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Abstract. This paper presents the first automatic technique for proving not only protocols but also
primitives in the exact security computational model. Automatic proofs of cryptographic protocols were up
to now reserved to the Dolev-Yao model, which however makes quite strong assumptions on the primitives.
On the other hand, with the proofs by reductions, in the complexity theoretic framework, more subtle
security assumptions can be considered, but security analyses are manual. A process calculus is thus
defined in order to take into account the probabilistic semantics of the computational model. It is already
rich enough to describe all the usual security notions of both symmetric and asymmetric cryptography, as
well as the basic computational assumptions. As an example, we illustrate the use of the new tool with
the proof of a quite famous asymmetric primitive: unforgeability under chosen-message attacks (UF-CMA)
of the Full-Domain Hash signature scheme under the (trapdoor)-one-wayness of some permutations.

1 Introduction

There exist two main frameworks for analyzing the security of cryptographic protocols. The most fa-
mous one, among the cryptographic community, is the “provable security” in the reductionist sense [8]:
adversaries are probabilistic polynomial-time Turing machines which try to win a game, specific to
the cryptographic primitive/protocol and to the security notion to be satisfied. The “computational”
security is achieved by contradiction: if an adversary can win such an attack game with non-negligible
probability, then a well-defined computational assumption is invalid (e.g., one-wayness, intractabil-
ity of integer factoring, etc.) As a consequence, the actual security relies on the sole validity of the
computational assumption. On the other hand, people from formal methods defined formal and ab-
stract models, the so-called Dolev-Yao [21] framework, in order to be able to prove the security of
cryptographic protocols too. However, these “formal” security proofs use the cryptographic primitives
as ideal blackboxes. The main advantage of such a formalism is the automatic verifiability, or even
provability, of the security, but under strong (and unfortunately unrealistic) assumptions. Our goal is
to take the best of each framework, without the drawbacks, that is, to achieve automatic provability
under classical (and realistic) computational assumptions.

The Computational Model. Since the seminal paper by Diffie and Hellman [20], complexity theory is
tightly related to cryptography. Cryptographers indeed tried to use NP-hard problems to build secure
cryptosystems. Therefore, adversaries have been modeled by probabilistic polynomial-time Turing
machines, and security notions have been defined by security games in which the adversary can interact
with several oracles (which possibly embed some private information) and has to achieve a clear goal to
win: for signature schemes, the adversary tries to forge a new valid message-signature pair, while it is
able to ask for the signature of any message of its choice. Such an attack is called an existential forgery
under chosen-message attacks [23]. Similarly, for encryption, the adversary chooses two messages, and
one of them is encrypted. Then the goal of the adversary is to guess which one has been encrypted [22],
with a probability significantly better than one half. Again, several oracles may be available to the
adversary, according to the kind of attack (chosen-plaintext and/or chosen-ciphertext attacks [34, 35]).
One can see in these security notions that computation time and probabilities are of major importance:
an unlimited adversary can always break them, with probability one; or in a shorter period of time,
an adversary can guess the secret values, by chance, and thus win the attack game with possibly
negligible but non-zero probability. Security proofs in this framework consist in showing that if such
an adversary can win with significant probability, within reasonable time, then a well-defined problem
can be broken with significant probability and within reasonable time too. Such an intractable problem
and the reduction will quantify the security of the cryptographic protocol.

c© IACR 2006.



2

Indeed, in both symmetric and asymmetric scenarios, most security notions cannot be uncon-
ditionally guaranteed (i.e. whatever the computational power of the adversary). Therefore, security
generally relies on a computational assumption: for instance, the existence of one-way functions, or
permutations, possibly trapdoor. A one-way function is a function f which anyone can easily compute,
but given y = f(x) it is computationally intractable to recover x (or any pre-image of y). A one-way
permutation is a bijective one-way function. For encryption, one would like the inversion to be possible
for the recipient only: a trapdoor one-way permutation is a one-way permutation for which a secret
information (the trapdoor) helps to invert the function on any point.

Given such objects, and thus computational assumptions about the intractability of the inversion
(without trapdoors), we would like that security could be achieved without any additional assump-
tions. The only way to “formally” prove such a fact is by showing that an attacker against the
cryptographic protocol can be used as a sub-part in an algorithm (the reduction) that can break the
basic computational assumption.

Observational Equivalence and Sequence of Games. Initially, reductionist proofs consisted in presenting
a reduction, and then proving that the view of the adversary provided by the reduction was (almost)
indistinguishable to the view of the adversary during a real attack. Such an indistinguishability was
quite technical and error-prone. Victor Shoup [37] suggested to prove it by small changes [11], using
a “sequence of games” (a.k.a. the game hopping technique) that the adversary plays, starting from
the real attack game. Two consecutive games look either identical, or very close to each other in the
view of the adversary, and thus involve a statistical distance, or a computational one. In the final
game, the adversary has clearly no chance to win at all. Actually, the modifications of games can be
seen as “rewriting rules” of the probability distributions of the variables involved in the games. They
may consist of a simple renaming of some variables, and thus to perfectly identical distributions. They
may introduce unlikely differences, and then the distributions are “statistically” indistinguishable.
Finally, the rewriting rule may be true under a computational assumption only: then appears the
computational indistinguishability.

In formal methods, games are replaced with processes using perfect primitives modeled by function
symbols in an algebra of terms. “Observational equivalence” is a notion similar to indistinguishability:
it expresses that two processes are perfectly indistinguishable by any adversary. The proof technique
typically used for observational equivalence is however quite different from the one used for computa-
tional proofs. Indeed, in formal models, one has to exploit the absence of algebraic relations between
function symbols in order to prove equivalence; in contrast to the computational setting, one does not
have observational equivalence hypotheses (i.e. indistinguishability hypotheses), which specify security
properties of primitives, and which can be combined in order to obtain a proof of the protocol.

Related Work. Following the seminal paper by Abadi and Rogaway [1], recent results [32, 18, 25] show
the soundness of the Dolev-Yao model with respect to the computational model, which makes it
possible to use Dolev-Yao provers in order to prove protocols in the computational model. However,
these results have limitations, in particular in terms of allowed cryptographic primitives (they must
satisfy strong security properties so that they correspond to Dolev-Yao style primitives), and they
require some restrictions on protocols (such as the absence of key cycles).

Several frameworks exist for formalizing proofs of protocols in the computational model. Backes,
Pfitzmann, and Waidner [5, 6, 3] have designed an abstract cryptographic library and shown its sound-
ness with respect to computational primitives, under arbitrary active attacks. Backes and Pfitzmann [4]
relate the computational and formal notions of secrecy in the framework of this library. Recently,
this framework has been used for a computationally-sound machine-checked proof of the Needham-
Schroeder-Lowe protocol [38]. Canetti [16] introduced the notion of universal composability. With
Herzog [17], they show how a Dolev-Yao-style symbolic analysis can be used to prove security prop-
erties of protocols within the framework of universal composability, for a restricted class of protocols
using public-key encryption as only cryptographic primitive. Then, they use the automatic Dolev-Yao
verification tool ProVerif [12] for verifying protocols in this framework. Lincoln, Mateus, Mitchell,
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Mitchell, Ramanathan, Scedrov, and Teague [29–31, 36, 33] developed a probabilistic polynomial-time
calculus for the analysis of cryptographic protocols. Datta et al [19] have designed a computationally
sound logic that enables them to prove computational security properties using a logical deduction
system. These frameworks can be used to prove security properties of protocols in the computational
sense, but except for [17] which relies on a Dolev-Yao prover, they have not been automated up to
now, as far as we know.

Laud [26] designed an automatic analysis for proving secrecy for protocols using shared-key en-
cryption, with passive adversaries. He extended it [27] to active adversaries, but with only one session
of the protocol. This work is the closest to ours. We extend it considerably by handling more primi-
tives, a variable number of sessions, and evaluating the probability of an attack. More recently, he [28]
designed a type system for proving security protocols in the computational model. This type system
handles shared- and public-key encryption, with an unbounded number of sessions. This system relies
on the Backes-Pfitzmann-Waidner library. A type inference algorithm is sketched in [2].

Barthe, Cerderquist, and Tarento [7, 39] have formalized the generic model and the random oracle
model in the interactive theorem prover Coq, and proved signature schemes in this framework. In
contrast to our specialized prover, proofs in generic interactive theorem provers require a lot of human
effort, in order to build a detailed enough proof for the theorem prover to check it.

Halevi [24] explains that implementing an automatic prover based on sequences of games would
be useful, and suggests ideas in this direction, but does not actually implement one.

Our prover, which we describe in this paper, was previously presented in [13, 14], but in a more
restricted way. It was indeed applied only to classical, Dolev-Yao-style protocols of the literature, such
as the Needham-Schroeder public-key protocol. In this paper, we show that it can also be used for
the proof of security of cryptographic primitives. [13, 14] considered only asymptotic proofs. In this
paper, we have extended the prover for providing exact security proofs. We also extend it to the proof
of authentication properties, while [13, 14] considered only secrecy properties. Finally, we also show
how to model a random oracle.

Achievements. As in [13, 14], our goal is to fill the gap between the two usual techniques (computational
and formal methods), but with a direct approach, in order to get the best of each: a computationally
sound technique, which an automatic prover can apply. More precisely, we adapt the notion of obser-
vational equivalence so that it corresponds to the indistinguishability of games. To this aim, we also
adapt the notion of processes: our processes run in time t and work with bit-strings. Furthermore, the
process calculus has a probabilistic semantics, so that a measure can be defined on the distinguisha-
bility notion, or the observational equivalence, which extends the “perfect indistinguishability”: the
distance between two views of an adversary. This distance is due to the application of a transformation,
which is purely syntactic. The transformations are rewriting rules, which yield a game either equiv-
alent or almost equivalent under a “computational assumption”. For example, we define a rewriting
rule, which is true under the one-wayness of a specific function. The automatic prover tries to apply
the rewriting rules until the winning event, which is executed in the original attack game when the
adversary breaks the cryptographic protocol, has totally disappeared: the adversary eventually has a
success probability 0. We can then upper-bound the success probability of the adversary in the initial
game by the sum of all gaps.

Our prover also provides a manual mode in which the user can specify the main rewriting steps
that the prover has to perform. This allows the system to prove protocols in situations in which the
automatic proof strategy does not find the proof, and to direct the prover towards a specific proof, for
instance a proof that yields a better reduction, since exact security is now dealt with.
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2 A Calculus for Games

2.1 Description of the Calculus

In this section, we review the process calculus defined in [13, 14] in order to model games as done in
computational security proofs. This calculus has been carefully designed to make the automatic proof
of cryptographic protocols easier. One should note that the main addition from previous models [33,
28] is the introduction of arrays, which allow us to formalize the random oracle model [9], but also the
authenticity (unforgeability) in several cryptographic primitives, such as signatures, message authen-
tication codes, but also encryption schemes. Arrays allow us to have full access to the whole memory
state of the system, and replace lists often used in cryptographic proofs. For example, in the case
of a random oracle, one generally stores the input and output of the random oracle in a list. In our
calculus, they are stored in arrays.

Contrarily to [13, 14], we adopt the exact security framework [10], instead of the asymptotic one.
The cost of the reductions, and the probability loss will thus be precisely determined. We also adapt
the syntax of our calculus, in order to be closer to the usual syntax of cryptographic games.

In this calculus, we denote by T types, which are subsets of bitstring⊥ = bitstring ∪ {⊥}, where
bitstring is the set of all bit-strings and ⊥ is a special symbol. A type is said to be fixed-length when
it is the set of all bit-strings of a certain length. A type T is said to be large when its cardinal is
large enough so that we can consider collisions between elements of T chosen randomly with uniform
probability quite unlikely, but still keeping track of the small probability. Such an information is useful
for the strategy of the prover. The boolean type is predefined: bool = {true, false}, where true = 1 and
false = 0.

The calculus also assumes a finite set of function symbols f . Each function symbol f comes with
a type declaration f : T1 × . . . × Tm → T . Then, the function symbol f corresponds to a function,
also denoted f , from T1 × . . . × Tm to T , such that f(x1, . . . , xm) is computable in time tf , which is
bounded by a function of the length of the inputs x1, . . . , xm. Some predefined functions use the infix
notation: M = N for the equality test (taking two values of the same type T and returning a value of
type bool ), M ∧N for the boolean and (taking and returning values of type bool ).

Let us now illustrate on an example how we represent games in our process calculus. As we shall
see in the next sections, this example comes from the definition of security of the Full-Domain Hash
(FDH) signature scheme [9]. This example uses the function symbols hash, pkgen, skgen, f, and invf

(such that x 7→ invf(sk, x) is the inverse of the function x 7→ f(pk, x)), which will all be explained later
in detail. We define an oracle Ogen which chooses a random seed r, generates a key pair (pk, sk) from
this seed, and returns the public key pk :

Ogen() := r
R
← seed ; pk ← pkgen(r); sk ← skgen(r); return(pk)

The seed r is chosen randomly with uniform probability in the type seed by the construct r
R
← seed .

(The type seed must be a fixed-length type, because probabilistic bounded-time Turing machines can
choose random numbers uniformly only in such types. The set of bit-strings seed is associated to a
fixed value of the security parameter.)

Next, we define a signature oracle OS which takes as argument a bit-string m and returns its FDH
signature, computed as invf(sk , hash(m)), where sk is the secret key, so this oracle could be defined by

OS(m : bitstring) := return(invf(sk , hash(m)))

where m : bitstring means that m is of type bitstring , that is, it is any bit-string. However, this
oracle can be called several times, say at most qS times. We express this repetition by foreach iS ≤
qS do OS, meaning that we make available qS copies of OS, each with a different value of the index
iS ∈ [1, qS]. Furthermore, in our calculus, variables defined in repeated oracles are arrays with a cell
for each call to the oracle, so that we can remember the values used in all calls to the oracles. Here,
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m is then an array indexed by iS. Along similar lines, the copies of the oracle OS itself are indexed
by iS, so that the caller can specify exactly which copy of OS he wants to call, by calling OS[iS] for
a specific value of iS. So we obtain the following formalization of this oracle:

foreach iS ≤ qS do OS[iS](m[iS] : bitstring) := return(invf(sk , hash(m[iS]))) (1)

Note that sk has no array index, since it is defined in the oracle Ogen, which is executed only once.
We also define a test oracle OT which takes as arguments a bit-string m ′ and a candidate signature

s of type D and executes the event forge when s is a forged signature of m ′, that is, s is a correct
signature of m ′ and the signature oracle has not been called on m ′. The test oracle can be defined as
follows:

OT (m ′ : bitstring , s : D) := if f(pk , s) = hash(m ′) then

find u ≤ qS suchthat (defined(m[u]) ∧m ′ = m[u]) then end

else event forge

(2)

It first tests whether f(pk , s) = hash(m ′), as the verification algorithm of FDH would do. When the
equality holds, it executes the then branch; otherwise, it executes the else branch which is here
omitted. In this case, it ends the oracle, as if it executed end. When the test f(pk , s) = hash(m ′)
succeeds, the process performs an array lookup: it looks for an index u in [1, qS ] such that m[u] is
defined and m ′ = m[u]. If such an u is found, that is, m ′ has already been received by the signing
oracle, we simply end the oracle. Otherwise, we execute the event forge and implicitly end the oracle.
Arrays and array lookups are crucial in this calculus, and will help to model many properties which
were hard to capture.

Finally, we add a hash oracle, which is similar to the signing oracle OS but returns the hash of
the message instead of its signature:

foreach iH ≤ qH do OH[iH](x [iH] : bitstring) := return(hash(x [iH]))

To lighten the notation, some array indexes can be omitted in the input we give to our prover.
Precisely, when x is defined under foreach i1 ≤ n1 . . . foreach im ≤ nm, x is always an array with
indexes i1, . . . , im, so we abbreviate all occurrences of x[i1, . . . , im] by x. Here, all array indexes in OS

and OH can then be omitted.
We can remark that the signature and test oracles only make sense after the generation oracle

Ogen has been called, since they make use of the keys pk and sk computed by Ogen. So we define OS

and OT after Ogen by a sequential composition. In contrast, OS and OT are simultaneously available,
so we use a parallel composition QS | QT where QS and QT are the processes (1) and (2) respectively.
Similarly, OH is composed in parallel with the rest of the process. So we obtain the following game
which models the security of the FDH signature scheme in the random oracle model:

G0 = foreach iH ≤ qH do OH(x : bitstring) := return(hash(x ))

| Ogen() := r
R
← seed ; pk ← pkgen(r); sk ← skgen(r); return(pk);

(foreach iS ≤ qS do OS(m : bitstring) := return(invf(sk , hash(m)))

| OT (m ′ : bitstring , s : D) := if f(pk , s) = hash(m ′) then

find u ≤ qS suchthat (defined(m[u]) ∧m ′ = m[u]) then end

else event forge)

Our calculus obviously also has a construct for calling oracles. However, we do not need it explicitly
in this paper, because oracles are called by the adversary, not by processes we write ourselves.

As detailed in [13, 14], we require some well-formedness invariants to guarantee that several def-
initions of the same oracle cannot be simultaneously available, that bit-strings are of their expected
type, and that arrays are used properly (that each cell of an array is assigned at most once during
execution, and that variables are accessed only after being initialized). The formal semantics of the
calculus can be found in [13].
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2.2 Observational Equivalence

We denote by Pr[Q a] the probability that the answer of Q to the oracle call Ostart() is a, where
Ostart is an oracle called to start the experiment. We denote by Pr[Q  E ] the probability that the
process Q executes exactly the sequence of events E , in the order of E , when oracle Ostart() is called.

In the next definition, we use a context C to represent an algorithm that tries to distinguish Q

from Q′. A context C is put around a process Q by C[Q]. This construct means that Q is put in
parallel with some other process Q′ contained in C, possibly hiding some oracles defined in Q, so that,
when considering C ′[C[Q]], C ′ cannot call these oracles. This will be detailed in the following of this
section.

Definition 1 (Observational equivalence). Let Q and Q′ be two processes that satisfy the well-
formedness invariants.

A context C is said to be acceptable for Q if and only if C does not contain events, C and Q have
no common variables, and C[Q] satisfies the well-formedness invariants.

We say that Q and Q′ are observationally equivalent up to probability p, written Q ≈p Q′, when
for all t, for all contexts C acceptable for Q and Q′ that run in time at most t, for all bit-strings a,
|Pr[C[Q] a]− Pr[C[Q′] a]| ≤ p(t) and

∑

E
|Pr[C[Q] E ]− Pr[C[Q′] E ]| ≤ p(t).

This definition formalizes that the probability that an algorithm C running in time t distinguishes
the games Q and Q′ is at most p(t). The context C is not allowed to access directly the variables of
Q (using find). We say that a context C runs in time t, when for all processes Q, the time spent in C

in any trace of C[Q] is at most t, ignoring the time spent in Q. (The runtime of a context is bounded.
Indeed, we bound the length of messages in calls or returns to oracle O by a value maxlen(O, arg i)
or maxlen(O, resi). Longer messages are truncated. The length of random numbers created by C is
bounded; the number of instructions executed by C is bounded; and the time of a function evaluation
is bounded by a function of the length of its arguments.)

Definition 2. We say that Q executes event e with probability at most p if and only if for all t, for
all contexts C acceptable for Q that run in time t,

∑

E ,e∈E Pr[C[Q] E ] ≤ p(t).

The above definitions allow us to perform proofs using sequences of indistinguishable games. The
following lemma is straightforward:

Lemma 3. 1. ≈p is reflexive and symmetric.
2. If Q ≈p Q′ and Q′ ≈p′ Q′′, then Q ≈p+p′ Q′′.
3. If Q executes event e with probability at most p and Q ≈p′ Q′, then Q′ executes event e with

probability at most p + p′.
4. If Q ≈p Q′ and C is a context acceptable for Q and Q′ that runs in time tC , then C[Q] ≈p′ C[Q′]

where p′(t) = p(t + tC).
5. If Q executes event e with probability at most p and C is a context acceptable for Q that runs in

time tC , then C[Q] executes event e with probability at most p′ where p′(t) = p(t + tC).

Properties 2 and 3 are key to computing probabilities coming from a sequence of games. Indeed,
our prover will start from a game G0 corresponding to the initial attack, and build a sequence of
observationally equivalent games G0 ≈p1 G1 ≈p2 . . . ≈pm

Gm. By Property 2, we conclude that
G0 ≈p1+...+pm

Gm. By Property 3, we can bound the probability that G0 executes an event from the
probability that Gm executes this event.

The elementary transformations used to build each game from the previous one can in particular
come from an algorithmic assumption on a cryptographic primitive. This assumption needs to be
specified as an observational equivalence L ≈p R. To use it to transform a game G, the prover finds a
context C such that G ≈0 C[L] by purely syntactic transformations, and builds a game G′ such that
G′ ≈0 C[R] by purely syntactic transformations. C is the simulator usually defined for reductions. By
Property 4, we have C[L] ≈p′ C[R], so G ≈p′ G′. The context C typically hides the oracles of L and R
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so that they are visible from C but not from the adversary C ′ against G ≈p′ G′. The context C ′[C[ ] ]
then defines the adversary against the algorithmic assumption L ≈p R.

If the security assumptions are initially not in the form of an equivalence L ≈p R, one needs to
manually prove such an equivalence that formalizes the desired security assumption. The design of
such equivalences can be delicate, but this is a one-time effort: the same equivalence can be reused
for proofs that rely on the same assumption. For instance, we give below such an equivalence for
one-wayness, and use it not only for the proof of the FDH signature scheme, but also for proofs of
encryption schemes as mentioned in Section 4.2. Similarly, the definition of security of a signature (UF-
CMA) says that some event is executed with negligible probability. When we want to prove the security
of a protocol using a signature scheme, we use a manual proof of an equivalence that corresponds to
that definition, done once for UF-CMA in the long version of this paper [15].

The prover automatically establishes certain equivalences G0 ≈p Gm as mentioned above. However,
the user can give only the left-hand side of the equivalence G0; the right-hand side Gm is obtained
by the prover. As a consequence, the prover is in general not appropriate for proving automatically
properties L ≈p R in which L and R are both given a priori: the right-hand side found by the prover
is unlikely to correspond exactly to the desired right-hand side. On the other hand, the prover can
check security properties on the right-hand side Gm it finds, for example that the event forge cannot
be executed by Gm. Using G0 ≈p Gm, it concludes that G0 executes forge with probability at most p.

3 Characterization of One-wayness and Unforgeability

In this section, we introduce the assumption (one-wayness) and the security notion (unforgeability)
to achieve.

3.1 Trapdoor One-Way Permutations

Most cryptographic protocols rely on the existence of trapdoor one-way permutations. They are fam-
ilies of permutations, which are easy to compute, but hard to invert, unless one has a trapdoor.

The Computational Model. A family of permutations P onto a set D is defined by the three
following algorithms:

– The key generation algorithm kgen (which can be split in two sub-algorithms pkgen and skgen).
On input a seed r, the algorithm kgen produces a pair (pk , sk) of matching public and secret keys.
The public key pk specifies the actual permutation fpk onto the domain D.

– The evaluation algorithm f. Given a public key pk and a value x ∈ D, it outputs y = fpk (x).

– The inversion algorithm invf. Given an element y, and the trapdoor sk , invf outputs the unique
pre-image x of y with respect to fpk .

The above properties simply require the algorithms to be efficient. The “one-wayness” property
is more intricate, since it claims the “non-existence” of some efficient algorithm: one wants that
the success probability of any adversary A within a reasonable time is small, where this success is
commonly defined by

Succow
P (A) = Pr

[

r
R
← seed , (pk , sk)← kgen(r), x

R
← D, y ← f(pk , x),

x′ ← A(pk , y) : x = x′

]

.

Eventually, we denote by Succow
P (t) the maximal success probability an adversary can get within time

t.
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foreach ik ≤ nk do r
R
← seed ; (Opk() := return(pkgen(r))

| foreach if ≤ nf do x
R
← D; (Oy() := return(f(pkgen(r), x))

| foreach i1 ≤ n1 do Oeq(x′ : D) := return(x′ = x)

| Ox() := return(x)))

≈pow foreach ik ≤ nk do r
R
← seed ; (Opk() := return(pkgen

′(r))

| foreach if ≤ nf do x
R
← D; (Oy() := return(f ′(pkgen

′(r), x))

| foreach i1 ≤ n1 do Oeq(x′ : D) :=

if defined(k) then return(x′ = x) else return(false)

| Ox() := k ← mark; return(x)))

(3)

Fig. 1. Definition of one-wayness

Syntactic Rules. Let seed be a large, fixed-length type, pkey , skey , and D the types of public
keys, secret keys, and the domain of the permutations respectively. A family of trapdoor one-way
permutations can then be defined as a set of four function symbols: skgen : seed → skey generates
secret keys; pkgen : seed → pkey generates public keys; f : pkey×D → D and invf : skey×D → D, such
that, for each pk, x 7→ f(pk, x) is a permutation of D, whose inverse permutation is x 7→ invf(sk, x)
when pk = pkgen(r) and sk = skgen(r).

The one-wayness property can be formalized in our calculus by requiring that LR executes event invert

with probability at most Succow
P (t) in the presence of a context that runs in time t, where

LR =Ogen() := r0
R
← seed ;x0

R
← D; return(pkgen(r0), f(pkgen(r0), x0));

Oeq(x′ : D) := if x′ = x0 then event invert

Indeed, the event invert is executed when the adversary, given the public key pkgen(r0) and the image
of some x0 by f, manages to find x0 (without having the trapdoor).

In order to use the one-wayness property in proofs of protocols, our prover needs a more general
formulation of one-wayness, using “observationally equivalent” processes. We thus define two processes
which are actually equivalent unless LR executes event invert. We prove in the long version of this
paper [15] the equivalence of Figure 1 where pow(t) = nk×nf×Succow

P (t+(nknf−1)tf +(nk−1)tpkgen), tf
is the time of one evaluation of f, and tpkgen is the time of one evaluation of pkgen. In this equivalence,
the function symbols pkgen′ : seed → pkey and f ′ : pkey×D → D are such that the functions associated
to the primed symbols pkgen′, f ′ are equal to the functions associated to their corresponding unprimed
symbol pkgen, f, respectively. We replace pkgen and f with pkgen ′ and f ′ in the right-hand side just
to prevent repeated applications of the transformation with the same keys, which would lead to an
infinite loop.

In this equivalence, we consider nk keys pkgen(r[ik]) instead of a single one, and nf antecedents
of f for each key, x[ik, if ]. The first oracle Opk[ik] publishes the public key pkgen(r[ik]). The second
group of oracles first picks a new x[ik, if ], and then makes available three oracles: Oy[ik, if ] returns the
image of x[ik, if ] by f, Oeq[ik, if , i1] returns true when it receives x[ik, if ] as argument, and Ox[ik, if ]
returns x[ik, if ] itself. The one-wayness property guarantees that when Ox[ik, if ] has not been called,
the adversary has little chance of finding x[ik, if ], so Oeq[ik, if , i1] returns false. Therefore, we can
replace the left-hand side of the equivalence with its right-hand side, in which Ox[ik, if ] records that it
has been called by defining k[ik, if ], and Oeq[ik, if , i1] always returns false when k[ik, if ] is not defined,
that is, when Ox[ik, if ] has not been called.

In the left-hand side of the equivalences used to specify primitives, the oracles must consist of a
single return instruction. This restriction allows us to model many equivalences that define crypto-
graphic primitives, and it simplifies considerably the transformation of processes compared to using
the general syntax of processes. (In order to use an equivalence L ≈p R, we need to recognize processes
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that can easily be transformed into C[L] for some context C, to transform them into C[R]. This is
rather easy to do with such oracles: we just need to recognize terms that occur as a result of these
oracles. That would be much more difficult with general processes.)

Since x 7→ f(pkgen(r), x) and x 7→ invf(skgen(r), x) are inverse permutations, we have:

∀r : seed ,∀x : D, invf(skgen(r), f(pkgen(r), x)) = x (4)

Since x 7→ f(pk, x) is injective, f(pk, x) = f(pk, x′) if and only if x = x′:

∀pk : pkey ,∀x : D,∀x′ : D, (f(pk, x) = f(pk, x′)) = (x = x′) (5)

Since x 7→ f(pk, x) is a permutation, when x is a uniformly distributed random number, we can
replace x with f(pk, x) everywhere, without changing the probability distribution. In order to enable
automatic proof, we give a more restricted formulation of this result:

foreach ik ≤ nk do r
R
← seed ; (Opk() := return(pkgen(r))

| foreach if ≤ nf do x
R
← D; (Oant() := return(invf(skgen(r), x ))

| Oim() := return(x )))

≈0 foreach ik ≤ nk do r
R
← seed ; (Opk() := return(pkgen(r))

| foreach if ≤ nf do x
R
← D; (Oant() := return(x )

| Oim() := return(f(pkgen(r), x ))))

(6)

which allows to perform the previous replacement only when x is used in calls to invf(skgen(r), x),
where r is a random number such that r occurs only in pkgen(r) and invf(skgen(r), x) for some random
numbers x.

3.2 Signatures

The Computational Model. A signature scheme S = (kgen, sign, verify) is defined by:

– The key generation algorithm kgen (which can be split in two sub-algorithms pkgen and skgen).
On input a random seed r, the algorithm kgen produces a pair (pk , sk) of matching keys.

– The signing algorithm sign. Given a message m and a secret key sk , sign produces a signature σ.
For sake of clarity, we restrict ourselves to the deterministic case.

– The verification algorithm verify. Given a signature σ, a message m, and a public key pk , verify tests
whether σ is a valid signature of m with respect to pk .

We consider here (existential) unforgeability under adaptive chosen-message attack (UF-CMA) [23],
that is, the attacker can ask the signer to sign any message of its choice, in an adaptive way, and has
to provide a signature on a new message. In its answer, there is indeed the natural restriction that
the returned message has not been asked to the signing oracle.

When one designs a signature scheme, one wants to computationally rule out existential forgeries
under adaptive chosen-message attacks. More formally, one wants that the success probability of any
adversary A with a reasonable time is small, where

Succuf−cma
S (A) = Pr

[

r
R
← seed , (pk , sk )← kgen(r), (m,σ)← Asign(·,sk)(pk ) :

verify(m, pk , σ) = 1

]

.

As above, we denote by Succuf−cma
S (ns, `, t) the maximal success probability an adversary can get within

time t, after at most ns queries to the signing oracle, where the maximum length of all messages in
queries is `.
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Syntactic Rules. Let seed be a large, fixed-length type. Let pkey , skey , and signature the types of
public keys, secret keys, and signatures respectively. A signature scheme is defined as a set of four
function symbols: skgen : seed → skey generates secret keys; pkgen : seed → pkey generates public keys;
sign : bitstring×skey → signature generates signatures; and verify : bitstring×pkey×signature → bool
verifies signatures.

The signature verification succeeds for signatures generated by sign, that is,

∀m : bitstring ,∀r : seed , verify(m, pkgen(r), sign(m, skgen(r))) = true

According to the previous definition of UF-CMA, the following process LR executes event forge with
probability at most Succuf−cma

S (ns, `, t) in the presence of a context that runs in time t, where

LR =Ogen() := r
R
← seed ; pk ← pkgen(r); sk ← skgen(r); return(pk);

(foreach is ≤ ns do OS(m : bitstring) := return(sign(m, sk))

| OT (m′ : bitstring , s : signature) := if verify(m′, pk, s) then

find us ≤ ns suchthat (defined(m[us]) ∧m′ = m[us])

then end else event forge)

(7)

and ` is the maximum length of m and m′. This is indeed clear since event forge is raised if a
signature is accepted (by the verification algorithm), while the signing algorithm has not been called
on the signed message.

4 Examples

4.1 FDH Signature

The Full-Domain Hash (FDH) signature scheme [9] is defined as follows: Let pkgen, skgen, f, invf de-
fine a family of trapdoor one-way permutations. Let hash be a hash function, in the random ora-
cle model. The FDH signature scheme uses the functions pkgen and skgen as key-generation func-
tions, the signing algorithm is sign(m, sk) = invf(sk, hash(m)), and the verification algorithm is
verify(m′, pk, s) = (f(pk, s) = hash(m′)). In this section, we explain how our automatic prover finds
the well-known bound for Succuf−cma

S for the FDH signature scheme.

The input given to the prover contains two parts. First, it contains the definition of security of
primitives used to build the FDH scheme, that is, the definition of one-way trapdoor permutations (3),
(4), (5), and (6) as detailed in Section 3.1 and the formalization of a hash function in the random
oracle model:

foreach ih ≤ nh do OH(x : bitstring) := return(hash(x )) [all ]

≈0 foreach ih ≤ nh do OH(x : bitstring) :=

find u ≤ nh suchthat (defined(x [u], r [u]) ∧ x = x [u]) then return(r [u])

else r
R
← D; return(r)

(8)

This equivalence expresses that we can replace a call to a hash function with a random oracle, that
is, an oracle that returns a fresh random number when it is called with a new argument, and the
previously returned result when it is called with the same argument as in a previous call. Such a
random oracle is implemented in our calculus by a lookup in the array x of the arguments of hash.
When a u such that x[u], r[u] are defined and x = x[u] is found, hash has already been called with
x, at call number u, so we return the result of that call, r[u]. Otherwise, we create a fresh random
number r. (The indication [all ] on the first line of (8) instructs the prover to replace all occurrences
of hash in the game.)
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Second, the input file contains as initial game the process G0 of Section 2.1. As detailed in Sec-
tion 3.2, this game corresponds to the definition of security of the FDH signature scheme (7). An im-
portant remark is that we need to add to the standard definition of security of a signature scheme the
hash oracle. This is necessary so that, after transformation of hash into a random oracle, the adversary
can still call the hash oracle. (The adversary does not have access to the arrays that encode the values of
the random oracle.) Our goal is to bound the probability p(t) that event forge is executed in this game
in the presence of a context that runs in time t: p(t) = Succuf−cma

S (qS , `, t + tH) ≥ Succuf−cma
S (qS , `, t)

where tH is the total time spent in the hash oracle and ` is the maximum length of m and m ′.

Given this input, our prover automatically produces a proof that this game executes event forge

with probability p(t) ≤ (qH +qS +1)Succow
P (t+(qH +qS)tf +(3qS+2qH +qS2 +2qSqH +qH2)teq(`))

where ` is the maximum length of a bit-string in m, m′, or x and teq(`) is the time of a comparison
between bit-strings of length at most `. (Evaluating a find implies evaluating the condition of the
find for each value of the indexes, so here the lookup in an array of size n of bit-strings of length `

is considered as taking time n × teq(`), although there are in fact more efficient algorithms for this
particular case of array lookup.) If we ignore the time of bit-string comparisons, we obtain the usual
upper-bound [10] (qH + qS + 1)Succow

P (t + (qH + qS )tf). The prover also outputs the sequence of
games that leads to this proof, and a succinct explanation of the transformation performed between
consecutive games of the sequence. The input and output of the prover, as well as the prover itself,
are available at http://www.di.ens.fr/~blanchet/cryptoc/FDH/; the runtime of the prover on this
example is 14 ms on a Pentium M 1.8 GHz. The prover has been implemented in Ocaml and contains
14800 lines of code.

We sketch here the main proof steps. Starting from the initial game G0 given in Section 2.1, the
prover tries to apply all observational equivalences it has as hypotheses, that is here, (3), (6), and
(8). It succeeds applying the security of the hash function (8), so it transforms the game accordingly,
by replacing the left-hand side with the right-hand side of the equivalence. Each call to hash is then
replaced with a lookup in the arguments of all calls to hash. When the argument of hash is found in one
of these arrays, the returned result is the same as the result previously returned by hash. Otherwise,
we pick a fresh random number and return it.

The obtained game is then simplified. In particular, when the argument m′ of OT is found in the
arguments m of the call to hash in OS, the find in OT always succeeds, so its else branch can be
removed (that is, when m′ has already been passed to the signature oracle, it is not a forgery).

Then, the prover tries to apply an observational equivalence. All transformations fail, but when
applying (6), the game contains invf(sk , y) while (6) expects invf(skgen(r), y), which suggests to remove
assignments to variable sk for it to succeed. So the prover performs this removal: it substitutes skgen(r)
for sk and removes the assignment sk ← skgen(r). The transformation (6) is then retried. It now
succeeds, which leads to replacing rj with f(pkgen(r), rj) and invf(skgen(r), rj) with rj , where rj

represents the random numbers that are the result of the random oracle. (The term f(pkgen(r), rj)
can then be computed by oracle Oy of (3) and rj can be computed by Ox.) More generally, in our
prover, when a transformation T fails, it may return transformations T ′ to apply in order to enable
T [14, Section 5]. In this case, the prover applies the suggested transformations T ′ and retries the
transformation T .

The obtained game is then simplified. In particular, by injectivity of f (5), the prover replaces
terms of the form f(pk, s) = f(pkgen(r), rj) with s = rj, knowing pk = pkgen(r). (The test s = rj can
then be computed by oracle Oeq of (3).)

The prover then tries to apply an observational equivalence. It succeeds using the definition of
one-wayness (3). This transformation leads to replacing f(pkgen(r), rj) with f ′(pkgen′(r), rj), rj with
kj ← mark; rj , and s = rj with find uj ≤ N suchthat (defined(kj [uj ])∧ true) then s = rj else false.
The difference of probability is pow(t + t′) = nk × nf × Succow

P (t + t′ + (nknf − 1)tf + (nk − 1)tpkgen) =
(qH + qS + 1)Succow

P (t + t′ + (qH + qS )tf) where nk = 1 is the number of key pairs considered,
nf = qH + qS +1 is the number of antecedents of f, and t′ = (3qS +2qH + qS2 +2qSqH + qH2)teq(`)
is the runtime of the context put around the equivalence (3).
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Finally, the obtained game is simplified again. Thanks to some equational reasoning, the prover
manages to show that the find in OT always succeeds, so its else branch can be removed. The
prover then detects that the forge event cannot be executed in the resulting game, so the desired
property is proved, and the probability that forge is executed in the initial game is the sum of the
differences of probability between games of the sequence, which here comes only from the application
of one-wayness (3).

4.2 Encryption Schemes

Besides proving the security of many protocols [14], we have also used our prover for proving other
cryptographic schemes. For example, our prover can show that the basic Bellare-Rogaway construc-
tion [9] without redundancy (i.e. E(m, r) = f(r)‖hash(r) xor m) is IND-CPA, with the following manual
proof:

crypto hash apply the security of hash (8)
remove_assign binder pk remove assignments to pk

crypto f r apply the security of f (3) with random seed r

crypto xor * apply the security of xor as many times as possible
success check that the desired property is proved

These manual indications are necessary because (3) can also be applied without removing the assign-
ments to pk, but with different results: f(pk, x) is computed by applying f to the results of oracles Opk

and Ox if assignments to pk are not removed, and by oracle Oy if assignments to pk are removed.

With similar manual indications, it can show that the enhanced variant with redundancy E(m, r) =
f(r)‖hash(r) xor m‖hash′(hash(r) xor m, r) is IND-CCA2. With an improved treatment of the equational
theory of xor, we believe that it could also show that E(m, r) = f(r)‖hash(r) xor m‖hash ′(m, r) is
IND-CCA2.

5 Conclusion

We have presented a new tool to automatically prove the security of both cryptographic primitives and
cryptographic protocols. As usual, assumptions and expected security notions have to be stated. For
the latter, specifications are quite similar to the usual definitions, where a “bad” event has to be shown
to be unlikely. However, the former may seem more intricate, since it has to be specified as an obser-
vational equivalence. Anyway, this has to be done only once for all proofs, and several specifications
have already been given in [13–15]: one-wayness, UF-CMA signatures, UF-CMA message authentica-
tion codes, IND-CPA symmetric stream ciphers, IND-CPA and IND-CCA2 public-key encryption, hash
functions in the random oracle model, xor, with detailed proofs for the first three. Thereafter, the
protocol/scheme itself has to be specified, but the syntax is quite close to the notations classically
used in cryptography. Eventually, the prover provides the sequence of transformations, and thus of
games, which lead to a final experiment (indistinguishable from the initial one) in which the “bad”
event never appears. Since several paths may be used for such a sequence, the user is allowed (but
does not have) to interact with the prover, in order to make it follow a specific sequence. Of course,
the prover will accept only if the sequence is valid. Contrary to most of the formal proof techniques,
the failure of the prover does not lead to an attack. It just means that the prover did not find an
appropriate sequence of games.
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