public key and the ciphertext) are very often defined on completely unrelated sets.
A nice exception to this general rule are ElGamal keys [13]. This is thus the sole effective application
of EKE.

For this case, indeed, if common parameters are fixed (i.e. the group G = 〈g〉), one may very well
have that the public key and the produced ciphertexts are elements in the same cyclic group. For this
reason this is basically the unique, concrete, implementation of EKE presented so far. Formal security
proofs for ElGamal based EKE have been proposed by Boyko et al. [6], Bellare et al. [1], and Bresson et
al. [7, 8]. They stated resistance to dictionary attacks in the random-oracle model, and the ideal-cipher
model too.

As noticed by the original authors [4], and emphasized by Lucks [20], it is “counter-intuitive (. . . )
to use a secret key to encrypt a public key”. For this reason Lucks [20] proposed OKE, (which stands
for Open Key Exchange). The underlying idea of this solution is to send the public key in clear and to
encrypt the second flow only. Adopting this new approach, additional public-key encryption schemes
can be considered (and in particular RSA [26] for instance). However, one has to be careful when
using RSA. The problem is that the RSA function is guaranteed to be a permutation only if the
user behaves honestly and chooses his public key correctly. In real life, however, a malicious user may
decide to generate keys that do not lead to a permutation at all. In such a case a partition attack
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becomes possible: an RSA-ciphertext would lie in a strict subset of Z?
n. For this reason Lucks proposed

a variant of his scheme, known as Protected OKE, to deal with the case of RSA properly. Later,
however, MacKenzie et al. [22, 21] proved that the scheme was flawed by presenting a way to attack
it. At the same time they showed how to repair the original solution by proposing a new protocol
they called SNAPI (for Secure Network Authentication with Password Identification), for which they
provided a full proof of security in the random-oracle model. This proof, however, is specific to RSA,
in the random-oracle model, and very intricate.

Moreover their solution is not very efficient because of the fact that, in order to make sure that the
RSA function is a permutation, they use, as public exponent e, a prime number that is larger than any
possible choice of the modulus. For this reason the resulting protocol has the same prohibitive cost
for each party, exactly as ElGamal-EKE or ElGamal-OKE. More recently, Zhu et al. [31] addressed the
problem of efficiency by making possible the use of a small exponent. The resulting protocol becomes
well-suited for imbalanced applications. However no complete proof of security was presented for this
last scheme. Finally shortly after the publication of the first version of this paper [9], Zhang [30]
proposed a method that actually improves on all of the RSA based constructions (including ours).

Interestingly enough, in the standard model, the problem of secure password-based protocols was
not treated rigorously until very recently. The first rigorous treatment of the problem was proposed by
Halevi and Krawczyk [16] who, however, proposed a solution that requires other setup assumptions on
top of that of the human password. Later, Goldreich and Lindell [15] proposed a very elegant solution
that achieves security without any additional setup assumption. The Goldreich and Lindell proposal
is based on the sole existence of trapdoor permutations and, even though very appealing from a
theoretical point of view, is definitely not practical. The first practical solution was proposed by Katz,
Ostrovsky and Yung [17]. Their solution is based on the Decisional Diffie-Hellman assumption and
assumes that all parties have access to a set of public parameters (which is of course a stronger set-up
assumption than assuming that only human passwords are shared, but still a weaker one with respect
to the Halevi-Krawczyk ones for example). Even more recently Gennaro and Lindell [14] presented an
abstraction of the Katz, Ostrovsky and Yung [17] protocol that allowed them to construct a general
framework for authenticated password-based key exchange in the common reference string model.

We note here that even though from a mathematical point of view a proof in the standard model is
always preferable to a proof in the random-oracle model, all the constructions in the standard model
presented so far are way less efficient with respect to those known in the random-oracle model. It is
true that a proof in the random-oracle model should be interpreted with care, more as a heuristic
proof than a real one. On the other hand in many applications efficiency is a big issue and it may be
preferable to have a very efficient protocol with a heuristic proof of security than a much less efficient
one with a complete proof of security.

1.2 Our Contributions

In this paper, we revisit the generic OKE construction by clearly stating the requirements about
the primitive to be used: we need a family of group isomorphisms with some specific computational
properties that we call trapdoor hard-to-invert group isomorphisms (see the next section for a formal
definition for these objects). Very roughly a trapdoor hard-to-invert group isomorphism, can be seen
as an isomorphic function that is in general hard-to-invert, unless some additional information (the
trapdoor) is provided. Note that such an object is different with respect to traditional trapdoor
functions. A trapdoor one-way function is always easy to compute, whereas a trapdoor hard-to-invert
function may be not only hard to invert, but—at least in some cases—also hard to compute [12]. As
it will become apparent in the next sections, this requirement is not strong because basically all the
classical public-key encryption schemes fit it (RSA [26], Rabin with Blum moduli [25], ElGamal [13],
and even the more recent Okamoto-Uchiyama’s [23] and Paillier’s schemes [24]). More precisely our
results can be described as follows.
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First, after having described our security model, we present a very general construction—denoted
IPAKE for Isomorphism for Password-based Authenticated Key Exchange—and we prove it is secure. Our
security result relies on the computational properties of the chosen trapdoor hard-to-invert isomor-
phism family, in the random-oracle model. As a second result we pass instantiating the general con-
struction with specific encryption schemes. We indeed show that trapdoor hard-to-invert isomorphisms
can be based on the Diffie-Hellman problem, on the RSA problem, and even on integer factoring.

We postpone to Appendix D the two first applications, since they are not really new. Plugging
ElGamal directly leads to one of the AuthA variants, proposed in IEEE P1363 [3], or to PAK [6].
The security has already been studied in several ideal models [6–8]. The case of RSA leads to a
scheme similar to RSA-OKE, SNAPI [22, 21], or to the scheme proposed by Zhu et al. [31]. However,
we believe that some of our techniques may be of independent interest: we present some methods to
prove (efficiently) that a given function is a permutation with respect to the given public key.

More interestingly using such methods we can construct a very efficient solution from the Rabin
function. To our knowledge this is the first efficient password-based authenticated key exchange scheme
based on factoring.

2 Preliminaries

Denote with N the set of natural numbers and with R+ the set of positive real numbers. We say that
a function ε : N → R+ is negligible if and only if for every polynomial P (n) there exists an n0 ∈ N
such that for all n > n0, ε(n) ≤ 1/P (n).

If A is a set, then a ← A indicates the process of selecting a at random and uniformly over A
(which in particular assumes that A can be sampled efficiently).

2.1 Trapdoor Hard-to-Invert Group Isomorphisms

Let I be a set of indices. Informally a family of trapdoor hard-to-invert group isomorphisms is a family
F = {fm : Xm → Ym}m∈I satisfying the following conditions:

1. one can easily generate an index m, which provides a description of the function fm – a morphism –,
its domain Xm and range Ym (which are assumed to be isomorphic, efficiently uniformly samplable
finite groups), and a trapdoor tm;

2. for a given m, one can efficiently sample pairs (x, fm(x)), with x uniformly distributed in Xm;
3. for a given m, one can efficiently decide Ym, meaning with this that on input m and a candidate

value y one can efficiently test if y ∈ Ym or not1.
4. given the trapdoor tm, one can efficiently invert fm(x), and thus recover x;
5. without the trapdoor, inverting fm is hard.

This definition looks very similar to the definition of trapdoor one-way bijective functions when
the domain and the codomain of each function in the family are isomorphic groups. There is a crucial
difference however: here one can sample pairs, but may not necessarily be able to compute fm(x) for
a given x (point 2 above). As a consequence, the function is hard-to-invert, but it may be hard to
compute as well.

Informally property 2 tells us that, on input an index m, one can efficiently sample elements
x ∈ Xm such that computing fm(x) is easy. We formalize this special “samplability” requirement by
introducing two polynomial time Turing machines Samplex and Sampley. Informally Samplex takes as
input an index m and some random value (in the appropriate range) r and produces as output an
element x ∈ Xm with the following properties. (1) x is uniformly distributed in Xm and (2) computing
1 Note that, since our constructions rely on the random oracle model, the efficient samplability property makes possible

a random oracle that outputs a uniformly distributed element in Ym, from a classical random oracle that outputs bit
strings.
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fm(x) can be done efficiently from r and m, applying Sampley. Indeed, Sampley takes as input an
index m and some random value r, and produces as output the element y = fm(Samplex(m, r)) ∈ Ym.
Therefore, y is uniformly distributed in Ym, and x = f−1

m (y) can be computed efficiently from r and
m, applying Samplex.

Notice that if one can efficiently compute r from both m and x = Samplex(m, r) then one can also
efficiently compute fm(x) on any input x. On the other hand, if one assumes that computing r from
both m and x = Samplex(m, r) is infeasible, then the task of computing fm(x) on a random input x
may be hard as well.

Formally we say that F defined as above is a family of trapdoor hard-to-invert group isomorphisms if
the following conditions hold:

1 – There exist a polynomial p and a probabilistic polynomial time Turing machine Gen which on
input 1k (where k is a security parameter) outputs pairs (m, tm) where m is uniformly distributed
in I ∩ {0, 1}k and |tm| < p(k). The index m contains the description of Xm and Ym, which are
isomorphic groups, an isomorphism fm from Xm onto Ym and a set Rm of uniformly and efficiently
samplable values, which will be used to sample (x, fm(x)) pairs. The information tm is referred as
the trapdoor.

2.1 – There exists a polynomial time Turing machine Samplex which on input m ∈ I and r ∈ Rm

outputs x ∈ Xm. Furthermore, for any m, the machine Samplex(m, ·) implements a bijection from
Rm onto Xm

2.
2.2 – There exists a polynomial time Turing machine Sampley, which on input m ∈ I and r ∈ Rm

outputs fm(x) for x = Samplex(m, r). Therefore, Sampley(m, r) = fm(Samplex(m, r)).
3 – There exists a polynomial time Turing machine Checky which, on input m ∈ I and any y, answers

whether y ∈ Ym or not.
4 – There exists a (deterministic) polynomial time Turing machine Inv such that, for all m ∈ I and

for all x ∈ Xm, Inv(m, tm, fm(x)) = x.
5 – For every probabilistic polynomial time Turing machine A we have that, for large enough k,

Pr[(m, tm)← Gen(1k) ; x
R← Xm ; y = fm(x) : A(m, y) = x] ≤ ε(k),

where ε(·) is a negligible function.

In the rest of this paper, to shorten slightly the name of the primitive defined above, we refer to
it as trapdoor hard-to-invert isomorphisms (rather than trapdoor hard-to-invert group isomorphisms).

2.2 Verifiable Sub-Families of Trapdoor Hard-to-Invert Isomorphisms

Let I be the set of indices defined as above. In the definition given in the previous section we assumed
that for any m ∈ I, the function fm is an isomorphism from the group Xm onto the group Ym.

In practice, however, this assumption may be somehow unrealistic. Imagine, for example, the case
in which a malicious client (i.e. one that does not share any password with the server) decides to
propose an index s 6∈ I, such that fs is not an isomorphism between Xs and Ys. It goes without saying
that this would have catastrophic consequences as it allows the client to run a partition attack (as
already explained for the case of the RSA function).

To overcome this problem we restrict our attention to a specific class of trapdoor hard-to-invert
isomorphisms, that we call verifiable. In a nutshell a trapdoor hard-to-invert isomorphism fs is said
to be verifiable if from an index s it is possible to prove (efficiently and in zero-knowledge) that fs is
actually an isomorphism between Xs and Ys.

2 Having a bijection from Rm to Xm allows one to choose an element r ∈ Rm uniformly and then get a uniformly
distributed element x ∈ Xm
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In our scenario, we exploit this useful feature by requiring the client to produce a function f (or
an index m) together with a proof that it is actually an isomorphism (or that m actually lies in I).
More precise details follow.

Let S be a samplable set of indexes, for which there may exist some indices s such that fs is not an
isomorphism between Xs and Ys. We say that F ′ = {fs}s∈S contains a verifiable subfamily of trapdoor
hard-to-invert isomorphisms if the following conditions are met:

– There exists a subset I ⊆ S, such that F = {fm : Xm → Ym}m∈I is a family of trapdoor hard-to-
invert isomorphisms;

– There exists an efficient zero-knowledge proof of membership for the language I.

2.3 Zero-Knowledge Proofs of Membership

As noticed above, the only property we want to be able to verify is the isomorphic one, i.e. the fact
that a given index m actually lies in I.

Standard zero-knowledge proof systems allow one to achieve this without revealing any side infor-
mation. Moreover, by the soundness property, one has that a cheating client can convince the server
of a false statement only with negligible probability.

In our security proof we assume that a given valid index m is given to the simulator. The goal of
the simulator is then to be able to use the adversary to break some conjectured hard problem related
to m (soundness).

For technical reasons, that will become apparent from the security proof, we also need the simulator
to be able to simulate a proof of validity of m without actually knowing the corresponding witness. In
other words the simulator needs to prove that the received m lies in I without actually knowing why
this is the case (the witness), but knowing that this is actually the case (zero-knowledge).

Thus in order for our proof to go through correctly we need to assume that the employed zero-
knowledge proof remains sound even if the adversary is allowed to see a simulated proof (not of
its choosing), of a true statement. This notion of soundness is reminiscent to that of simulation
soundness introduced by Sahai [28] for the case of non-interactive proofs. Sahai’s notion assumes that
the adversary gets access to a limited number of simulated proofs before attempting to produce his
own (fake) one. This notion was later extended by De Santis et al. [10] to the unbounded case (the
reader is referred to [28] and [10] for further details not discussed here).

Note however that in our case the problem is quite different: in Sahai’s definition the adversary is
allowed to see a bounded number of simulated proofs of its own choice, and thus of possibly wrong
statements, before attempting to generate a false one. In our setting, on the other hand, we allow the
adversary to see simulated proofs for valid statements that come from outside and on which, then, the
adversary has no control. A simple argument (honest players will sample m by running the trapdoor
hard-to-invert isomorphisms generation algorithm Gen on input 1k, which also outputs the trapdoor
information tm to be used as a witness for m) shows that, for our protocols, the standard notion of
soundness suffices to model the security properties we require.

Furthermore, since we just have to simulate one proof without the witness (other executions will
be performed as in an actual execution, knowing the trapdoor information) concurrent zero-knowledge
is not needed here.

One may observe that, in principle, the above reasoning does not rule out the fact that concurrent
soundness might still be required, in a general—possibly interactive—setting. We point out, however,
that concurrent soundness is not an issue in our setting. This is because, for efficiency reasons, we
focus on a very specific class of proofs, which are almost entirely non-interactive. More precisely, for
a given statement m, the verifier sends a random seed seed and then the prover non-interactively
provides a proof p = Provem(m,w, seed) using a witness w that m ∈ I, w.r.t. the random seed seed;
the proof can be checked without the witness by just checking if Checkm(m, seed, p) = 1.
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Definition 1. Let k be a security parameter and let p(·) be a polynomial, we denote with Seeds an
efficiently samplable set of challenges such that ∀ seed ∈ Seeds one has that |seed| < p(k). Moreover,
denoting with R a witness relation for the language I and with Provem and Checkm two probabilistic
algorithms whose running time is polynomial in k, we require

Completeness – For all seed ∈ Seeds, for all m ∈ I and all w such that R(m,w) = 1, we have that

Checkm(m, seed,Provem(m,w, seed)) = 1.

Soundness – For all probabilistic polynomial time adversariesA = (A1, A2), one has that Succforge(A) =
Pr[Exp(A)] is negligible in k, where this probability is taken over the random coin tosses of A,
and where Exp(A) is defined as follows:

Exp(A) :
(m, state)← A1(1k)

seed
R← Seeds

p← A2(m, seed, state)
return 1 iff

(m 6∈ I) ∧ (Checkm(m, seed, p) = 1)

Zero-Knowledge – There exists a probabilistic polynomial time machine (i.e. a simulator) S such
that for all m ∈ I, for all seed ∈ Seeds, and for all adversaries A, we have that the following
distributions

{ViewA[(m, seed, p) | p← Provem(m,w, seed)]}

and {ViewA[(m, seed, p) | p← S(m, seed)]}

are (perfectly/statistically) indistinguishable. We denote by Advsim(S,A) the statistical distance
between the two distributions, and by Advsim(T ) the best distance one can get with a simulator
running within time T whatever the adversary A is (min/max).

Now we briefly discuss why the definition given above is enough for our purposes. Recall that, basically,
all that we need to make sure is that a cheating prover should not be able to convince an honest verifier
of a false theorem even after having seen a valid (but simulated) proof for a different index. Thus, any
prover P that manages to produce a false proof after having seen a valid one, can be turned into a
prover P ′, breaking the soundness property, as follows. P ′ runs algorithm Gen (on input 1k) in order
to obtain the couple (m, tm). Next, it produces a valid proof p for m, using tm and feeds P with
p. Finally, P ′ outputs whatever P produces. Notice that p is (at least) statistically indistinguishable
from a simulated proof, thus the probability of success of P ′ is basically the same as the probability
of success of P .

Again, for efficiency reasons, and since our results hold in the random oracle model, we focus on
zero-knowledge proofs which can be simulated without rewinding the adversary. This can be efficiently
realized by taking advantage of the programmability of the random oracle: the simulator is given full
control of the oracle and, in particular, it is allowed to answer new oracle queries arbitrarily (as long
as the provided values are uniformly distributed in the co-domain of the oracle). As a final note, we
point out that, in our construction, we always provide proofs which are zero knowledge in a statistical
sense 3.

3 The reason why we cannot achieve perfect zero knowledge will become apparent from the proof of security. Very
informally, this comes from the fact that, in the proof of security one has to take into account the fact that, due to
the birthday paradox, the simulator may fail to program the oracle correctly with some negligible probability
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2.4 Concrete Examples

The Diffie-Hellman Family. The most natural example of family of trapdoor hard-to-invert iso-
morphisms is the Diffie-Hellman one. The machine Gen, on input the security parameter k, does as
follows. First it chooses a random prime q of size k, and a prime p such that q divides p− 1. Next, it
chooses a subgroup G of order q in Z?

p and a corresponding generator g. Finally it chooses a random
element a in Zq, it sets h = ga mod p and outputs the pair (m, tm) where tm = a and m is an encoding
of (g, p, q, h). This defines our set I.

Now fm is instantiated as follows. Set Xm = Ym = G\{1}, Rm = Zq and Samplex : Zq → G
is defined4 as Samplex(x) = gx mod p. Moreover fm is defined as (for any X ∈ G\{1}): fm(X) =
Xa mod p.

Clearly, to evaluate fm on a random point X efficiently, one should know either the trapdoor
information a or any x such that Samplex(x) = X (assuming, of course, that the computational Diffie-
Hellman problem is infeasible in G) and Sampley(x) = hx. Similarly knowledge of the trapdoor is
sufficient to invert fm on a random point Y : Inv(a, Y ) = Y 1/a. However inverting the function without
knowing the trapdoor seems to be infeasible. Nevertheless, Ym = G is efficiently decidable: Checky(y)
simply checks whether yq = 1 mod p or not.

For our functions to be isomorphisms, one just needs a to be co-prime with q, where q is actually the
order of g. For better efficiency, the group information (g, p, q) can be fixed, and considered as common
trusted parameters. Therefore, Gen just chooses a and sets h = ga mod p: one just needs to check that
h 6= 1 mod p and hq = 1 mod p, no witness is required, nor additional proof: Provem does not need
any witness for outputting any proof, since Checkm simply checks the above equality/inequality.

The RSA Family. Another natural example is the RSA permutation. In this case the machine Gen
on input the security parameter k does as follows. First it chooses two random primes p, q of size k/2
and sets n = pq. Next, it chooses a public exponent e such that gcd(e, ϕ(n)) = 1. Finally it outputs
the pair (m, tm) where tm = (p, q) and m is an encoding of (n, e).

The function fm is instantiated as follows. Set Xm = Ym = Rm = Z?
n, and Samplex : Z?

n → Z?
n is

the identity function, i.e. Samplex(x) = x. The function fm is defined as (for any x ∈ Z?
n): fm(x) =

xe mod n. Hence, Sampley(x) = xe mod n. The Inv algorithm is straightforward, granted the trapdoor.
And the Checky algorithm simply has to check whether the element is prime to n.

As already noticed, since Samplex is easy to invert, the RSA family is not only a trapdoor hard-to-
invert isomorphism family, but also a trapdoor one-way permutation family. However, actually to be
an isomorphism, (n, e) does not really need to be exactly as defined above, which would be very costly
to prove (while still possible). It just needs to satisfy gcd(e, ϕ(n)) = 1, which defines our set I. An
efficient proof of validity is provided in Appendix D.2, where both Provem and Checkm are formally
defined.

The Squaring Family. As a final example, we suggest the squaring function which is defined as the
RSA function with the variant that e = 2. A problem here arises from the fact that squaring is not
a permutation over Z?

n, simply because 2 is not co-prime with ϕ(n). However, if one considers Blum
moduli (i.e. composites of the form n = pq, where p ≡ q ≡ 3 mod 4) then it is easy to check that the
squaring function becomes an automorphism onto the group of quadratic residues modulo n (in the
following we refer to this group as to Qn). However this is not enough for our purposes. An additional
difficulty comes from the fact that we need an efficient way to check if a given element belongs to Ym

(which would be Qn here): the need of an efficient algorithm Checky. The most natural extension of
Qn is the subset Jn of Z?

n, which contains all the elements with Jacobi symbol equal to +1. Note that

4 Note that we allow a slight misuse of notation here. Actually the function Samplex should be defined as Samplex :
I × Zq → G. However we prefer to adopt a simpler (and somehow incorrect) notation for visual comfort.



9

for a Blum modulus n = pq, this set is isomorphic to {−1,+1} ×Qn (this is because −1 has a Jacobi
symbol equal to +1, but is not a square). By these positions we get the signed squaring5 isomorphism:

fn : {−1,+1} × Qn → Jn

(b , x) 7→ b× x2 mod n.

For this family, the machine Gen, on input the security parameter k, does as follows. First it chooses two
random Blum primes p, q of size k/2 and sets n = pq. Then it outputs the pair (m, tm) where tm = (p, q)
and m is an encoding of n. The function fm is instantiated as follows. Set Xm = Rm = {−1,+1}×Qn,
Ym = Jn and Samplex : {−1,+1} ×Qn → {−1,+1} ×Qn is the identity function, i.e. Samplex(b, x) =
(b, x). The function fm is defined as (for any (b, x) ∈ {−1,+1}×Qn): fm(b, x) = b×x2 mod n. Hence,
Sampley(b, x) = fm(b, x). The Inv algorithm is straightforward, granted the trapdoor. And the Checky

algorithm simply computes the Jacobi symbol.
As above, since Samplex is easy to invert, the squaring family is not only a trapdoor hard-to-invert

isomorphism family, but also a trapdoor one-way permutation family. However, to be an isomorphism,
n does not really need to be a Blum modulus, which would be very costly to prove. What we need is
just that −1 has Jacobi symbol +1 and any square in Z?

n admits exactly 4 roots. This defines our set
I. A validity proof is provided, with the mathematical justification, in Section 6, which thus formally
defines both Provem and Checkm.

3 The Formal Model

3.1 Security Model

Players. We assume to have a fixed set of protocol participants (or principals). Each participant can
be either a client or a server. For the sole sake of simplicity we denote with A and B two different
principals participating in a key exchange protocol P . Principals are allowed to participate to several
different, possibly concurrent, executions of P . We model this by allowing each participant an unlimited
number of instances in which to execute the protocol. If A and B are two parties participating to the
key exchange protocol P , we denote with Ai and Bj the instances of A and B – respectively – which
are actually running the protocol. Sometimes we will also use the symbol U to denote a generic user
instance.

The two parties share a low-entropy secret pw which is drawn from a small dictionary Password,
according to an efficiently samplable distribution D. In the following, we use the notation D(n) for the
probability to be in the most probable set of n passwords. We denote by UN the uniform distribution
among N passwords (i.e. UN = 1/N) and we indicate with UN (n) the variable n/N .

Queries. We use the security model introduced by Bellare et al. [1], to which we refer for more details.
In this model, the adversary A has the entire control of the network, which is formalized by allowing
A to ask the following queries:

– Execute(Ai, Bj): This query models passive attacks, where the adversary gets access to honest
executions of P between the instances Ai and Bj by eavesdropping.

– Reveal(U): This query models the misuse of the session key by any instance U (use of a weak
encryption scheme, leakage after use, etc). The query is only available to A if the attacked instance
actually “holds” a session key and it releases the latter to A.

– Send(U,m): This query models A sending a message to instance U . The adversary A gets back
the response U generates in processing the message m according to the protocol P . A query
Send(Ai, Start) initializes the key exchange algorithm, and thus the adversary receives the flow
A should send out to B.

5 By signed, we mean that the output of the function has a sign (plus or minus).
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In the active scenario, the Execute-query may seem rather useless: after all the Send-query already
gives the adversary the ability to carry out honest executions of P among parties. However, even in
the active scenario, Execute-queries are essential to deal with dictionary attacks properly. Actually the
number qs of Send-queries directly asked by the adversary does not take into account the number of
Execute-queries. Therefore, qs represents the number of flows the adversary may have built by itself,
and thus the number of passwords it may have tried. Even better, qa + qb is an upper-bound on the
number of passwords it may have tried, where qa (resp. qb) is the number of send queries to A (resp.
B). For the sake of simplicity, we restricted queries to A and B only. One can indeed easily extend
the model, and the proof, to the more general case, keeping in mind that we are interested in the
security of executions involving at least A or B, with the password pw shared by them. Additional
queries would indeed use distinct passwords, which could be assumed public in the security analysis
(i.e. known to our simulator), assuming the efficient samplability of the underlying dictionary.

3.2 Security Notions

Two main security notions have been defined for key exchange protocols. The first is the semantic
security of the key, which means that the exchanged key is unknown to anybody other than the players.
The second one is unilateral or mutual authentication, which means that either one, or both, of the
participants actually know the key.

AKE Security. The semantic security of the session key is modeled by an additional query Test(U)
for which some restrictions must be imposed. Before discussing these, we formalize the notion of
partnering. Informally we say that two instances are partners if they both participate to the same
execution of P . More formally we define a session id SID for each instance and we say that two
instance are partnered if they share the same (non-null) SID. In what follows we define SID as the
concatenation of all the messages (except possibly the last one) sent and received – i.e. the flow – by
an instance.

The Test-query can be asked at most once by the adversary A and is only available to A if the
attacked instance U is Fresh. The freshness notion captures the intuitive fact that a session key is not
“obviously” known to the adversary. More formally an instance is said to be Fresh if the following
conditions are met:

1. The instance has successfully completed execution and therefore it has a non-null SID. More pre-
cisely, the notion of successfully completing an execution is formalized as follows. At the beginning
of a new execution of the protocol, each instance initializes to “false” a boolean variable (i.e. a
flag) accept. If, at the end of the execution, everything went through correctly accept is set to
“true”.

2. Neither it nor its partner have been asked for a Reveal-query.

The Test-query is answered as follows: one flips a (private) coin b and forwards sk (the value Reveal(U)
would output) if b = 1, or a random value if b = 0.

We denote the AKE advantage as the probability that A correctly guesses the value of b. More
precisely we define Advake

P (A) = 2Pr[b = b′]− 1, where the probability space is over the password, all
the random coins of the adversary and all the oracles, and b is the output guess of A for the bit b
involved in the Test-query. The protocol P is said to be (t, ε)-AKE-secure if A’s advantage is smaller
than ε for any adversary A running with time t.

Entity Authentication. Another goal of the adversary is to impersonate a party. We may consider
unilateral authentication of either A (A-Auth) or B (B-Auth), thus we denote by SuccA−auth

P (A) (resp.
SuccB−auth

P (A)) the probability that A successfully impersonates an A instance (resp. a B instance)
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in an execution of P , which means that B (resp. A) terminates (i.e. the terminate flag is set to true)
even though it does not actually share the key with any accepting partner A (resp. B).

A protocol P is said to be (t, ε)-Auth-secure if A’s success for breaking either A-Auth or B-
Auth is smaller than ε for any adversary A running with time t. This protocol then provides mutual
authentication.

4 Number-theoretic Assumptions

In this section we state some concrete assumptions we need in order to construct an IPAKE protocol.
As already sketched in Section 1.2, our basic building block is a family of trapdoor hard-to-invert
bijections F . More precisely each bijection f ∈ F needs to be a group isomorphism from a group
(Xf , ⊕f ) into a group (Yf , ⊗f ), where 	f (resp. �f ) is the inverse operation of ⊕f (resp. ⊗f )6. As
an additional assumption we require the existence of a generalized full-domain hash function G, which
on a new input (f, q), outputs a uniformly distributed element in Yf . This is the reason why we need
the decidability of Yf : in practice, G will be implemented by iterating a hash function until the output
is in Yf .

The non-invertibility of the functions in the family F is measured by the “ability”, for any adversary
A, in inverting a random function (in F) on a random point, uniformly drawn from Yf :

SuccNI
F (A) = Pr[f R← F , x

R← Xf : A(f, f(x)) = x].

More precisely, we denote by SuccNI
F (t) the maximal success probability for all the adversaries running

within time t. A simpler task for the adversary may be to output a list of n elements which contains
the solutions:

SuccInSetNI
F (A) = Pr[f R← F , x

R← Xf , S ← A(f, f(x)) : x ∈ S].

As above, we denote by SuccInSetNI
F (n, t) the maximal success probability for all the adversaries running

within time t, which output sets of size n. Note that the SuccInSetNI
F parameter is useful to deal properly

with hard-to-invert functions that cannot be efficiently computed. Indeed it allows us to model the
case on which the function is implemented as the Diffie-Hellman function (see below). This may
seem of little interest in practice: after all the adversary can just choose to output a random element
among those in the set. This would allow him to succeed with a factor loss of 1/n. However, when the
hard-to-invert function is implemented as the Diffie-Hellman function, or more generally a random self-
reducible function, adding this parameter allows us to obtain a tight reduction to the computational
Diffie-Hellman (using techniques originally proposed by Shoup [29]). The reader is referred to [29] for
further details.

4.1 The RSA Family: F = RSA

As described in Section 2.4 the function f is defined by n and e, Yf = Xf = Z?
n. And, for any x ∈ Z?

n,
f(x) = xe mod n. For a correctly generated n and a valid e (i.e an e such that gcd(ϕ(n), e) = 1) the
non-invertibility of the function is equivalent to the, widely conjectured, one-wayness of RSA. More
precisely, we define the variable Succow

RSA(t) as the maximum probability (for all adversaries running
in time t) of breaking the one-wayness of RSA, for a correctly generated modulus n. One can define
the variable SuccInSetowRSA(n, t) similarly. This leads to the following:

Succow
RSA(t + nTexp) = SuccNI

RSA(t + nTexp) ≥ SuccInSetNI
RSA(n, t) = SuccInSetowRSA(n, t)

where Texp is an upper-bound on the time required to perform an exponentiation. Note that the
relation above comes from the fact that one exponentiation suffices for checking each value in the set.
6 For visual comfort in the following we adopt the symbols f, Xf , Yf rather than (respectively) fm, Xm, Ym.
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4.2 The Diffie-Hellman Family: F = DH

Let G = 〈g〉 be any cyclic group of (preferably) prime order q. As sketched in Section 2.4, the function
f is defined by a point P = gx in G\{1} (and thus x 6= 0 mod q), and Xf = Yf = G. For any
Q = gy ∈ G, f(Q) = gxy.

A (t, ε)-CDHg,G attacker, in the finite cyclic group G of prime order q, generated by g, is a proba-
bilistic machine ∆ running in time t such that

Succcdh
g,G(∆) = Pr

x,y
[∆(gx, gy) = gxy] ≥ ε

where the probability is taken over the random values x and y in Zq. As usual, we denote by Succcdh
g,G(t)

the maximal success probability over every adversary running within time t. Then, when g and G are
fixed, SuccNI

DH(t) = Succcdh
g,G(t). Using Shoup’s result [29] about “self-correcting Diffie-Hellman”, one

can see that if SuccInSetNI
DH(n, t) ≥ ε, then SuccNI

DH(t′) ≥ 1/2 for some t′ ≤ 6/ε× (t + nTexp).

4.3 The Squaring Family: F = Rabin

As discussed in Section 2.4 if one assumes that the modulus n is the product of two Blum primes, the
signed squaring function f becomes an isomorphism from {−1,+1} ×Qn onto Jn. Furthermore, for a
correctly generated n the non-invertibility of f is trivially equivalent to the one-wayness of factoring
Blum composites. This leads us to the following inequality:

Succow
Rabin(t + nTexp) = SuccNI

Rabin(t + nTexp) ≥ SuccInSetowRabin(n, t),

where Succow
Rabin and SuccInSetowRabin are defined similarly as for the case of RSA. Note that, the relation

above provides a very tight bound because, in this case, Texp represents the time required to perform
a single modular multiplication (i.e. to square). We note here that for our construction to work we
actually do not need to assume that the modulus n is a Blum one. Details are given below, here we
just state that, in order for our techniques to go through correctly, we only need to make sure that n
is a composite modulus containing at least two different prime factors such that −1 has Jacobi symbol
+1 in Z?

n.

5 Security Proof for the IPAKE Protocol

5.1 Description and Notations

In this section we show that the IPAKE protocol distributes session keys that are semantically secure
and provides unilateral authentication for the client A. The specification of the protocol can be found
in Fig. 1. Some remarks, about notation, are in order:

– We assume F to be a correct family, with a verifiable sub-family of trapdoor hard-to-invert
isomorphisms f from Xf into Yf . In the following, we identify m to fm, and thus f . We denote by
s the size of I. Furthermore, we denote by q a lower bound on the size of any Yf . In what follows,
we will write that F is a family of trapdoor hard-to-invert isomorphisms with parameters (s, q)
to indicate that for each f ∈ F one has that |Yf | > q and the set of indexes I has size s.

– For this choice of parameters for the family F , we can define the function G which is assumed
to behave like a generalized full-domain random oracle. In particular we model G as follows: on
input a couple (f, q) it outputs a random element, uniformly distributed in Yf .

Since we only consider unilateral authentication (of A to B), we just introduce a terminate flag for B.
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Alice Bob

Common password pw
accept← false accept← false

terminate← false

(f, t)
R← Gen(1k)

Alice, f−−−−−−−−−−−→
Bob, seed←−−−−−−−−−−− seed

R← {0, 1}k

p← Provem(f, t, seed)
p−−−−−−−−−−−→ Checkm(f, seed, p)?

r
R← Rf

x← Samplex(f, r)
y ← Sampley(f, r)

PW← G(f, pw) PW← G(f, pw)
ŷ←−−−−−−−−−−− ŷ ← y ⊗f PW

y′ ← ŷ �f PW, x′ ← Inv(f, t, y′)
Auth−−−−−−−−−−−→

Auth valid?⇒ accept← true
accept← true terminate← true

Fig. 1. An execution of the IPAKE protocol: Auth is computed by Alice (resp. Bob) as H1(Alice‖Bob‖f‖ŷ‖pw‖x)
(resp. H1(Alice‖Bob‖f‖ŷ‖pw‖x′)), and sk is computed by Alice (resp. Bob) as H0(Alice‖Bob‖f‖ŷ‖pw‖x) (resp.
H0(Alice‖Bob‖f‖ŷ‖pw‖x′).)

5.2 Security Result

Theorem 2 (AKE/UA Security). We consider the protocol IPAKE, over a family F of trapdoor
hard-to-invert isomorphisms, with parameter (s, q), where Password is an N -word dictionary from
which passwords are sampled according to the uniform distribution UN . Let A be any adversary whose
running time is bounded by t, that is allowed (less than) qs active interactions with the parties (Send-
queries) and qp passive maximum number of hash queries (to G and any Hi respectively) that A is
allowed to ask. Then

Advake
ipake(A) ≤ 4ε

and
AdvA−auth

ipake (A) ≤ ε

where ε is a quantity upper-bounded by

qa + qb

N
+ 4QpSuccInSetNI

F (q2
h, t + 2q2

hτlaw ) + qbSuccforge(t) +
qb

2`1
+ Advsim(T ) +

Q2

2q
+

Q2
P

2s

In the relation above,

1. qa and qb denote the number of A and B instances involved in active attacks (each of these quantity
is upper-bounded by qs);

2. QP denotes the number of involved instances (QP ≤ 2qp + qs);
3. Q = qg + qh + 2qp + qs;
4. τlaw is the time needed for evaluating one group operation;
5. T is the time needed for simulating one proof;
6. ` is the output length of H0 (i.e. the function used to produce the session key);
7. `1 is the output length of H1 (i.e. the function used to generate the authenticator);
8. Succforge(t) is the probability that the adversary manages to break the soundness of the provided

proof;
9. Advsim(T ) is the distance between the distribution of the actual proof and the proof simulated within

time T .
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Let us first briefly explain the main terms in the above security result. Ideally, when one con-
siders a password-based authenticated key exchange, one would like to prove that the two above
success/advantage are upper-bounded by UN (qa + qb), plus some negligible terms. For technical rea-
sons in the proof we have a small additional constant factor. This main term is indeed the basic attack
one cannot avoid: the adversary guesses a password and makes an on-line trial. Other ways for it to
break the protocol are:

– use a function f that is not a bijection, and in particular not a surjection. With the view of ŷ,
the adversary tries all the passwords, and only a strict fraction leads to y in the image of f : this
is a partition attack. However, for that, it has to forge a proof of validity for f . Hence the term
qb × Succforge(t);

– use the authenticator Auth to check the correct password. However, this requires the ability to
compute f−1(PW). Hence the term Qp × SuccInSetNI

F (·, ·).
– send a correct authenticator Auth, but being lucky. Hence the term qb/2`1 .

Additional negligible terms come from very unlikely collisions, or non-perfect simulations. All the
remaining kinds of attacks need some information about the password.

5.3 Sketch of the Proof

This proof goes by a sequence of games, starting from G0 which represents an actual attack. In all
the games, we focus on the two following events:

– S (for semantic security). This event occurs if the adversary correctly guesses the bit b involved
in the Test-query;

– A (for A-authentication). This event occurs if an instance Bj terminates with no accepting partner
instance Ai (with the same transcript (f, ŷ, Auth)).

In the full proof we will consider the restricted event SwA = S ∧ ¬A.
Here we briefly illustrate how every new game differs with respect to the previous one

1. First, we make the classical perfect simulation of the random oracle with random answers, and
lists for storing the query-answer pairs as one can see in Fig. 2 (Section 5.4).

2. One then cancels those situations (and declares the adversary wins) in which some collisions
appear:
– collisions on the partial transcripts (Alice,Bob, f, ŷ).
– collisions on the output of G.

We furthermore ask for G(f, pw) when any Hi(Alice‖Bob‖f‖ŷ‖pw‖x′) is queried. Thus the two
games just differ because of the birthday paradox, for the collisions. We also now replace the
number of queries to G by q′g which is upper-bounded by qg + qh.

3. We furthermore cancel executions which involve an accepted proof of a wrong statement (forgery),
about the isomorphic property of a function f . The soundness requirement of the proof appears
here.

4. Then, the real parties compute the session key sk and the authenticator Auth using private oracles
H′

0 and H′
1 respectively, on the input (Alice‖Bob‖f‖ŷ). The authenticator is computed with a

private random oracle, then it cannot be guessed by the adversary, better than at random for each
attempt, unless the same partial transcript (Alice,Bob, f, ŷ) appeared in another session with a
real instance Bj . However, such a case has already been excluded. The A-Auth can thus be broken
with a minute probability only. A similar remark can be made about the session key, in the case
of no A-Auth break.
The adversary detects the difference only if it queries the correct values to the public oracles
H0 and H1. This event, denoted AskH, is now the crucial event whose probability has to be
upper-bounded.
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5. We introduce a random instance (ϕ, ρ), where ϕ is randomly drawn from F , using Gen and
ρ = ϕ(σ) is uniformly drawn from Yϕ. Actually, the pair (ϕ, ρ) is given from outside, and the goal
of our simulation is to use the adversary to invert ϕ on ρ. We first introduce ϕ in the simulation of
one specific instance of the party A (its chosen bijection), while we introduce the other part ρ in the
simulation of the oracle G (the common password PW under ϕ). The simulatability requirement
of the proof that ϕ is indeed an isomorphism appears here, since we do not know the trapdoor.

6. Since neither x, nor the password is used, this game is perfectly equivalent to a simpler one,
where the party B directly generates a random pair (x̂, ŷ = f(x̂)). This does not change anything
from the view point of the adversary, because of the isomorphic property of f . Furthermore the
password does not need to be known!
In order to evaluate the event AskH, we cancel a few more games, wherein for some pair (f, ŷ),
involved in a communication between an instance Ai and either the adversary or an instance
Bj , there are two distinct passwords pw , and thus elements PW, since PW = G(f, pw), such that
the tuple (f, ŷ, pw , f−1(ŷ �f PW)) is in H-List. We can prove that such a collision is unlikely
unless one can invert the family F . This is the technical part of the proof.
Finally, since the password is never used during the simulation, it can be chosen at the very end
only. Then, an information-theoretic analysis can be performed, which simply uses cardinalities
of some sets. Simple counting arguments lead to the theorem.

ut

5.4 Complete Security Proof

In this proof, we incrementally define a sequence of games starting from the one describing a real
execution of the protocol (i.e. G0) and ending up with game G6.

Game G0: This is the real protocol, in the random-oracle model. We are interested in the two
following events:

– S0 (for semantic security), which occurs if the adversary correctly guesses the bit b involved in the
Test-query;

– A0 (for A-authentication), which occurs if an instance Bj accepts with no partner instance Ai

(possessing the same transcript (f, y, Auth).

By definition of Advake
ipake(A) and AdvA−auth

ipake (A) one has that

Advake
ipake(A) = 2 Pr[S0]− 1 AdvA−auth

ipake (A) = Pr[A0]. (1)

We remark that, in the following games Gn below, we will focus on the event An, and the restricted
event SwAn = Sn ∧ ¬An.

Game G1: Here we modify the previous game by simulating the hash oracles. This will involve G,
H0 and H1, but also two additional hash functions, H′

i : {0, 1}? → {0, 1}`i (for i = 0, 1) that will be
introduced in Game G4. This is done by introducing and maintaining three hash lists G-List, H-List
and H’-List (a formal description of these lists is given in Fig. 2).

Additionally, during this game, we simulate the answers of all the instances for all queries (i.e.
Send, Execute, Reveal and Test-queries) asked by the adversary. This is done exactly as real instances
would do. In particular, a formal description of this part of the simulation is given in Figs. 3–5.

Now, notice that, since (a) the simulated hash oracles produce outputs which have the exact same
distribution as the outputs produced by the random oracles and (b) all the queries are answered exactly
as the real instances would do, one can easily deduce that this game remains perfectly indistinguishable
from the real one (i.e. previous game).

Game G2: As a first step we, essentially, modify the way on which queries to Hi are managed. In
particular, whenever a query to Hi occurs, we query G as well. Notice that, Hi is not replaced by G;
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For a hash-query Hi(q) (resp. H′
i(q)), such that a record (i, q, r) appears in H-List (resp. H’-List), the

answer is r. Otherwise one chooses a random element r ∈ {0, 1}`, answers and, adds the record (i, q, r) to
H-List (resp. H’-List).

IRule H(1)

Nothing to do. % To be defined later

For a hash-query G(f, q) such that a record (f, q, r, ?, ?) appears in G-List, the answer is r. Otherwise the
answer r is defined according to the following rule:

IRule G(1)

Choose a random element r
R← Yf . The record (f, q, r,⊥,⊥) is added to G-List.

Note: the fourth and fifth components of the elements of this list will be explained later.

Fig. 2. Simulation of the IPAKE protocol: G and Hi oracles

We answer to the Send-queries to an A-instance as follows:

– A Send(Ai, Start)-query is processed according to the following rule:
IRule A1(1)

Choose a random trapdoor isomorphism (f, t)
R← Gen(1k).

Then the query is answered with (Alice, f), and the instance goes to an expecting state.
– If the instance Ai is in an expecting state, a query Send(Ai, (Bob, seed)) is processed by generating the

proof of validity for f :
IRule A2(1)

Compute p← Provem(f, t, seed).
And the query is answered with p.

– If the instance Ai is in an expecting state, a query Send(Ai, ŷ), for ŷ ∈ Yf , is processed by computing
the authenticator and the session key. We apply the following rules:

IRule A3(1)

Compute PW← G(f, pw), y′ ← ŷ �f PW and x′ ← f−1(y′).

IRule A4(1)

Compute the authenticator and the session key

Auth ← H1(Alice‖Bob‖f‖ŷ‖pw‖x′),
skA ← H0(Alice‖Bob‖f‖ŷ‖pw‖x′).

Finally the instance accepts, and the query is answered with Auth.

Fig. 3. Simulation of the IPAKE protocol: Send-queries to A
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We answer to the Send-queries to a B-instance as follows:

– A Send(Bj , (Alice, f))-query is processed by generating a random seed, which is then the answer, and
the instance goes to an expecting state.

– If the instance Bj is in an expecting state, a Send(Bj , p)-query is first processed by checking the validity
of the proof, evaluating Checkm(f, seed, p), and in case of validity, one applies the following rules:

IRule B1(1)

Generate (x, y = f(x)) using the Samplex and Sampley algorithms, compute
PW← G(f, pw) and ŷ ← y ⊗f PW.

Then the query is answered with (Bob, ŷ), and the instance goes to an expecting state.
– If the instance Bj is in an expecting state, a query Send(Bj , Auth) is processed by computing the alleged

authenticator, and the session key.
IRule B2(1)

Compute the expected authenticator and the session key

Auth′ ← H1(Alice‖Bob‖f‖ŷ‖pw‖x),

skB ← H0(Alice‖Bob‖f‖ŷ‖pw‖x).
If Auth′ = Auth, then instance accepts. In any case, it terminates.

Fig. 4. Simulation of the IPAKE protocol: Send-queries to B

An Execute(Ai, Bj)-query is processed using successively the simulations of the Send-queries:

(Alice, f)← Send(Ai, Start), (Bob, seed)← Send(Bj , (Alice, f)),

p← Send(Ai, (Bob, seed)), ŷ ← Send(Bj , p),

Auth← Send(Ai, ŷ), Send(Bj , Auth),

and outputting the transcript ((Alice, f), (Bob, seed), p, ŷ, Auth).

A Reveal(U)-query returns the session key (skA or skB) computed by the instance U (if the latter has
accepted).

A Test(U)-query first gets sk from Reveal(U), and flips a coin b. If b = 1, we return the value of the session
key sk, otherwise we return a random value drawn from {0, 1}`0 .

Fig. 5. Simulation of the IPAKE protocol: Other queries
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rather G is called whenever a call to Hi occurs. In particular, each output of Hi is still an element
chosen uniformly and at random in the appropriate range. We modify the rule H(1)

i , introduced in
game G1 (see Fig. 2), as follows:

IRule H(2)

The query q is parsed as q = Alice‖Bob‖f‖ŷ‖pw‖x, then one queries G(f, pw).

The number of queries to G thus becomes q′g ≤ qg + qh.
Next, we consider in our analysis the collisions that may occur in the simulation of the hash

functions. More precisely, in this experiment, we simulate the oracles as before except that we halt all
executions in which a collision occurs (and set events S and A to true). These collisions may be of the
following two kinds:

– Collisions on the partial transcripts (Alice,Bob, f, ŷ). This case encompasses collisions on the
outputs of the H’s. We remark here that, since every transcripts is produced by at least one
honest party, we are guaranteed that either f is correctly generated (i.e. chosen uniformly and
at random from F) or y is uniformly distributed. In both cases, the probability of a collision is
bounded by (qs+qp)2

2 × (1
s + 1

q ), according to the birthday paradox.
– Collisions on the output of G. By a similar reasoning, the probability of such collisions is bounded

by q′g
2

2q .

We denote with Coll the event that at least one of the collisions described above happens. Clearly,
the probability of such an event is bounded by the probability of collisions in the partial transcript
plus the probability of collisions on the output of G. This leads to the following:

Pr[Coll2] ≤
(qs + qp)2

2
×

(
1
s

+
1
q

)
+

qg
′2

2q
≤ Q2

2q
+

Q2
P

2s
. (2)

where the second inequality follows from the fact that q′g ≤ qg + qh, Q ≤ qg + qh + 2qp + qs and
QP ≤ 2qp + qs.

Game G3: In this game we consider all those executions of the protocol on which the adversary
manages to produce false (zero knowledge) proofs that are actually accepted as correct ones. We
denote by Forge the event that a forged proof is produced by the adversary. We proceed exactly as
in previous games with the only difference that we halt all those executions where forged proofs are
provided. Thus, all we need to prove is that event Forge happens only with small enough probability.

Note that the number of (different) proofs is at most qb, thus we have that

Pr[Forge3] ≤ qbSuccforge(t). (3)

Moreover since we are considering proofs which are zero knowledge in the sense of definition 1, we
can conclude that Succforge(t) is negligible. More precisely, the reduction can be sketched as follows.
Given an adversary B that manages to produce a forgery, we show how to construct an adversary
(A1, A2) breaking the soundness of the zero knowledge proof as follows. A1 starts by guessing which
proof instance j will be the forgery and performs the simulation until B sends the j-th f to Bob. Then
A1 outputs f and state, where the latter is the state of the simulation. A2 gets (f,state) and a random
seed seed, simulates Bob’s answer using the received seed and continues the simulation in the obvious
way. Then, if B sends a proof p to Bob, A2 outputs p.

Remark 3. Game G3 differs from the previous one in that all executions in which the adversary pro-
duces an accepting proof of a false statement are halted. Notice, however, that it is not always possible
to detect this fact efficiently. To address this concern one might just assume that the adversary wins if
a forgery occurs and then bound, as we did, the probability that such an event happens. From a tech-
nical point of view, later proofs should then bound the probability of events E as Pr[E|¬Forge], rather
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than simply Pr[E]. However, to make the proof easier to read, we prefer not to add the conditional
probability to all later bounds. Still, the reader should consider all future bounds to be conditioned
on ¬Forge.

Game G4: In this game we replace the oracles H1 and H0 with two (secret) oracles H′
1 and

H′
0. Recall that the oracles H1 and H0 are used to compute the authenticators and the session keys,

respectively. By this modification the authenticators and the session keys are computed using H′
1 and

H′
0 respectively, and become, thus, unpredictable (in a strong information theoretic sense) to any

adversary. Since oracles H1 and H0 were used by rules A4/B2 (see Figs. 3 and 4), we modify them
as follows:

IRule A4/B2(4)

Compute the authenticator Auth← H′
1(Alice‖Bob‖f‖ŷ).

Compute the session key skA/B ← H′
0(Alice‖Bob‖f‖ŷ).

We denote PW = G(f, pw). Now, observe that the common secret x′ = x = f−1(ŷ �f PW) depends
only on f , ŷ and on the common password pw shared by the participants. This implies that games
G4 and G3 are indistinguishable as long as the adversary does not explicitly query H1 or H0 on input
(Alice‖Bob‖f‖ŷ‖pw‖f−1(ŷ�f PW)). More formally, games G4 and G3 remains indistinguishable unless
the following event AskH4 = AskH0w14 ∨ AskH14 occurs, where :

– AskH14: (Alice‖Bob‖f‖ŷ‖pw‖f−1(ŷ �f PW)) has been queried by A to H1 for some transcript
((Alice, f), (Bob, seed), p, ŷ, Auth);

– AskH0w14: (Alice‖Bob‖f‖ŷ‖pw‖f−1(ŷ �f PW)) has been queried by A to H0 for some transcript
((Alice, f), (Bob, seed), p, ŷ, Auth), where some party has accepted, but event AskH14 did not hap-
pen.

We need to show that Pr[AskH4] is small enough, however we postpone this until later. For now,
notice that after the modifications above have been implemented, we no longer need to know the value
x nor to compute the value x′ either. This is because, in rules A4/B2 we do not even use them to
compute the authenticator and the session key. Thus we can simplify rules A3 and B1 as follows:

IRule A3(4)

Do nothing.

IRule B1(4)

Generate a random pair (x̂, ŷ = f(x̂)) using the Samplex and Sampley algo-
rithms.

As the alert reader may have already noticed, even the actual password is not used anymore.
Indeed, by the isomorphic property of the function f , the value ŷ defined by rule B1(4) is perfectly
indistinguishable from one generated according to the original rule B1(1). As a matter of fact, there
exists a unique pair (x, y), such that

x = f−1(ŷ �f PW) = x̂ 	f f−1(PW) y = f(x) such that ŷ = y ⊗f PW.

As already mentioned, the authenticator is computed by means of a random oracle that is kept
secret from the adversary. This means that, for each execution of the protocol, the adversary can-
not guess the authenticator better than at random, unless, of course, the same partial transcript
(Alice,Bob, f, ŷ) appeared in some another session with a real instance Bj . This last case, however,
has already been considered (i.e. excluded) in Game G2. A similar reasoning can be done for the
session key. Thus we can conclude that

Pr[A4] ≤
qb

2`1
Pr[SwA4] =

1
2
. (4)
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This means that we can write

Pr[A0] ≤
qb

2`1
+ ∆ and Pr[SwA0] ≤

1
2

+ ∆,

where

∆ ≤
(

Q2

2q
+

Q2
P

2s

)
+ qbSuccforge(t) + Pr[AskH4].

In order to start evaluating Pr[AskH4], we remark that, once having excluded collisions of partial
transcripts, the event AskH14 can be split in 3 mutually-exclusive sub-events:

– AskH1-Passive4: the transcript ((Alice, f), (Bob, seed), p, ŷ, Auth) comes from an execution between
instances of A and B (Execute-queries or forward of Send-queries, replay of part of them). In this
case both f and ŷ have been simulated;

– AskH1-WithA4: the execution involved an instance of A, but ŷ has not been sent by any instance
of B. This means that f has been simulated, but y has been manufactured by the adversary;

– AskH1-WithB4: the execution involved an instance of B, but f has not been sent by any instance
of A. This means that ŷ has been simulated, but f has been manufactured by the adversary.

Game G5: In this game we introduce a random challenge (ϕ, ρ), where ϕ is randomly drawn from
F and ρ is randomly drawn from Yϕ (or equivalently, because of the isomorphic property of f , σ is
randomly drawn from Xϕ and ρ = ϕ(σ)). In particular we try to invert ϕ on ρ, i.e. to compute the
value σ.

We introduce the challenge (ϕ, ρ) in the simulation of the party A, using the well known “plug
and pray” approach: we choose a value c uniformly and at random in the set {1 . . . qa}, (recall that qa

is the number of instances of the party A, involved in active attacks), and then we use ϕ in the c-th
instance. More formally:

IRule A1(5)

If this is the c-th instance of the party A, f is set to ϕ. Otherwise, f is
randomly drawn from F , as follows: Choose a random trapdoor isomorphism
(f, t) R← Gen(1k).

For consistency, we modify the behavior of the c-th instance (of A) in a standard way:

IRule A2(5)

If f = ϕ, use the simulator to build the proof of validity p of f . Otherwise,
compute p← Provem(f, t, seed).

We introduce the remaining component ρ of the challenge in the simulation of the oracle G, using
again the homomorphic property of ϕ. Specifically, the simulation introduces values in the third and
fourth components of the elements of G-List (i.e. in the components that were left empty in game G1

– see Fig. 2). These values correspond to random input/output couples of ϕ. This leads us to modify
rule G(1) as follows:

IRule G(5)

If f = ϕ, generate a random pair (u, v = ϕ(u)) using the algorithms Samplex

and Sampley, as well as a random bit b, and compute r ← v, if b = 0, and
r ← v ⊗ϕ ρ, if b = 1. Then, the record (ϕ, q, r, u, b) is added to G-List.

Else Choose a random element r
R← Yf . Then, the record (f, q, r,⊥,⊥) is

added to G-List.

Note that, if f 6= ϕ, this rule remains exactly the same as the original one.
On the other hand, if f = ϕ its execution is indistinguishable from an execution of the original

one, simply because of the isomorphic property of ϕ, except for the simulation of the proof which may
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just be statistically indistinguishable: Advsim(T ) is the distance between the original distribution and
the one provided by the simulator in time T .

Game G6: In this game we, finally, evaluate the probability of the event AskH (or, more precisely,
of all its sub-cases).

First notice that, during the simulation as per game G5, the password is actually never used. Thus,
one can safely choose it at the very end of the protocol. This is a crucial observation as it tells us
that the entire simulation is basically independent from the chosen password. Thus, the security of the
protocol is also independent from the chosen password and solely depends from public parameters.

Before proceeding to the actual analysis we consider (and exclude) all those executions where, for
some pair (f, ŷ), used by an instance Ai and either the adversary or an instance Bj , there exist two
distinct passwords pwβ , for β = 0, 1, (and, correspondingly, two values PWβ, as PWβ = G(f, pwβ)),
such that the tuples (f, ŷ, pwβ, f−1(ŷ �f PWβ)) are both in H-List. We denote such an event as
CollH6. Clearly, by these positions we have:

|Pr[AskH6]− Pr[AskH5] | ≤ Pr[CollH6]. (5)

With the next technical lemma we actually provide a precise upper-bound to the probability of
event CollH6

Lemma 4. Under the assumption that F is a family of trapdoor hard-to-invert group isomorphisms,
for any pair (f, ŷ), used in a communication with an instance Ai, there is at most one valid element
PW, obtained as output of G, such that (f, ŷ, pw , f−1(ŷ �f PW)) is the list H-List. Formally,

Pr[CollH6] ≤ 2(qa + qp)SuccInSet(q2
h, t + 2q2

hτlaw ). (6)

Proof. First notice that, since the execution which uses ϕ is perfectly indistinguishable from any other
execution, we have that f = ϕ with probability 1/(qa + qp). Now, assume we are in the execution
where ϕ is used, we proceed by reductio ad absurdum: we assume that there exists a couple (ϕ, ŷ), for
which PW0 = ϕ(u0) ⊗ϕ b0 · ρ = G(ϕ, pw0) and PW1 = ϕ(u1) ⊗ϕ b1 · ρ = G(ϕ, pw1) are both obtained
from the G oracle and such that the tuples (ϕ, ŷ, pw i, ϕ

−1(ŷ �ϕ PWi)) are both in H-List, for i = 0, 1.
We need to show that, in such a case, one can invert ϕ, thus reaching a contradiction.

To this aim, we consider the following quantity:

Z
def= ϕ−1(ŷ �ϕ PW1) 	ϕ ϕ−1(ŷ �ϕ PW0) = ϕ−1(PW1 �ϕ PW0).

With probability 1/2, the bits b0 and b1 flipped to generate PW0 and PW1 respectively, are distinct.
In particular, and w.l.o.g., we may assume that bi = i for i = 0, 1. This means that

Z = ϕ−1(ϕ(u1) ⊗ϕ ρ �ϕ ϕ(u0)) = u1 	ϕ u0 ⊕ϕ ϕ−1(ρ) = u1 	ϕ u0 ⊕ϕ σ.

As a consequence, σ = Z ⊕ϕ u0 	ϕ u1.
More concretely, if a pair of passwords (pw0, pw1) satisfying the conditions above exists, then one

can compute a σ which is in the list with probability 1/(2(qa + qp)). Indeed, first one computes all the
Z’s satisfying the relation above from all the pairs of queries to H. This determines all the possible
candidates for the value of σ. Notice that there are at most q2

H of such candidates and computing each
of them requires 2 (group) operations. Thus assuming that b0 6= b1, and the correct instance for A has
been guessed, the correct σ is in the list.

This concludes the proof. ut

As a final step, we study, separately, the three sub-cases of AskH1 and then AskH0w1 (recall that
now we do not have to worry about collisions involving partial transcripts, queries to G, or passwords
pw in H-queries):
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– AskH1-Passive: For this event (where both f and ŷ are simulated), we give the following lemma:

Lemma 5. For any pair (f, ŷ), involved in a passive transcript, there is no valid element PW
such that (f, ŷ, pw , f−1(ŷ �ϕ PW)) is in H-List, unless one can invert F :

Pr[AskH1-Passive6] ≤ 2(qa + qp)SuccInSet(qh, t + 2qhτlaw ). (7)

Proof. Assume there exist (f, ŷ) involved in a passive transcript, and PW = f(u) ⊗ϕ b ·ρ such that

the tuple (f, ŷ = f(x̂), pw , Z
def= f−1(ŷ �f PW)) is in H-List. Then, as above, with probability

1/2(qa + qp), f = ϕ and b = 1:

Z = ϕ−1(ϕ(x̂) �ϕ ϕ(u) �ϕ ρ) = x̂ 	ϕ u 	ϕ ϕ−1(ρ) = x̂ 	ϕ u 	ϕ σ.

As a consequence, σ = x̂ 	ϕ u 	ϕ Z. By outputting all the candidates for σ (computed from all
the Z in the H-queries) the correct value is in the list (with a similar probability as above). ut

– AskH1-WithB: this may correspond to an attack where the adversary tries to impersonate A to
B (break unilateral authentication). However, each authenticator sent by the adversary has been
computed with at most one pw . Since we choose pw at the very end only, the latter is among the
involved passwords with probability:

Pr[AskH1-WithB6] ≤ UN (qb) =
qb

N
. (8)

– AskH1-WithA: Lemma 4 above applied to games where the event CollH6 did not happen (and
without G-collision), states that for each pair (f, ŷ) involved in a transcript with an instance Ai,
there is at most one element pw such that for PW = G(f, pw), the corresponding tuple is in
H-List: the probability over a random password chosen at the very end only is thus less than
D(qs). As a consequence,

Pr[AskH1-WithA6] ≤ UN (qa) =
qa

N
. (9)

About AskH0w1 (when the three above events did not happen), it means that only executions with
an instance of A (and either B or the adversary) may lead to acceptance. Exactly the same analysis
as for AskH1-Passive and AskH1-WithA leads to

Pr[AskH0w16] ≤
qa

N
+ 2(qa + qp)SuccInSet(qh, t + qhτlaw ). (10)

However, one can note that the latter upper-bound in inequality (10) actually used the same bad cases
as for upper-bounding events AskH1-Passive6 and AskH1-WithA6, since H-List contains all the queries
to both H0 and H1. Then we get an upper-bound for the probability of AskH6:

Pr[AskH6] ≤
qa + qb

N
+ 2(qa + qp)SuccInSetowF (qh, t + qhτlaw ). (11)

Combining all the above equations, one gets

Pr[A0] ≤
qb

2`1
+ ∆ Pr[SwA0] ≤

1
2

+ ∆,

where

∆ ≤ 2(qa + qp)
(
SuccInSet(q2

h, t + 2q2
hτlaw ) + SuccInSet(qh, t + 2qhτlaw )

)
+

qa + qb

N
+ Advsim(T ) + qbSuccforge(t) +

Q2

2q
+

Q2
P

2s

≤ qa + qb

N
+ 4(qa + qp)SuccInSet(q2

h, t + 2q2
hτlaw ) + Advsim(T ) + qbSuccforge(t)

+
Q2

2q
+

Q2
P

2s
.

We conclude the proof by noticing that Pr[S0] ≤ Pr[SwA0] + Pr[A0].
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6 A Concrete Example: The SQRT-IPAKE Protocol

An important contribution of this work (at least from a practical point of view) is the first efficient
and provably secure password-based key exchange protocol based on factoring. The formal protocol
appears in Fig. 6. Here we describe the details of this specific implementation.

Alice Bob

Shared password: pw

accept← false accept← false
terminate← false

p1, p2 ∈ BlumPrimes(k/2)

n← p1p2
Alice, n−−−−−−−−−−−→

Bob, seed←−−−−−−−−−−− seed
R← Seeds

p← Provem(n, (p1, p2), seed)
p−−−−−−−−−−−→ Checkm(n, seed, p)?

z
R← Z?

n, x← z2 mod n

b
R← {0, 1}, y ← (−1)bx2 mod n

PW← G(n, pw) PW← G(n, pw)
ŷ←−−−−−−−−−−− ŷ ← y × PW mod n

y′ ← ŷ × PW−1 mod n

x′ = SQRT(y′) mod n
Auth−−−−−−−−−−−→

Auth valid?⇒ accept← true
accept← true terminate← true

sk = H0(Alice‖Bob‖n‖ŷ‖pw‖x)
Auth = H1(Alice‖Bob‖n‖ŷ‖pw‖x)

Fig. 6. SQRT – IPAKE protocol

6.1 Description of the SQRT-IPAKE Protocol

In order for the protocol to be correct we need to make sure that the adopted function is actually an
isomorphism. As seen in Section 2.4 this is the case if one assumes that the modulus n is the product
of two Blum primes, and fn : {−1,+1} ×Qn → Jn is the signed squaring function.

We thus set Xf = {−1,+1}×Qn and Yf = Jn, and, of course, the internal law is the multiplication
in the group Z?

n. In order for the password PW to be generated correctly, we need a G(n, ·) hash function
onto Jn. Constructing such a function is pretty easy: we start from a hash function onto {0, 1}k, where
2k−1 < n < 2k, and we iterate it until we get an output in Jn. The details of this technique are
presented in Appendix B. Here we stress that if n ≥ 646 then very few iterations are sufficient. As
already noticed, we require Alice to prove the following about the modulus n, so that the function is
actually an isomorphism:

– The modulus n is in the correct range (n ≥ 646);
– The Jacobi symbol of −1 is +1 in Z?

n (this is to make sure that fn is actually a morphism);
– The signed squaring function is actually an isomorphism from {−1,+1} ×Qn onto Jn (this is to

make sure that any square in Z?
n has exactly 4 roots).

Proving the first two statements is trivial. For the third one we need some new machinery.

6.2 Proof of Correct Modulus.

With the following theorem (see Appendix A for the full proof) we show that if n is a composite
modulus (with at least two different prime factors) then the proposed function is an isomorphism.
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Theorem 6. Let n be a composite modulus containing at least two different prime factors and such
that −1 has Jacobi symbol +1 in Z?

n. Moreover let fn be the morphism defined above. The following
facts are true

1. If fn is surjective then it is an isomorphism.
2. If fn is not surjective, then at most half of the elements in Jn have a pre-image.

Protocol Prove-Composite Protocol Prove-Surjective

H2(n, ·, ·) and H4(n, ·, ·) are full-domain hash functions onto Jn

H3 (resp. H5) is a random oracle onto {0, 1}k (resp. {0, 1}`)
Bob chooses a random seed seed and sends it to Alice

For i← 1 to `, Alice
1. Sets yi = H2(n, seed, i) ∈ Jn

2. Computes (βi, αi,0, αi,1, αi,2, αi,3) such that
– αi,0 = −αi,1 mod n
– αi,2 = −αi,3 mod n
– α2

i,j = yiβi mod n (j = 0, . . . , 3),
where βi ∈ {−1, +1}

3. Sets hi,j = H3(n, αi,j) (j = 0, . . . , 3)

One defines c1, . . . , c` = H5(n, seed, {hi,j})

1. Sets zi = H4(n, seed, i) ∈ Jn

2. Computes (bi, xi) = f−1(zi) such that
(bi, xi) ∈ {−1, +1} ×Qn

3. Computes a value γi such that γ2
i = xi mod n

(this is to make sure that xi is actually in Qn);

Alice answers with, for i = 1, . . . , `,
(βi, αi,2ci , αi,2ci+1, {hi,j}) (γi, bi)

Bob checks that, for each i = 1, . . . , `,
1. the hi,j , for j = 0, . . . , 3, are all distinct
2. αi,2ci = −αi,2ci+1 mod n
3. hi,2ci = H3(n, αi,2ci)

and hi,2ci+1 = H3(n, αi,2ci+1)
4. H2(n, seed, i) = βiα

2
i,2ci

mod n

biγ
4
i = H4(n, seed, i) mod n

Fig. 7. Proof of the Correct Modulus

The theorem above leads to the protocol Prove-Surjective (see in Fig. 7). The basic idea of this
protocol is that we prove that our function is a bijection by proving it is surjective. Soundness follows
from the second statement. However, in order to fall into the hypotheses of the theorem, we need to
make sure n is actually a composite modulus of the required form (i.e. with at least two distinct prime
factors). We achieve this with the Prove-Composite protocol (see in Fig. 7). The correctness (com-
pleteness, soundness and zero-knowledge properties) of these protocols is presented in Appendix C.

Remark 7. We point out that our protocol is very efficient, for the verifier, in terms of modular
multiplications. It is also possible for Alice to use the same modulus for different sessions.

7 Conclusion

In this paper, we introduced a new useful primitive we called the “trapdoor hard-to-invert isomorphism
family”, and we provided some examples, based on the Diffie-Hellman assumption, the RSA assumption
and factoring. Then, we presented a generic password-based authenticated key exchange protocol,
based on any such primitive, with a formal security proof. The instantiation with the signed squaring
function is definitely the most interesting one, since this is, to our knowledge, the first password-
based authenticated key exchange scheme secure under the intractability assumption for factoring.
Furthermore, the computational cost is minimal for one of the parties. We also present some other
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concrete instantiations in Appendix D, based on the Diffie-Hellman problem (which is actually one
of the AuthA variants, proposed in IEEE P1363 by Bellare and Rogaway [3], or PAK [6]) and RSA
(which is similar to the RSA-OKE schemes [20, 22, 21, 31], but very efficient).
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A Proof of Theorem 6

Assume fn is surjective, we prove it is a bijection by proving that (where |S| for a set S denotes the
cardinality of the set):

|{−1, 1} ×Qn| ≤ |Jn|.

Let us denote with J̄n the set of elements having Jacobi symbol −1 in Z∗n. We claim that |Jn| ≥ |J̄n|.
We prove this claim by considering the following function g. Let x be an element in J̄n (if J̄n is empty,
the statement is trivial) we set g : J̄n → Jn as

g(y) = xy mod n.

It is easy to check that this function is injective. This fact immediately implies the claim. Moreover
since J̄n ∪ Jn = Z?

n and J̄n ∩ Jn = ∅, it has to be the case that |Jn| ≥ |Z?
n|/2.

Observe that |{−1,+1} × Qn| ≤ |Z?
n|/2 simply because if n is a composite with (at least) two

different prime factors every quadratic residue in Z?
n has at least four different square roots. This

means that |Qn| ≤ |Z?
n|/4, and thus |{−1,+1} ×Qn| ≤ 2× |Z?

n|/4 = |Z?
n|/2.

From the above is then clear that |{−1,+1} ×Qn| ≤ |Z?
n|/2 ≤ |Jn|.

For the second statement, assume that fn is not surjective. Since it is a morphism the image set
produced by fn

Gn = fn〈{−1,+1} ×Qn〉

is actually a subgroup of Jn (which of course is a group in the first place). By the well-known Lagrange’s
theorem, this fact implies that the order of Gn divides that of Jn, thus |Gn| ≤ |Jn|/2 (note that being
fn not surjective, Gn has to be a proper subgroup of Jn). ut

B Generation of Random Elements in Jn

Landau’s Theorem [19] states that ϕ(n) ≥ n/ log2(n). However better results exist [27],

For n ≥ 5, ϕ(n) ≥ n

6 ln ln n
and for n ≥ 646, ϕ(n) ≥ n

2.5 ln ln n
.

Therefore, if one first checks that n is in the correct range, that is between 2k−2 and 2k, for k > 12,
then

ϕ(n) ≥ n

2.5 ln ln n
≥ 2k

10 ln ln n
≥ 2k

3.5(2 log2 k − 1)
.

For k = 1024, the average number of iterations is less than 67.
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In this way it is possible to produce outputs that are uniformly distributed in Z?
n. Furthermore,

under the assumption that the elements with Jacobi symbols equal to +1 are uniformly distributed—
which is widely believed to be true—, the average number of iterations required to obtain outputs
uniformly distributed in the subset of elements in Z?

n having Jacobi symbol equal to +1, can be
upper-bounded by 3.5× (2 log2 k − 1).

As a consequence, one can set the parameters q and s (see Section 5) as q = 2k−3, and s = k2/4 ln2 k
(using the standard approximation for the density of primes and the assumption that Blum primes
represent half the number of the primes).

C Proof of Compositeness for SQRT-IPAKE

In this section we prove that the protocol Prove-Composite is actually a perfect zero-knowledge one.

Completeness. It is easy to check that the protocol is complete (i.e. a correct statement can always
be verified successfully).

Soundness. We claim that a dishonest client can cheat only with probability 1/2`. Note that, in
order to succeed, the prover should be able to convince the verifier that n is a composite modulus of
the required form (i.e. with at least two different prime factors) while it is not. This means that an
invalid n can be either n = p or n = pr where p is prime. In both cases Z?

n is a cyclic group. It is a well
known fact from number theory (see [18] for example) that in every finite cyclic group G the equation
xd = a has gcd(d, ord(G)) different solutions. In our case this means that, for each quadratic residue,
the malicious prover can find only two different square roots and thus, in order to be successful, he
has to guess all the random bits ci sent by the verifier in step 3 7. This leads to an error probability
of 1/2 for each ci and thus to global success probability of 1/2`.

Zero Knowledge The simulator S goes as follows. It receives on input a valid modulus n (which
in our protocol can be seen as a common parameter). Since we are in the random-oracle model S is
able to simulate the three oracles H2, H3 and H5. Actually, it needs to define some values for H2 and
H5 only, so that it is able to answer future queries. Whenever a query (n, seed, ?), for any seed but
the specific (valid) challenge n, is asked to either H2 or H5, S anticipates the entire execution of the
corresponding protocol: for i = 1, . . . , `, it chooses at random

αi,0, αi,2
R← Z?

n ci
R← {0, 1} βi

R← {−1,+1}

and sets
αi,1 = −αi,0 mod n αi,3 = −αi,2 mod n yi = α2

i,2ci
βi mod n,

hi,j = H3(n, αi,j), for j = 0, . . . , 3.

It finally defines

H2(n, seed, i)← yi, for i = 1, . . . , `, H5(n, seed, {hi,j})← c1 . . . , c`.

It is clear that with this simulation of the random oracles, the simulator can perfectly simulate the
view of Bob. Furthermore, this simulation works even if one uses a fixed modulus n: several concurrent
proofs can be simulated since S can answer successfully all the queries (by construction).

7 Note that for this argument to be correct it is crucial that Bob actually checks that the hi,j (step 1 in the verification
process) are all different. Otherwise Alice could just use the two square roots she owns and simply duplicate them
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D Other Concrete Examples

D.1 Diffie-Hellman

The most natural instantiation is of course with the Diffie-Hellman family. The obtained protocol is
presented in Fig. 8. It is very similar to one of the AuthA variants [3], or to PAK [6]. Note that the

Alice Bob

Shared password: pw
Shared public elements: g ∈ G, of prime order q

G : G× Password→ G
accept← false accept← false

terminate← false

f
R← Z?

q , F ← gf Alice, F−−−−−−−−−−−→ F q = 1?

x
R← Zq, X ← gx, Y ← F x

PW← G(F, pw) PW← G(F, pw)

Y ′ ← Ŷ /PW
Bob, Ŷ←−−−−−−−−−−− Ŷ ← Y × PW

X ′ ← Y ′1/f Auth−−−−−−−−−−−→
Auth valid?⇒ accept← true

accept← true terminate← true

Auth← H1(Alice‖Bob‖F‖Ŷ ‖pw‖X)

sk← H0(Alice‖Bob‖F‖Ŷ ‖pw‖X)

Fig. 8. Diffie-Hellman – IPAKE protocol

general security result, here, seems to lead to the following variant of the standard Diffie-Hellman
problem: given g, F = gf and Y = gfx, find X = gx. However a small change suffices to obtain
back to the classical Diffie-Hellman problem: h ← F = gf , X ′ ← g = hz where z = 1/f , and
Y ′ ← Y = gfx = hx, find Z ′ = hzx = gx = X.

D.2 RSA

Description. For the case of RSA the function f is defined by a modulus n, with a universal exponent
e, by f(x) = xe mod n. For this function to be one-way, Alice is assumed to choose an RSA modulus
of size k (and at least k − 2), and thus the product of two exactly k/2-bit primes, between 2k/2−1

and 2k/2 (the set of which is denoted Prime(k/2)). From his side, Bob wants this function to be a
permutation, which means that ϕ(n) must be co-prime with respect to the exponent e. This fact has
to be proven by Alice.

The protocol is instantiated by setting Xf = Yf = Z?
n, (the internal group law is multiplication

in Z?
n). The hash function G is supposed to output k-bit elements, uniformly distributed in Z?

n (see
Appendix B).

The full protocol appears in Fig. 9. It is very similar to OKE (Open Key Exchange [20] and variants,
like SNAPI [22, 21] and [31]). The main difference is the efficient proof for the co-primality of e and
ϕ(n), even for a small exponent e.

Proof of Correct Modulus. The proof about n consists in proving that n is in the correct range,
and e is co-prime to ϕ(n) (which can be done by proving that any element admits an e-th root).
Methods provided in [22, 21] are very inefficient since they ask e to be a very large prime, in such
a way that it is co-prime to any integer smaller than n, and thus to ϕ(n). A much more efficient
technique is proposed in [31], but with no complete security proof. Here we describe our solution.
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Alice Bob

Shared password: pw
Shared public elements: universal exponent e

accept← false accept← false
terminate← false

p, q ∈ Prime(k/2), n← pq
Alice, n−−−−−−−−−−−→

Bob, seed←−−−−−−−−−−− seed
R← {0, 1}k

π ← Provem(n, (p, q), seed)
π−−−−−−−−−−−→ Checkm(n, seed, π)?

x
R← Z?

n, y ← xe mod n
PW← G(n, pw) PW← G(n, pw)

y′ ← ŷ × PW−1 mod n
ŷ←−−−−−−−−−−− ŷ ← y × PW mod n

x′ ← (y′)1/e mod n
Auth−−−−−−−−−−−→

Auth valid?⇒ accept← true
accept← true terminate← true

Auth← H1(Alice‖Bob‖n‖ŷ‖pw‖x)
sk← H0(Alice‖Bob‖n‖ŷ‖pw‖x)

Fig. 9. RSA – IPAKE protocol

Let ` be a security parameter, the protocol, for n← pq, e such that gcd(e, ϕ(n)) = 1, and a random
seed seed, goes as follows, for i← 1 to `:

1. Alice computes yi = H(n, seed, i) (where H(n, ·) is a full-domain hash function onto Z?
n, modeled

as a random oracle);
2. Alice computes xi = e

√
yi mod n;

Alice then sends the xi’s to Bob whom accepts if for all i = 1, . . . , `, xe
i mod n = H(n, seed, i).

Note that this costs roughly ` exponentiations (for the server Bob) with exponent e. It is not hard
to see that the protocol is complete (i.e. if e is co-prime with ϕ(n) every element is invertible). On the
other hand if e is not co-prime with ϕ(n) the probability that a random element is an e-residue can be
bounded as follows. Let d = gcd(ϕ(n), e) a random element a is an e-residue modulo n with probability
at most 1/d. Thus the probability that ` random and independently chosen elements are all e-residues
is at most 1/d`. Finally it is very easy to check that the protocol is a perfect zero-knowledge one, in
the random-oracle model, even also in a concurrent setting, using a simulation of H as in the FDH
signature proof [2]: for any query (n, seed, i) to H, for the correct challenge n, one chooses r at random
in Z?

n and defines H(n, seed, i)← re mod n. This simulation works exactly for the same reasons as in
the Appendix C.


