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Abstract. In this paper we introduce very simple deterministic randomness extractors
for Diffie-Hellman distributions. More specifically we show that the k most significant
bits or the k least significant bits of a random element in a subgroup of Z

?
p are indis-

tinguishable from a random bit-string of the same length. This allows us to show that
under the Decisional Diffie-Hellman assumption we can deterministically derive a uni-
formly random bit-string from a Diffie-Hellman exchange in the standard model. Then,
we show that it can be used in key exchange or encryption scheme to avoid the leftover
hash lemma and universal hash functions.
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ponential sums.

1 Introduction

Motivation. The Diffie-Hellman key exchange [15] is a classical tool allowing two
entities to agree on a common random element in a group G. It maps a pair of group
elements (gx, gy) to gxy. Since x and y are randomly chosen, the latter value is uni-
formly distributed in G. However it is not secret from an information theoretic point of
view since x and y are uniquely determined modulo |G| and so is gxy. That is why an
additional computational assumption is needed to guarantee that no computationally
bounded attacker can find this element with a significant probability. The Compu-
tational Diffie-Hellman assumption (CDH) basically expresses this security notion.
However, it does not rule out the ability to guess some bits of gxy.

To obtain a cryptographic key from gxy we need that no information leaks and
further assumptions are required. Among those, the DDH is perhaps the most popular
assumption and allows cryptographers to construct secure protocols [4]. It states the
intractability of distinguishing DH-triples (gx, gy, gxy) from random triples (gx, gy , gz).
Under the decisional Diffie-Hellman assumption (DDH) one can securely agree on a
random and private element. However, a problem remains: this element is a random
element in G but not a random bit-string as is generally required in further symmetric
use. The common secret will indeed thereafter be used as a symmetric key to establish
an authentic and private channel. Hence, one has to transform this random element
into a random-looking bit-string, i.e. extract the computational entropy injected by
the DDH assumption in the Diffie-Hellman element. To solve this problem, different
methods have been proposed.

Thanks to the Leftover Hash Lemma [23, 25], one can extract entropy hidden
within gz by means of a family of universal hash functions. This solution has the ad-
vantage of being proven in the standard model and does not require any cryptographic
assumption. One can indeed easily construct such families [10], and they are further-
more quite efficient to compute. However it requires extra randomness which needs to
be of good quality (unbiased) and independent of the random secret gz . Consequently,
in a key exchange protocol, this extra randomness either needs to be authenticated or
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hard-coded in the protocol. This solution is mostly theoretical and is not widely used
in standard protocols for the simple reason that families of universal hash functions
are not present in cryptographic softwares, while they would be quite efficient [16, 33].

In practice, designers prefer to apply hash functions, such as md5 or sha-1, to
the Diffie-Hellman element. This solution can be proven secure under the CDH as-
sumption in the random oracle model [2], under the assumption that the compression
function acts as a random oracle [13], but not in the standard model (unless one makes
additional non-standard assumptions [1, 16, 18]).

In this paper, we analyze a quite simple and efficient randomness extractor for
Diffie-Hellman distributions. The security relies on the DDH assumption in the stan-

dard model.

Related Works. To extract randomness from a Diffie-Hellman secret, one approach
is to focus on the distribution induced by the DDH assumption. In [9], Canetti et al.

show that given the k most significant bits of gx and gy, one cannot distinguish, in
the statistical sense, the k most significant bits of gxy from a random k bit-string. As
Boneh observes [4], this is quite interesting but cannot be applied to practical protocols
because an adversary always learns all of gx and gy. Chevassut et al. [11, 12] review
a quite simple and optimal randomness extractor but which can be applied to Z

?
p,

with a safe prime p only. This randomness extractor is very efficient but requires high
computational effort to compute gx, gy and gxy because of the requirement of a large
group. They also presented a new technique (TAU [12]) but which applies to specific
elliptic curves only. Independently, Gürel [22] proved that, under the DDH assumption
over an elliptic curve, the most significant bits of the Diffie-Hellman transform are
statistically close to a random bit-string, when the elliptic curve is defined over a
quadratic extension of a finite field. However, Z

?
p is one of the most interesting group

and in order to speed up the Diffie-Hellman key-exchange, the computations must be
performed in a small subgroup. To this end, Gennaro et al. [18] prove that a family
of universal hash functions can be used even in non-DDH groups, provided that the
group contains a large subgroup where the DDH assumption holds. However, this
result still requires the use of a family of universal hash functions.

A second line of research is to study usual cryptographic primitives in protocols
and prove that they are good randomness extractors. Dodis et al. [16] therefore tried to
analyze the security of IPsec. They showed that NMAC, the cascade construction and
CBC-MAC are probabilistic randomness extractors. This is the first formal study of
the randomness extraction phase of Diffie-Hellman standards in the standard model.
These extractors can be applied with several distributions, not only the Diffie-Hellman
distributions. However, these results require the assumption that the compression
functions of the hash-based constructions under review (the hash functions md5 or
sha-1) are a family of almost universal hash functions, which is not realistic.

In [5, 6], Boneh and Venkatesan show that the k most significant bits or least
significant bits of gxy are hard to compute. Namely, they prove that given an oracle
which takes as input (gx, gy) and returns the k most significant bits of gxy, one can
construct an algorithm to compute gab given (ga, gb). They can take into account
faulty oracle which can fail with probability at most 1/ log p. In order to use these
results to show that these bits are hardcore bits, the oracle must correctly answer
with probability better than 1/2k + ε. Indeed, in this case, the oracle finds the k bits
more frequently than by guessing them. However, the techniques used cannot take into
account such faulty oracles. Moreover their proof is known to contain a gap which was
fixed by Gonzales-Vasco and Shparlinski in [21]. The result of [5, 6] is improved in [21,
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20] and in [3]. In the latter, it is shown that under the DDH assumption the two most
significant bits of the Diffie-Hellman result are hard to compute. Our main result here
tells that under the DDH assumption, a good distinguisher for the two distributions
(ga, gb, Uk) and (ga, gb, lsbk(g

ab)) cannot exist.

Our Result. In this paper, we use the exponential sum techniques to analyze crypto-
graphic schemes. These techniques date back to the beginning of the last century, but
we borrowed them from [9, 8] where they are used for cryptographic purposes. They
allow us to study a very simple deterministic randomness extractor. Deterministic ex-
tractors have been recently introduced in complexity theory by Trevisan and Vadhan
[28]. We describe here a deterministic randomness extractor which is provably secure
in the standard model, under classical assumptions. We focus on the distribution in-
duced by the DDH in a prime subgroup G of Z

?
p, where p is prime and |G| � √

p. We
prove that the k least significant bits of a random element of G are statistically close to
a perfectly random bit-string. In other words, we have a very simple deterministic ran-
domness extractor which consists in keeping the k least significant bits of the random
element and discarding the others. This extractor can be applied to Diffie-Hellman
Key Exchange and El Gamal-based encryption schemes, under the DDH assumption.
It does not need any family of universal hash functions neither any extra randomness.
We also show that if p is sufficiently close below of a power of 2 by a small enough
amount, the k most significant bits are also uniformly distributed.

Organization. In section 2, we present some definitions and results about entropy
and randomness extraction. In section 3, we present and analyze our new randomness
extractor. In section 4, we compare our extractor with other randomness extractors.
In section 5, we present some natural and immediate applications of our extractor.
In section 6, we relax the DDH assumption into the weaker CDH assumption and
analyze the bit-string we can generate in that case.

2 Entropy and Randomness Extractors

First of all we introduce the notions used in randomness extraction. In the following,
a randomness source is viewed as a probability distribution.

2.1 Measures of Randomness

Definition 1 (Min Entropy). Let X be a random variable with values in a set
X of size N . The guessing probability of X, denoted by γ(X), is the probability
maxx∈X (Pr[X = x]). The min entropy of X is: H∞(X) = − log2(γ(X)).

For example, when X is drawn from the uniform distribution on a set of size N ,
the min-entropy is log2(N). To compare two random variables we use the classical
statistical distance:

Definition 2 (Statistical Distance). Let X and Y be two random variables with
values in a set X of size N . The statistical distance between X and Y is the value of
the following expression:

SD(X,Y ) =
1

2

∑

x∈X

|Pr[X = x] − Pr[Y = x]| .

We denote by Uk a random variable uniformly distributed over {0, 1}k . We say that
a random variable X with values in {0, 1}k is δ-uniform if the statistical distance
between X and Uk is upper bounded by δ.
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2.2 From Min Entropy to δ-Uniformity

The most common method to obtain a δ-uniform source is to extract randomness from
high-entropy bit-string sources. Presumably, the most famous randomness extractor is
provided by the Leftover Hash Lemma [23, 25], which requires to introduce the notion
of universal hash function families.

Definition 3 (Universal Hash Function Families). Let H = {hi}i be a family
of efficiently computable hash functions hi : {0, 1}n → {0, 1}k, for i ∈ {0, 1}d. We say
that H is a universal hash function family if for every x 6= y in {0, 1}n,

Pr
i∈{0,1}d

[hi(x) = hi(y)] ≤ 1/2k.

Theorem 4 (Leftover Hash Lemma). Let H be a universal hash function family

from {0, 1}n into {0, 1}k, keyed by i ∈ {0, 1}d. Let i denote a random variable with uni-

form distribution over {0, 1}d, let Uk denote a random variable uniformly distributed

in {0, 1}k, and let A denote a random variable taking values in {0, 1}n, with i and A
mutually independent. Let γ = γ(A), then:

SD(〈i, hi(A)〉, 〈i, Uk〉) ≤
√

2kγ

2
.

Proof. See [32].

The Leftover Hash Lemma extracts nearly all of the entropy available whatever
the randomness sources are, but it needs to invest few additional truly random bits.
To overcome this problem, it was proposed to use deterministic functions. They do
not need extra random bits, but only exist for some specific randomness sources.

Definition 5 (Deterministic Extractor). Let f be a function from {0, 1}n into
{0, 1}k . Let X be a set of random variables of min entropy m taking values in {0, 1}n

and let Uk denote a random variable uniformly distributed in {0, 1}k , where Uk and
X are independent for all X ∈ X . We say that f is an (m, ε)-deterministic extractor
for X if for all X ∈ X :

SD (f(X), Uk) < ε.

3 Randomness Extractor in a Subgroup of Z?

p

In this section, we propose and prove the security of a simple randomness extractor
for the Diffie-Hellman exchange in sufficiently large subgroups of Z

?
p. The main result

of this section is theorem 7 which shows that least significant bits of a random element
in G are statistically close to truly random bits. To prove this result, we apply the
exponential sum techniques in order to find an upper bound on the statistical distance.
It is very similar to the results of [27] who studies the distribution of fractional parts
of agx/p in given intervals of [0, 1].

Our result does not require the DDH assumption. However, as it is precised in
section 5, to apply it in a cryptographic protocol, the DDH assumption is needed to
obtain a random element in the subgroup of Z

?
p.
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3.1 Description of the Deterministic Extractor

Let p be an n-bit prime, that is 2n−1 < p < 2n, G a subgroup of Z
?
p of order q with

q � √
p, ` the integer such that 2`−1 ≤ q < 2` and X a random variable uniformly

distributed in G. In the following, we denote by k an integer, by s a k-long bit-string
and the associated integer in J0, 2k − 1K, and by Uk a random variable uniformly
distributed in {0, 1}k. If x is an integer, we denote by lsbk(x) the k least significant
bits of x and by msbk(x) the k most significant bits of x.

In this section we show that the k least significant bits of a random element g of
G are statistically close to a truly random k-long bit-string provided that G is large
enough. A direct consequence of this result is that the function from Z

?
p to {0, 1}k which

keeps only the k least significant bits of its input is a good deterministic extractor for
a G-group source (that is for variables uniformly distributed in the group G ⊂ Z

?
p).

Definition 6. The function Extk : {0, 1}n → {0, 1}k : c 7→ lsbk(c) is called an
(n, p, q, k)-extractor for a G-group source.

Theorem 7. With the above notations of an (n, p, q, k)-extractor for a group source,

we have:

SD(lsbk(X), Uk) <
2k

p
+

2k√p log2(p)

q
< 2k+n/2+log2(n)+1−`.

This inequality is non trivial only if k < ` − n/2 − log2(n) − 1.

Proof. Let us define K = 2k, Hs =
⌊

p−1−s
K

⌋

for s ∈ J0, K − 1K. Let denote by ep the

following character of Zp: for all y ∈ Zp, ep(y) = e
2iπy

p ∈ C
∗. The character ep is an

homomorphism from (Zp,+) in (C∗, ·). Since

1

p
×

p−1
∑

a=0

ep(a(gx − s − Ku)) =
�
(x, s, u),

where
�
(x, s, u) is the characteristic function which is equal to 1 if gx = s+Ku mod p

and 0 otherwise, we have:

Pr
X∈G

[lsbk(X) = s] =
1

q
×
∣

∣

∣
{(x, u) ∈ J0, q − 1K × J0, HsK | gx = s + Ku mod p}

∣

∣

∣

=
1

qp
×

q−1
∑

x=0

Hs
∑

u=0

p−1
∑

a=0

ep(a(gx − s − Ku)).

Let us change the order of the sums, and split sum on the a’s in two terms:

1. the first one comes from the case a = 0, and is equal to (Hs + 1)/p, that is
approximately 1/2k,

2. the second one comes from the rest, and will be the principal term in the statistical
distance in which we can separate sums over x and u.

Twice the statistical distance, that is 2∆, is equal to:

∑

s∈{0,1}k

∣

∣

∣

∣

Pr
X∈G

[lsbk(X) = s] − 1/2k

∣

∣

∣

∣

≤
∑

s∈{0,1}k

∣

∣

∣

∣

Hs + 1

p
− 1

2k

∣

∣

∣

∣

+
∑

s∈{0,1}k

1

qp

p−1
∑

a=1

∣

∣

∣

∣

∣

(

q−1
∑

x=0

ep(agx)

)(

Hs
∑

u=0

ep(−aKu)

)
∣

∣

∣

∣

∣

.
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For the first term, we notice that
∣

∣(Hs + 1)/p − 1/2k
∣

∣ ≤ 1/p, since K = 2k, Hs =
⌊

p−1−s
K

⌋

and:

−1

p
≤ −1 + s

Kp
≤
(

1 +

⌊

p − 1 − s

K

⌋)

1

p
− 1

K
≤ K − (1 + s)

Kp
≤ 1

p
.

For the second term, we introduce M = maxa

(
∣

∣

∣

∑q−1
x=0 ep(agx)

∣

∣

∣

)

, and show that:

p−1
∑

a=1

∣

∣

∣

∣

∣

Hs
∑

u=0

ep(−aKu)

∣

∣

∣

∣

∣

=

p−1
∑

a=1

∣

∣

∣

∣

∣

Hs
∑

u=0

ep(−au)

∣

∣

∣

∣

∣

=

p−1
∑

a=1

∣

∣

∣

∣

1 − ep(−a(Hs + 1))

1 − ep(−a)

∣

∣

∣

∣

=

p−1
∑

a=1

∣

∣

∣

∣

∣

∣

sin(πa(Hs+1)
p )

sin(πa
p )

∣

∣

∣

∣

∣

∣

= 2

p−1
2
∑

a=1

∣

∣

∣

∣

∣

∣

sin(πa(Hs+1)
p )

sin(πa
p )

∣

∣

∣

∣

∣

∣

≤ 2

p−1
2
∑

a=1

∣

∣

∣

∣

∣

1

sin(πa
p )

∣

∣

∣

∣

∣

≤
p−1
2
∑

a=1

∣

∣

∣

p

a

∣

∣

∣
≤ p log2(p).

The first equality results from a change of variables. The second equality comes from
the fact that J0, HsK is an interval, therefore the sum is a geometric sum. We use the
inequality sin(y) ≥ 2y/π if 0 ≤ y ≤ π/2 for the second inequality. In summary we
have:

2∆ ≤ 2k

p
+

2kM log2(p)

q
. (1)

Using the bound M ≤ √
p that can be found in [26], 2n−1 < p < 2n and 2`−1 ≤ q < 2`,

we obtain the expected result.

Consequently, since the min entropy of X, as an element of Z
?
p but randomly dis-

tributed in G, equals log2(|G|) = log2(q), the previous proposition leads to:

Corollary 8. Let e be a positive integer and let suppose that we have log2(q) > m =
n/2 + k + e + log2(n) + 1. Then the application Extk is an (m, 2−e)-deterministic

extractor for the G-group distribution.

3.2 Improvements

One drawback of the previous result is that we need a subgroup of order at least
√

p.
In order to have more efficient Diffie-Hellman key exchange, one prefers to use smaller
subgroups. Therefore to improve the results obtained on this random extractor, one

idea would be to find a better bound than
√

p on M = maxa

(
∣

∣

∣

∑q−1
x=0 ep(agx)

∣

∣

∣

)

. There

are several results which decrease this bound, as these from [7, 24]. Many of them are
asymptotic, and do not explicit the constants involved. However, by looking carefully
at the proof in [24] or [26] we can find them:

Theorem 9 ([26]). With the notations of the previous subsection, if q ≥ 256 then,

for all x ∈ Z
?
p, we have:

M ≤







p1/2
(

interesting if p2/3 ≤ q
)

4p1/4q3/8
(

interesting if p1/2 ≤ q ≤ p2/3
)

4p1/8q5/8
(

interesting if 256 ≤ q ≤ p1/2
)
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The bound
√

p is always valid whatever p and q are. Yet, if
√

p < q < p2/3, the
second bound is better and similarly to the third bound. For example, with n = 2048,
` = 1176 and e = 80, theorem 7 says that we can extract 60 bits. Using the second
bound given in the theorem above with the equation 1 we obtain that k ≤ 5`/8 −
(e + n/4 + log2(n) + 3). It means that we can actually extract 129 bits and obtain a
bit-string of reasonable size. However, in most practical cases, the classical bound

√
p

is the most appropriate.

Moreover when G is the group of quadratic residues, Gauss has proven that
∣

∣

∣

∑p−1
x=0 ep(ax)

∣

∣

∣
=

√
p, for all a ∈ Z

?
p. Therefore,

∣

∣

∣

∑q−1
x=0 ep(agx)

∣

∣

∣
≥ (

√
p − 1)/2. This

means that in the case of safe primes and with this proof technique, our result is nearly
optimal.

3.3 Other Result

The theorem presented in the previous section considers least significant bits. A similar
result for most significant bits can be proved with the same techniques. We have the
following theorem, whose proof is omitted by lack of space:

Theorem 10. Let δ be (2n−p)/2n. If p, m, k and e are integers such that 3δ < 2−e−1

and log2(|G|) > m = n/2+k+e+log2(n)+1, then the function msbk(·) is a (m, 2−e)-
deterministic extractor for the G-group distribution.

The first assumption on p to be close by below to a power of 2 is easily justified
by the fact that the most significant bit is highly biased whenever p is just above a
power of 2. Indeed in this case, with high probability, the most significant bit is equal
to 0.

4 Comparisons

In the literature other randomness extractors proven secure in the standard model are
also available.

4.1 The Leftover Hash Lemma

A famous one is the leftover hash lemma which is presented in subsection 2.2. If one
uses a universal hash function family, we can extract up to log2(|G|)−2e+2 bits from
a random element in G. With our extractor, the number of random bits extracted is
approximately log2(|G|) − (n/2 + log2(n) − e + 1). However, the leftover hash lemma
needs the use of a universal hash function family and extra truly random bits.

In practice we can derandomize it by fixing the key of the hash function. Shoup [32]
proved that in this case, there is a linear loss of security in the number of calls of the
hash function.

4.2 An Optimal Randomness Extractor for Safe Prime Groups

To extract randomness from a random element of a subgroup of Z
?
p, where p = 2q + 1

is a safe prime (q is also a prime), there is another deterministic extractor reviewed
in [11, 12]. Let G = 〈g〉 denote the subgroup of quadratic residues of Z

?
p, and let gx
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be a random element in G. To extract the randomness of gx, the extractor needs this
function f :

f(gx) =

{

gx if gx ≤ (p − 1)/2
p − 1 − gx otherwise

This function is a bijection from G to Zq. To obtain a random bit-string, one has to
truncate the result of f . The composition of f and the truncation is a good determin-
istic extractor. As f is a bijection, in some sense it is optimal : all the randomness is
extracted. However this simple extractor is very restrictive because it can be applied
only with a safe prime when our extractor can be used with a significantly larger set
of primes. Moreover our extractor is more efficient than this simple one.

5 Applications

The DDH assumption allows to find to our extractor some natural applications in
cryptographic protocols. It can indeed be applied in every protocol which generates a
random element in a subgroup of Z

?
p and where a randomness extractor is needed.

5.1 Key Exchange Protocol

Our extractor is designed to extract entropy from a random element in a group G. It
is exactly what is obtained after a Diffie-Hellman key exchange performed in a DDH
group G, where G is a subgroup of Z

?
p.

This means that we have an efficient solution to the problem of agreeing on a
random bit-string which is based on the following simple scheme, provably secure in
the standard model under the DDH assumption: Alice sends gx, Bob sends gy and
they compute lsbk(g

xy).
The multiplicative group Z

?
p is not a DDH group but if p = αq + 1 with q a large

prime and α small then the subgroup of Z
?
p with q elements may be assumed a DDH

group (in such a group, the DDH assumption is reasonable.) Therefore in this case we
can extract up to k = n/2 − (e + log2(n) + 2 + log2(α)) bits from an n − log2(α) min
entropy source.

In practice, the security parameters are often n = 1024, e = 80. Hence we can
extract approximately 420 − log2(α) bits at the cost of two exponentiations modulo
an integer of 1024 bits. It means that if we need a 128-long bit-string, the subgroup
should have approximately 2731 elements.

5.2 Encryption Schemes

El Gamal Encryption Scheme [17]. In the El Gamal encryption scheme, the
message must be an element of a cyclic group G of order q. Alice generates a random
element x in Zq and publishes y = gx where g is a generator of G. To encrypt the
message m, she generates a random element r of Zq and computes (gr,myr). This
scheme is proven IND-CPA secure if m ∈ G. However in practice messages are often
bit-strings and not elements from G. One solution to avoid this problem is to extract
the randomness from yr and xor the generated bit-string with the message. This way,
the encryption scheme is still IND-CPA secure. Our extractor can be used in this
context to extract randomness.

Cramer-Shoup Encryption Scheme [14, 31]. The Cramer-Shoup encryption scheme
is an improvement of the El Gamal encryption scheme which is IND-CCA secure. The
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principle is the same as in El Gamal, it hides m multiplying it with a random element
hr of G. The security proof requires that m is in G. In order to use bit-string messages,
we can use the same solution: extract randomness from hr with our extractor and xor
the result with m.

6 Other Assumptions

In this section, we apply our result under various assumptions, related to the DDH
one. First, we make a stronger assumption, the so-called Short Exponent Discrete
Logarithm, which allows quite efficient DH-like protocols. Then, we relax the DDH
assumption to the CDH one.

6.1 The s-DLSE Assumption

To speed up our randomness extractor, we can use a group in which the additional
Short Exponent Discrete Logarithm (DLSE) assumption holds. First introduced in
[34], it is formalized in [29] and [18] as follows:

Assumption 1 (s-DLSE [29]) Let s be an integer, G = {Gn}n be a family of cyclic

groups where each Gn has a generator gn and ord(Gn) = qn > 2n. We say that

the s-DLSE Assumption holds in G if for every probabilistic polynomial time Turing

machine I, for every polynomial P (·) and for all sufficiently large n we have that

Prx∈RJ1, 2sK [I(gn, qn, s, gx
n) = x] ≤ 1/P (n).

As explained in [18], current knowledge tends to admit that in a group of prime order,
for a 2−e security level, we can choose s ≥ 2e. The usual security parameter of e = 80
leads to s ≥ 160, which is quite reasonable, from a computational cost.

Gennaro et al. prove in [18] that under the s-DLSE and the DDH assumption, the
two following distributions are computationally indistinguishable:

{(gx, gy, Z)| x, y ∈R J1, 2sK, Z ∈R G} and {(gx, gy , gxy)| x, y ∈R J1, 2sK} .

This result allows us to use our extractor with the latter distribution and in that way
be computationally more efficient.

6.2 The CDH Assumption

In practice, to apply our extractor, we need to work in a group where the DDH
assumption is true. It is more difficult to extract entropy in a group where only
the CDH assumption is supposed to hold. As precised in the introduction, in the
random oracle model, it is possible to extract entropy using hash functions such as
md5 or sha-1. Yet, in the standard model under the CDH assumption, we currently
know how to extract only O(log log p) bits and not a fixed fraction of log2(p) as we
prove in this paper under the DDH assumption. This bound of O(log log p) bits is an
indirect application of the Goldreich-Levin hard-core predicate [19], using the Shoup’s
trick [30].

Acknowledgement. The authors would like to thank I. Shparlinski for his helpful
remarks and the anonymous reviewers for their comments.



10

References

1. M. Abdalla, M. Bellare, and P. Rogaway. The Oracle Diffie-Hellman Assumptions and an Analysis
of DHIES. In CT – RSA ’01, LNCS 2020, pages 143–158. Springer-Verlag, Berlin, 2001.

2. M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for Designing Efficient
Protocols. In Proc. of the 1st CCS, pages 62–73. ACM Press, 1993.

3. I. F. Blake, T. Garefalakis, and I. E. Shparlinski. On the bit security of the Diffie-Hellman key.
In Appl. Algebra in Engin., Commun. and Computing, volume 16, pages 397–404, 2006.

4. D. Boneh. The Decision Diffie-Hellman Problem. In J. P. Buhler, editor, Algorithmic Number
Theory Symposium (ANTS III), LNCS 1423, pages 48–63. Springer-Verlag, Berlin, 1998.

5. D. Boneh and R. Venkatesan. Hardness of Computing the Most Significant Bits of Secret Keys in
Diffie-Hellman and Related Schemes. In Crypto ’96, LNCS 1109, pages 129–142. Springer-Verlag,
Berlin, 1996.

6. D. Boneh and R. Venkatesan. Rounding in Lattices and its Cryptographic applications. In Proc.
of ACM-SIAM SODA’97, pages 675–681, 1997.

7. J. Bourgain and S. V. Konyagin. Estimates for the Number of Sums and Products and for
Exponential Sums Over Subgroups in Fields of Prime Order. Comptes Rendus Mathmatiques,
337:75–80, 2003.

8. R. Canetti, J. Friedlander, S. Konyagin, M. Larsen, D. Lieman, and I. Shparlinski. On the
Statistical Properties of Diffie-Hellman Distributions. Israel Journal of Mathematics, 120:23–46,
2000.

9. R. Canetti, J. Friedlander, and I. Shparlinski. On Certain Exponential Sums and the Distribution
of Diffie-Hellman Triples. Journal of the London Mathematical Society, 59(2):799–812, 1999.

10. L. Carter and M. Wegman. Universal Hash Functions. Journal of Computer and System Sciences,
18:143–154, 1979.

11. O. Chevassut, P. A. Fouque, P. Gaudry, and D. Pointcheval. Key derivation and randomness
extraction. Cryptology ePrint Archive, Report 2005/061, 2005. http://eprint.iacr.org/.

12. O. Chevassut, P. A. Fouque, P. Gaudry, and D. Pointcheval. The twist-augmented technique for
key exchange. In PKC ’06, LNCS 3958, pages 410–426. Springer-Verlag, Berlin, 2006.

13. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damgard Revisited : How to Construct
a Hash Function. In Crypto ’05, LNCS 3621, pages 430–448. Springer-Verlag, Berlin, 2005.

14. R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure against Adaptive
Chosen Ciphertext Attack. In Crypto ’98, LNCS 1462, pages 13–25. Springer-Verlag, Berlin, 1998.

15. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Informa-
tion Theory, IT–22(6):644–654, November 1976.

16. Y. Dodis, R. Gennaro, J. H̊astad, H. Krawczyk, and T. Rabin. Randomness Extraction and Key
Derivation Using the CBC, Cascade and HMAC Modes. In Crypto ’04, LNCS, pages 494–510.
Springer-Verlag, Berlin, 2004.

17. T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.
IEEE Transactions on Information Theory, IT–31(4):469–472, July 1985.

18. R. Gennaro, H. Krawczyk, and T. Rabin. Secure Hashed Diffie-Hellman over Non-DDH Groups.
In Eurocrypt ’04, LNCS 3027, pages 361–381. Springer-Verlag, Berlin, 2004.

19. O. Goldreich and L.A. Levin. A Hard-Core Predicate for all One-Way Functions. In Proc. of the
21st STOC, pages 25–32. ACM Press, New York, 1989.
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