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Abstract. Password-based authenticated key exchange are protocols which are designed to be
secure even when the secret key or password shared between two users is drawn from a small set of
values. Due to the low entropy of passwords, such protocols are always subject to on-line guessing
attacks. In these attacks, the adversary may succeed with non-negligible probability by guessing the
password shared between two users during its on-line attempt to impersonate one of these users. The
main goal of password-based authenticated key exchange protocols is to restrict the adversary to
this case only. In this paper, we consider password-based authenticated key exchange in the three-
party scenario, in which the users trying to establish a secret do not share a password between
themselves but only with a trusted server. Towards our goal, we recall some of the existing security
notions for password-based authenticated key exchange protocols and introduce new ones that are
more suitable to the case of generic constructions. We then present a natural generic construction
of a three-party protocol, based on any two-party authenticated key exchange protocol, and prove
its security without making use of the Random Oracle model. To the best of our knowledge, the
new protocol is the first provably-secure password-based protocol in the three-party setting.
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1 Introduction

Motivation. A fundamental problem in cryptography is how to communicate securely over
an insecure channel, which might be controlled by an adversary. It is common in this scenario
for two parties to encrypt and authenticate their messages in order to protect the privacy and
authenticity of these messages. One way of doing so is by using public-key encryption and
signatures, but the cost associated with these primitives may be too high for certain applications.
Another way of addressing this problem is by means of a key exchange protocol, in which users
establish a common key which they can then use in their applications.

In practice, one finds several flavors of key exchange protocols, each with its own benefits and
drawbacks. Among the most popular ones is the 3-party Kerberos authentication system [31].
Another one is the 2-party SIGMA protocol [22] used as the basis for the signature-based modes
of the Internet Key Exchange (IKE) protocol. Yet another flavor of key exchange protocols which
has received significant attention recently are those based on passwords.

Password-based key exchange. Password-based key exchange protocols assume a more
realistic scenario in which secret keys are not uniformly distributed over a large space, but
rather chosen from a small set of possible values (a four-digit pin, for example). They also seem
more convenient since human-memorable passwords are simpler to use than, for example, having
additional cryptographic devices capable of storing high-entropy secret keys. The vast majority
of protocols found in practice do not account, however, for such scenario and are often subject to
so-called dictionary attacks. Dictionary attacks are attacks in which an adversary tries to break
the security of a scheme by a brute-force method, in which it tries all possible combinations of
secret keys in a given small set of values (i.e., the dictionary). Even though these attacks are
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not very effective in the case of high-entropy keys, they can be very damaging when the secret
key is a password since the attacker has a non-negligible chance of winning. Such attacks are
usually divided in two categories: off-line and online dictionary attacks.

To address this problem, several protocols have been designed to be secure even when the
secret key is a password. The goal of these protocols is to restrict the adversary’s success to
on-line guessing attacks only. In these attacks, the adversary must be present and interact with
the system in order to be able to verify whether its guess is correct. The security in these systems
usually relies on a policy of invalidating or blocking the use of a password if a certain number
of failed attempts has occurred.

Password-based key exchange in the 3-party setting. Passwords are mostly used be-
cause they are easier to remember by humans than secret keys with high entropy. Consequently,
users prefer to remember very few passwords but not many. However, in scenarios where a user
wants to communicate with many other users, then the number of passwords that he or she
would need to remember would be linear in the number of possible partners. In order to limit
the number of passwords that each user needs to remember, we consider in this paper password-
based authenticated key exchange in the 3-party model, where each user only shares a password
with a trusted server. The main advantage of this solution is that it provides each user with the
capability of communicating securely with other users in the system while only requiring it to
remember a single password. This seems to be a more realistic scenario in practice than the one
in which users are expected to share multiple passwords, one for each party with which it may
communicate privately. Its main drawback is that the server is needed during the establishment
of all communication as in the Needham and Schroeder protocol.

Key privacy. One potential disadvantage of a 3-party model is that the privacy of the commu-
nication with respect to the server is not always guaranteed. Since we want to trust as little as
possible the third party, we develop a new notion called key privacy which roughly means that,
even though the server’s help is required to establish a session key between two users in the
system, the server should not be able to gain any information on the value of that session key.
Here we assume that the server is honest but curious. Please note that key distribution schemes
usually do not achieve this property.

Insider attacks. One of the main differences between the 2-party and the 3-party scenarios
is the existence of insider attacks. To better understand the power of these attacks, consider
the protocol in Figure 1, based on the encrypted key exchange of Bellovin and Merritt[8], in
which the server simply decrypts the message it receives and re-encrypts it under the other
user’s password. In this protocol, it is easy to see that one can mount an off-line dictionary by
simply playing the role of one of the involved parties. Notice that both A and B can obtain
the necessary information to mount an off-line dictionary attack against each other simply by
eavesdropping on the messages that are sent out by the server. More specifically, A and B can
respectively learn the values X?

S = EPWB
(XS) and Y ?

S = EPWA
(YS) and mount a dictionary

attack against each other using the fact that XS = XA and YS = YB. Insider attacks do not
need be considered explicitly in the case of 2-party protocols due to the independence among
the passwords shared between pairs of honest users and those shared with malicious users.

A new security model. In order to analyze the security of 3-party password-based authen-
ticated key exchange protocols, we put forward a new security model and define two notions of
security: semantic security of the session key and key privacy with respect to the server. The
first of these notions is the usual one and is a straight-forward generalization of the equivalent
notion in the 2-party password-based authenticated key exchange model. The second one is new
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Public information: G, g, p, E ,D, H
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pwA ∈ Password pwA, pwB ∈ Password pwB ∈ Password
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SKA ← H(A ‖B ‖S ‖KA) SKB ← H(A‖B ‖S ‖KB)

Fig. 1. An insecure 3-party password-based encrypted key exchange protocol.

and particular to the new setting, and captures the privacy of the key with respect to the trusted
server to which all passwords are known.

A generic construction. In this paper, we consider a generic construction of 3-party pass-
word-based protocol. Our construction is a natural one, building upon existing 2-party password-
based key exchange and 3-party symmetric key distribution schemes, to achieve provable security
in the strongest sense. Moreover, our construction is also modular in the sense that it can be
broken into two parts, a 3-party password-based key distribution protocol and 2-party authen-
ticated key exchange. The second part is only needed if key privacy with respect to the server
is required.

The need for new security notions. Surprisingly, the proof of security for the new scheme
does not follow from the usual security notions for the underlying schemes as one would expect
and requires a new and stronger notion of security for the underlying 2-party password-based
scheme (see Section 2). In fact, this new security notion is not specific to password-based schemes
and is one of the main contributions of this paper. Fortunately, we observe that most existing
2-party password-based schemes do in fact satisfy this new property [10, 14, 20, 26]. More specif-
ically, only a few small changes are required in their proof in order to achieve security in the
new model. The bounds obtained in their proof remain essentially unchanged.

Contributions. In this paper, we consider password-based (implicitly) authenticated key ex-
change in the 3-party model, where each user only shares a password with a trusted server.

New security models. Towards our goal, we put forth a new formal security model that is
appropriate for the 3-party password-based authenticated key exchange scenario and give precise
definitions of what it means for it to be secure. Our model builds upon those of Bellare and
Rogaway [6, 7] for key distribution schemes and that of Bellare, Pointcheval, and Rogaway [4]
for password-based authenticated key exchange.

New security notions. We also present a new and stronger model for 2-party authenticated
key exchange protocols, which we call the Real-Or-Random model. Our new model is provably
stronger than the existing model, to which we refer to as the Find-Then-Guess model, in the sense
that a scheme proven secure in the new model is also secure in the existing model. However, the
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reverse is not necessarily true due to an unavoidable non-constant factor loss in the reduction.
Such losses in the reduction are extremely important in the case of password-based protocols.

A generic construction in the standard model. We present a generic and natural frame-
work for constructing a 3-party password-based authenticated key exchange protocol from any
secure 2-party password-based one. We do so by combining a 3-party key distribution scheme,
an authenticated Diffie-Hellman key exchange protocol, and the 2-party password-based authen-
ticated key exchange protocol. The proof of security relies solely on the security properties of
underlying primitives it uses and does not assume the Random Oracle model [5]. Hence, when
appropriately instantiated, this construction yields a secure protocol in the standard model.

A separation between key distribution and key exchange. In addition to semantic
security of the session key, we present a new property, called key privacy, which is specific to key
exchange protocols. This new notion captures in a quantitative way the idea that the session
key shared between two instances should be only known to these two instances and no one else,
including the trusted server.

Related Work. Password-based authenticated key exchange has been extensively studied in the
last few years [4, 9–11, 13, 14, 16–19, 21, 23–25, 27, 12, 32–35], with a portion of the work dealing
with the subject of group key exchange and the vast majority dealing with different aspects of
2-party key exchange. Only a few of them (e.g., [11, 23, 32]) consider password-based protocols
in the 3-party setting, but none of their schemes enjoys provable security. In fact, our generic
construction seems to be the first provably-secure 3-party password-based authenticated key
exchange protocol.

Another related line of research is authenticated key exchange in the 3-party setting. The
first work in this area is the protocol of Needham and Schroeder [28], which inspired the Ker-

beros distributed system. Later, Bellare and Rogaway introduced a formal security model in this
scenario along with a construction of the first provably-secure symmetric-key-based key distri-
bution scheme [7]. In this paper, we consider the special but important case in which the secret
keys are drawn from a small set of values.

Organization. In Section 2, we recall the existing security model for 2-party password-based
authenticated key exchange and introduce a new one. Next, in Section 3, we introduce new
models for 3-party password-based authenticated key exchange. Section 4 then presents our
generic construction of a 3-party password-based authenticated key exchange protocol, called
GPAKE, along with the security claims and suggestions on how to instantiate it. Some future
extensions of this work are presented in Section 5. The proofs of security for GPAKE are given
in Appendix A. Also in the appendix are the more detailed descriptions of the cryptographic
primitives and assumptions on which GPAKE is based. We conclude by presenting some results
in Appendix C regarding the relation between the existing security notions and the new ones
being introduced in this paper.

2 Security models for 2-party password-based key exchange

A secure 2-party password-based key exchange is a 2PAKE protocol where the parties use their
password in order to derive a common session key sk that will be used to build secure channels.
Loosely speaking, such protocols are said to be secure against dictionary attacks if the advantage
of an attacker in distinguishing a real session key from a random key is less than O(n/|D|)+ε(k)
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where |D| is the size of the dictionary D, n is the number of active sessions and ε(k) is a negligible
function depending on the security parameter k.

In this section, we recall the security model for 2-party password-based authenticated key
exchange protocols introduced by Bellare, Pointcheval, and Rogaway (BPR) [4] and introduce a
new one. For reasons that will soon become apparent, we refer to the new model as the Real-Or-
Random (ROR) model and to the BPR model as the Find-Then-Guess (FTG) model, following
the terminology of Bellare et al. for symmetric encryption schemes [3].

2.1 Communication model

Protocol participants. Each participant in the 2-party password-based key exchange is
either a client C ∈ C or a server S ∈ S. The set of all users or participants U is the union C ∪S.

Long-lived keys. Each client C ∈ C holds a password pwC . Each server S ∈ S holds a vector
pwS = 〈pwS [C]〉C∈C with an entry for each client, where pwS [C] is the transformed-password,
as defined in [4]. In a symmetric model, pwS [C] = pwC , but they may be different in some
schemes. pwC and pwS are also called the long-lived keys of client C and server S.

Protocol execution. The interaction between an adversary A and the protocol participants
occurs only via oracle queries, which model the adversary capabilities in a real attack. During
the execution, the adversary may create several concurrent instances of a participant. These
queries are as follows, where U i denotes the instance i of a participant U :

– Execute(C i, Sj): This query models passive attacks in which the attacker eavesdrops on
honest executions between a client instance C i and a server instance Sj. The output of
this query consists of the messages that were exchanged during the honest execution of the
protocol.

– Send(U i,m): This query models an active attack, in which the adversary may intercept a
message and then either modify it, create a new one, or simply forward it to the intended
participant. The output of this query is the message that the participant instance U i would
generate upon receipt of message m.

2.2 Security definitions

Partnering. We use the notion of partnering based on session identifications (sid), which says
that two instances are partnered if they hold the same non-null sid. In practice, the sid is taken
to be the partial transcript of the conversation between the client and the server instances before
the acceptance.

Freshness. In order to properly formalize security notions for the session key, one has to be
careful to avoid cases in which adversary can trivially break the security of the scheme. For
example, an adversary who is trying to distinguish the session key of an instance U i from a
random key can trivially do so if it obtains the key for that instance through a Reveal query
(see definition below) to instance U i or its partner. Instead of explicitly defining a notion of
freshness and mandating the adversary to only perform tests on fresh instances as in previous
work, we opted to embed that notion inside the definition of the oracles.

Semantic security in the Find-Then-Guess model. This is the definition currently being
used in the literature. In order to measure the semantic security of the session key of user
instance, the adversary is given access to two additional oracles: the Reveal oracle, which models
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the misuse of session keys by a user, and the Test oracle, which tries to capture the adversary’s
ability (or inability) to tell apart a real session key from a random one. Let b be a bit chosen
uniformly at random at the beginning of the experiment defining the semantic security in the
Find-Then-Guess (FTG) model. These oracles are defined as follows.

– Reveal(U i): If a session key is not defined for instance U i or if a Test query was asked to
either U i or to its partner, then return ⊥. Otherwise, return the session key held by the
instance U i.

– Test(U i): If no session key for instance U i is defined or if a Reveal query was asked to either
U i or to its partner, then return the undefined symbol ⊥. Otherwise, return the session key
for instance U i if b = 1 or a random of key of the same size if b = 0.

The adversary in this case is allowed to ask multiple queries to the Execute, Reveal, and Send

oracles, but it is restricted to ask only a single query to the Test oracle. The goal of the adversary
is to guess the value of the hidden bit b used by the Test oracle. The adversary is considered
successful if it guesses b correctly.

Let Succ denote the event in which the adversary is successful. The ftg-ake-advantage of
an adversary A in violating the semantic security of the protocol P in the FTG sense and the
advantage function of the protocol P , when passwords are drawn from a dictionary D, are
respectively

Advftg−ake
P,D (A) = 2 · Pr[Succ ]− 1 and Advftg−ake

P,D (t, R) = max
A
{Advftg−ake

P,D (A) },

where the maximum is over all A with time-complexity at most t and using resources at most
R (such as the number of queries to its oracles). The definition of time-complexity that we
use henceforth is the usual one, which includes the maximum of all execution times in the
experiments defining the security plus the code size [1]. Note that the advantage of an adversary
that simply guesses the bit b is 0 in the above definition due to the rescaling of the probabilities.

Semantic security in the Real-Or-Random model. This is a new definition. In the Real-
Or-Random (ROR) model, we only allow the adversary to ask Execute, Send, and Test queries.
In other words, the Reveal oracle that exists in the FTG model is no longer available to the
adversary. Instead, we allow the adversary to ask as many Test queries as it wants to different
instances. All Test queries in this case will be answered using the same value for the hidden bit
b that was chosen at the beginning . That is, the keys returned by the Test oracle are either all
real or all random. However, in the random case, the same random key value should be returned
for Test queries that are asked to two instances which are partnered. P lease note that the Test

oracle is the oracle modeling the misuse of keys by a user in this case. The goal of the adversary
is still the same: to guess the value of the hidden bit b used to answer Test queries. The adversary
is considered successful if it guesses b correctly.

Let Succ denote the event in which the adversary is successful. The ror-ake-advantage
of an adversary A in violating the semantic security of the protocol P in the ROR sense,
Advror−ake

P,D (A), and the advantage function Advror−ake
P,D (t, R) of the protocol P are then de-

fined as in the previous definition.

Relation between notions. As we prove in Appendix C, the Real-Or-Random (ROR) security
model is actually stronger than the Find-Then-Guess (FTG) security model. More specifically, we
show that proofs of security in the ROR model can be easily translated into proofs of security in
the FTG model with only a 2 factor loss in the reduction (see Lemma 8). The reverse, however, is
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not necessarily true since the reduction is not security preserving. There is a loss of non-constant
factor in the reduction (see Lemma 9). Moreover, the loss in the reduction cannot be avoided as
there exist schemes for which we can prove such a loss in security exists (see Proposition 10).

To better understand the gap between the two notions, imagine a password-based scheme
that was proven secure in the FTG model. By definition, the advantage of any adversary is at
most O(n/|D|)+ ε(k), where n is the number of active sessions and ε(k) is a negligible term. By
applying the reduction, we can show that no adversary can do better than O(n2/|D|) + n · ε(k),
which is not enough to guarantee the security of the same scheme in the ROR model. Note that
such a gap is not as important in the case where high-entropy keys are used since both terms in
the expression would be negligible.

As a consequence, we cannot take for granted the security of the existing schemes and new
proofs of security need be provided. Fortunately, we would like to point out here that the security
proof for several of the existing schemes can be easily modified to meet the new security goals
with essentially the same bounds. The reason for that is that the security proofs of most existing
password-based schemes in fact prove something stronger than what is required by the security
model. More specifically, most proofs generally show that not only the session key being tested
looks random, but all the keys that may be involved in a reveal query also look random to an
adversary that does not know the secret password, thus satisfying the security requirements of
our new model. In particular, this is the case for the KOY protocol [20] and its generalization [14],
and some other schemes based on the encrypted key exchange scheme of Bellovin and Merritt [8]
(e.g., [10, 26]).

Since most existing password-based schemes do seem to achieve security in the new and
stronger security model and since the latter appears to be more applicable to situations in
which one wishes to use a password-based key exchange protocol as a black box, we suggest the
use of our new model when proving the security of new password-based schemes.

3 Security models for 3-party password-based key exchange

In this section, we put forward new formal security models for 3-party password-authenticated
key exchange and key distribution protocols. Our models are generalizations of the model of
Bellare and Rogaway [7] for 3-party key distribution schemes to the password case and that of
Bellare, Pointcheval, and Rogaway [4] for 2-party password-based authenticated key exchange.

3.1 Protocol Syntax

Protocol participants. Each participant in a 3-party password-based key exchange is either
a client U ∈ U or a trusted server S ∈ S. The set of clients U is made up of two disjoint sets: C,
the set of honest clients, and E , the set of malicious clients. For simplicity, and without loss of
generality 1, we assume the set S to contain only a single trusted server.

The inclusion of the malicious set E among the participants is one the main differences
between the 2-party and the 3-party models. Such inclusion is needed in the 3-party model in
order to cope with the possibility of insider attacks. The set of malicious users did not need
to be considered in the 2-party due to the independence among the passwords shared between
pairs of honest participants and those shared with malicious users.

1 This is so because we are working in the concurrent model and because all servers in the general case know all
users’ passwords.
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Long-lived keys. Each participant U ∈ U holds a password pwU . Each server S ∈ S holds
a vector pwS = 〈pwS[U ]〉U∈U with an entry for each client, where pwS [U ] is the transformed-
password, following the definition in [4]. In a symmetric model, pwS [U ] = pwU , but they may
be different in some schemes. The set of passwords pwE , where E ∈ E , is assumed to be known
by the adversary.

3.2 Communication model

The interaction between an adversary A and the protocol participants occurs only via oracle
queries, which model the adversary capabilities in a real attack. These queries are as follows:

– Execute(U i1
1 , Sj , U i2

2 ): This query models passive attacks in which the attacker eavesdrops
on honest executions among the client instances U i1

1 and U i2
2 and trusted server instance Sj .

The output of this query consists of the messages that were exchanged during the honest
execution of the protocol.

– SendClient(U i,m): This query models an active attack, in which the adversary may intercept
a message and then modify it, create a new one, or simply forward it to the intended client.
The output of this query is the message that client instance U i would generate upon receipt
of message m.

– SendServer(Sj ,m): This query models an active attack against a server. It outputs the
message that server instance Sj would generate upon receipt of message m.

3.3 Semantic security

The security definitions presented here build upon those of Bellare and Rogaway [6, 7] and that
of Bellare, Pointcheval, and Rogaway [4].

Notation. Following [6, 7], an instance U i is said to be opened if a query Reveal(U i) has been
made by the adversary. We say an instance U i is unopened if it is not opened. Similarly, we say a
participant U is corrupted if a query Corrupt(U) has been made by the adversary. A participant
U is said to be uncorrupted if it is not corrupted. We say an instance U i has accepted if it goes
into an accept mode after receiving the last expected protocol message.

Partnering. Our definition of partnering follows that of [4], which uses session identifications
(sid). More specifically, two instances U i

1 and U j
2 are said to be partners if the following conditions

are met: (1) Both U i
1 and U j

2 accept; (2) Both U i
1 and U j

2 share the same session identifications;

(3) The partner identification for U i
1 is U j

2 and vice-versa; and (4) No instance other than U i
1 and

U j
2 accepts with a partner identification equal to U i

1 or U j
2 . In practice, as in the 2-party case,

the sid could be taken to be the partial transcript before the acceptance of the conversation
among all the parties involved in the protocol, a solution which may require the forwarding of
messages.

Freshness. As in the 2-party case, we opted to embed the notion of freshness inside the defi-
nition of the oracles.

Semantic security in Find-Then-Guess model. This definition we give here is the straight-
forward generalization of that of Bellare, Pointcheval, and Rogaway [4] for the 2-party case,
combined with ideas of the model of Bellare and Rogaway [7] for 3-party key distribution. As
in the 2-party case, we also define a Reveal oracle to model the misuse of session keys and a
Test oracle to capture the adversary’s ability to distinguish a real session key from a random
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one. Let b be a bit chosen uniformly at random at the beginning of the experiment defining the
semantic security in the FTG model. These oracles are defined as follows:

– Reveal(U i): If a session key is not defined for instance U i or if a Test query was asked to
either U i or to its partner, then return ⊥. Otherwise, return the session key held by the
instance U i.

– Test(U i): If no session key is defined for instance U i or if the intended partner of U i is part
of the malicious set or if a Reveal query was asked to either U i or to its partner, then return
the invalid symbol ⊥. Otherwise, return either the session key for instance U i if b = 1 or a
random of key of the same size if b = 0.

Consider an execution of the key exchange protocol P by an adversary A, in which the latter
is given access to the Reveal, Execute, SendClient, SendServer, and Test oracles and asks a
single Test query, and outputs a guess bit b′. Such an adversary is said to win the experiment
defining the semantic security if b′ = b, where b is the hidden bit used by the Test oracle.
Let Succ denote the event in which the adversary wins this game. The ftg-ake-advantage
Advftg−ake

P,D (A) of an adversary A in violating the semantic security of the protocol P in the

FTG sense and the advantage function Advftg−ake
P,D (t, R) of the protocol P are then defined as

in previous definitions.
We say a 3-party password-based key exchange protocol P is semantically secure in the FTG

sense if the advantage Advftg−ake
P,D is only negligibly larger than kn/|D|, where n is number of

active sessions and k is a constant. Note that k = 1 in the best scenario since an adversary that
simply guesses the password in each of the active sessions has an advantage of n/|D|.

Semantic security in Real-Or-Random model. This is a new definition. In the ROR model,
Reveal queries are no longer allowed and are replaced by Test queries. In this case, however, the
adversary is allowed to ask as many Test queries as it wants.

The modifications to the Test oracle are as follows. If a Test query is asked to a client instance
that has not accepted, then return the undefined ⊥. If a Test query is asked to an instance of an
honest client whose intended partner is dishonest or to an instance of a dishonest client, then
return the real session key. Otherwise, the Test query returns either the real session key if b = 1
and a random one if b = 0, where b is the hidden bit selected at random prior to the first call.
However, when b = 0, the same random key value should be returned for Test queries that are
asked to two instances which are partnered. The goal of the adversary is still the same: to guess
the value of the hidden bit used by the Test oracle. The adversary is considered successful if it
guesses b correctly.

Consider an execution of the key exchange protocol P by an adversary A, in which the latter
is given access to the Execute, SendClient, SendServer, and Test oracles, and outputs a guess bit
b′. Such an adversary is said to win the experiment defining the semantic security in the ROR
sense if b′ = b, where b is the hidden bit used by the Test oracle. Let Succ denote the event in
which the adversary wins this game. The ror-ake-advantage Advror−ake

P,D (A) of an adversary
A in violating the semantic security of the protocol P in the ROR sense and the advantage
function Advror−ake

P,D (t, R) of the protocol P are then defined as in previous definitions.

3.4 Key privacy with respect to the server

Differently from previous work, we define the notion of key privacy to capture, in a quantitative
way, the idea that the session key shared between two instances should only be known to these
two instances and no one else, including the trusted server. The goal of this new notion is to
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limit the amount of trust put into the server. That is, even though we rely on the server to
help clients establish session keys between themselves, we still want to guarantee the privacy
of these session keys with respect to the server. In fact, this is the main difference between a
key distribution protocol (in which the session key is known to the server) and a key exchange
protocol (for which the session key remains unknown to the server).

In defining the notion of key privacy, we have in mind a server which knows the passwords
for all users, but that behaves in an honest but curious manner. For this reason, we imagine an
adversary who has access to all the passwords as well as to the Execute and SendClient oracles
but not to a Reveal oracle or to a SendServer oracle, since the latter can be easily simulated
using the passwords. To capture the adversary’s ability to tell apart the real session key shared
between any two instances from a random one, we also introduce a new type of oracle, called
TestPair, defined as follows, where b is a bit chosen uniformly at random at the beginning of
the experiment defining the notion of key privacy.

– TestPair(U i
1, U

j
2 ): If client instances U i

1 and U j
2 do not share the same key, then return the

undefined symbol ⊥. Otherwise, return the real session key shared between client instances
U i

1 and U j
2 if b = 1 or a random key of the same size if b = 0.

Consider an execution of the key exchange protocol P by an adversary A with access to the
Execute, SendClient, and TestPair oracles and the passwords of all users, and let b ′ be its output.
Such an adversary is said to win the experiment defining the key privacy if b′ = b, where b is
the hidden bit used by the TestPair oracle. Let Succ denote the event in which the adversary
guesses b correctly. We can then define the kp-advantage Advkp−ake

P,D (A) of A in violating the

key privacy of the key exchange protocol P and the advantage function Advkp−ake
P,D (t, R) of

P as in previous definitions.

Finally, we say an adversary A succeeds in breaking the key privacy of a protocol P if its
advantage Advkp−ake

P,D (A) is non-negligible.

4 A generic three-party password-based protocol

In this section, we introduce a generic construction of a 3-party password-based key exchange
protocol in the scenario in which we have an honest-but-curious server. It combines a 2-party
password-based key exchange, a secure key distribution protocol and a 2-party MAC-based key
exchange and has several attractive features. First, it does not assume the Random Oracle (RO)
model [5]. That is, if the underlying primitives do not make use of the RO model, neither does our
scheme. Hence, by using schemes such as the KOY protocol [20] for the 2-party password-based
key exchange and the 3-party key distribution scheme in [7], one gets a 3-part password-based
protocol whose security is in the standard model. Second, if 2-party password-based key exchange
protocols already exist between the server and its users in a distributed system, they can be
re-used in the construction of our 3-party password-based key exchange.

Description of the generic solution. Our generic construction can be seen as a form of
compiler transforming any secure 2-party password-based key exchange protocol P into a secure
password-based 3-party key exchange protocol P ′ in the honest-but-curious security model using
a secure key distribution KD, a secure MAC scheme, and generic number-theoretic operations in
a group G for which the DDH assumption holds (see Appendix B).

The compiler, depicted in Figure 2, works as follows. First, we use the protocol P between
a user A and the server S to establish a secure high-entropy session key sk A. Second, we use
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pwB

2PAKE(skA) 2PAKE(skB)

KD(skB, km)KD(skA, km)

gx, MAC(km, gx, B, A)

gy, MAC(km, gy, A, B)

BA S
pwA pwA pwB

Fig. 2. GPAKE: a generic three-party password-based key exchange

the protocol P between the server S and the user B in order to establish a session key sk B .
Third, using a key distribution KD, we have the server S first select a MAC key km, using the
key generation of the latter, and then distribute this key to A and B using the session keys sk A

and skB, respectively, generated in the first two steps. Finally, A and B use a MAC-based key
exchange to establish a session key CDH in an authenticated way.

Semantic security in the Real-Or-Random model. As the following theorem states, the
generic scheme GPAKE depicted in Figure 2 is a secure 3-party password-based key exchange
protocol as long as the Decisional Diffie-Hellman assumption holds in G and the underlying
primitives it uses are secure.

Theorem 1. Let 2PAKE be a secure 2-party password-based Key Exchange, KD be a secure key

distribution, and MAC be a secure MAC algorithm. Let qexe and qtest represent the number of

queries to Execute and Test oracles, and let qA
send, qB

send, qkd, and qake represent the number

of queries to the SendClient and SendServer oracles with respect to each of the two 2PAKE

protocols, the KD protocol, and the final AKE protocol. Then,

Advror−ake
GPAKE,D(t, qexe, qtest, q

A
send, qB

send, qkd, qake) ≤

4 ·Advror−ake
2PAKE,D(t, qexe, qexe + qA

send, qA
send) + 4 ·Advror−ake

2PAKE,D(t, qexe, qexe + qB
send, q

B
send)

+ 4 · (qexe + qkd) ·Advftg−kd
KD (t, 1, 0) + 2 · qake ·Adveuf−cma

MAC (t, 2, 0)

+ 2 ·Advddh
G (t + 8(qexe + qake)τe) ,

where τe denotes the exponentiation computational time in G.

Key privacy with respect to the server. As the following theorem states, the generic scheme
GPAKE depicted in Figure 2 has key privacy with respect to the server as long as the Decisional
Diffie-Hellman assumption holds in G.

Theorem 2. Let GPAKE be the 3-party password-based authenticated key exchange scheme de-

picted in Figure 2. Then,

Advkp−ake
GPAKE,D(t, qexe, qtest, q

A
send, qB

send, qkd, qake) ≤ 2 ·Advddh
G (t + 8(qexe + qake)τe) ,

where the parameters are defined as in Theorem 1.
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Instantiations. Several practical schemes can be used in the instantiation of the 2-party
password-based key exchange of our generic construction. Among them are the KOY proto-
col [20] and its generalization [14], the PAK suite [26], and several other schemes based on the
encrypted key exchange scheme of Bellovin and Merritt [8] (e.g., [10]).

In the instantiation of the key distribution scheme, one could use the original proposal in [7] or
any other secure key distribution scheme. In particular, the server could use a chosen-ciphertext
secure symmetric encryption scheme to distribute the keys to the users. Independently of the
choice, one should keep in mind that the security requirements for the key distribution scheme
are very weak. It only needs to provide security with respect to one session.

For the instantiation of the MAC, any particular choice that makes the MAC term in
Theorem 1 negligible will do. Possible choices are the HMAC [2] or the CBC MAC.

It is important to notice that, in order for GPAKE to be secure, the underlying 2-party
password-based protocol must be secure in the ROR model. In view of the computational gap
that exists between the ROR and the FTG models (see Proposition 10), a 2-party password-based
secure in the FTG model does not suffice to prove the security of GPAKE.

5 Concluding remarks

Authentication. In order to take (explicit) authentication into account, one can easily extend
our model using definitions similar to those of Bellare et al. [4] for unilateral or mutual authen-
tication. In their definition, an adversary is said to break authentication if it succeeds in making
any oracle instance terminate the protocol without a partner oracle. Likewise, one could also use
their generic transformation to enhance our generic construction so that it provides unilateral
or mutual authentication. The drawback of using their generic transformation is that it requires
the random oracle model.

More efficient constructions. Even though the generic construction presented in this pa-
per is quite practical, more efficient solutions are possible. One example of such an improvement
is a generic construction in which the key distribution and the final key exchange phases are
combined into a single phase. One can easily think of different solutions for this scenario that
are more efficient that the one we give. However, the overall gain in efficiency would not be very
significant since the most expensive part of these two phases, the Diffie-Hellman protocol, seems
to be necessary if key privacy with respect to the server is to be achieved. Perhaps the best way
to improve the efficiency of 3-party password-based schemes is to adapt specific solutions in the
2-party model to the 3-party model, instead of treating these schemes as black boxes.

Relation to simulation models. In [29], the Find-Then-Guess model of [7] is shown to be
equivalent to simulation models in the sense that a scheme that is proven secure in one model
is also secure in the other model. By closely examining their proof, one can easily see that the
equivalence does not apply to the case of password-based protocols due to the non-security-
preserving reduction. It seems, however, that their proof of equivalence can be adapted to show
the equivalence between the simulation model and the Real-Or-Random model that we introduce
in this paper in the case of password-based protocols. This is also the subject of ongoing work.
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A Proof of security for GPAKE

Semantic security of GPAKE in the ROR model. Without loss of generality, we assume
the set of honest users contains only users A and B. The solution can be easily extended to the
more general case with essentially the same bounds.

Let A be an adversary against the semantic security of GPAKE in the Real-Or-Random
sense with time-complexity at most t, and asking at most qexe queries to its Execute oracle, qtest

queries to its Test oracle, qA
send queries to SendClient and SendServer oracles with respect to the

2PAKE protocol between A and the trusted server S, qB
send queries with respect to the 2PAKE

protocol between B and S, qkd queries with respect to the KD protocol, and qake queries with
respect to the final authenticated key exchange protocol.

Our proof consists of a sequence of hybrid experiments, starting with the real attack against
GPAKE scheme and ending in an experiment in which the adversary’s advantage is 0, and for
which we can bound the difference in the adversary’s advantage between any two consecutive
experiments. For each experiment Expn, we define an event Succn corresponding to the case
in which the adversary correctly guesses the hidden bit b involved in the Test queries (see
Section 3).

Experiment Exp0. This experiment corresponds to the real attack. By definition, we have

Advror−ake
GPAKE,D(A) = 2 · Pr[Succ0 ]− 1 (1)

Experiment Exp1. We now modify the simulation of the oracles as follows. We replace the
session key skA used as input to the KD protocol by a random session key sk ′

A in all of the
sessions. As the following lemma shows, the difference between the success probability of the
adversary A between the current and previous experiments is at most that of breaking the
security of the underlying 2PAKE protocol between A and S.

Lemma 3.
∣

∣Pr[Succ1 ]− Pr[Succ0 ]
∣

∣ ≤ 2 ·Advror−ake
2PAKE,D(t, qexe, qexe + qA

send, qA
send) .

Proof. Let A1 be a distinguisher for experiments Exp1 and Exp0. We can build an adversary
Apake against the semantic security of the 2PAKE protocol between A and S using A1 as follows.
Apake starts by choosing a bit b uniformly at random and selecting the passwords for all users
in the system except A according to the distribution of D. Next, it starts running A1, giving it
the passwords for all the malicious clients in the system, and answering to its oracle queries as
follows.

– SendClient and SendServer queries. If A1 asks a SendClient or SendServer query pertaining
to an instance of the 2PAKE protocol between B and S, then Apake can answer it using the
password of client B that it has picked at the beginning of its execution. If the SendClient

or SendServer query pertains to an instance of the 2PAKE protocol between A and S, then
Apake can answer it by asking the corresponding query to its Send oracle. If this query forces
the given instance of client A or S to accept or reject, then we also ask a Test query to
that instance (unless Test query had already been asked to its partner). The output of this
Test query will be used to simulate the key distribution and final key exchange phases of
the protocol. All the other SendClient and SendServer queries by A1 can be easily answered
either using the output of the Test queries made to instances of A or S or the session keys
computed in the execution of the 2PAKE protocol between A and B.

– Execute queries. Apake can easily answer these queries using its own Execute oracle and the
output of the Test queries.



16

– Test queries. Apake can easily answer these queries using the bit b that it has previously
selected and the session keys that it has computed.

Let b′ be the output of A1. If b′ = b, then Apake outputs 1. Otherwise, it outputs 0.
One can easily see that the probability that Apake outputs 1 when its Test oracle returns real

keys is exactly the probability that A1 returns 1 in experiment Exp0. Similarly, the probability
that Apake outputs 1 when its Test oracle returns random keys is exactly the probability that
A1 returns 1 in experiment Exp1. The lemma follows by noticing that Apake has at most time-
complexity t and asks at most qexe + qA

send queries to its Test oracle, at most qexe queries to its
Execute oracle, and at most qA

send queries to its Send oracle.

Experiment Exp2. We modify the previous experiment by replacing the session key sk B used
as input to the KD protocol by a random session key sk ′

B in all of the sessions. Using similar
arguments, one can prove the following lemma.

Lemma 4.
∣

∣Pr[Succ2 ]− Pr[Succ1 ]
∣

∣ ≤ 2 ·Advror−ake
2PAKE,D(t, qexe, qexe + qB

send, qB
send) .

Experiment Exp3. In this experiment, we replace the MAC key km obtained via the key
distribution protocol with a random key in all of the sessions. According to the following lemma,
the difference between the success probability of the adversary A between the current and
previous experiments is at most that of breaking the security of the key distribution scheme KD

protocol between A, B, and S.

Lemma 5.
∣

∣Pr[Succ3 ]− Pr[Succ2 ]
∣

∣ ≤ 2 (qexe + qkd) Advftg−kd
KD (t, 1) .

Proof. The proof of this lemma uses standard hybrid arguments [15] in order to replace each of
the key generated by the key distribution scheme KD. We can do so here because the input of
the key distribution scheme are all independents since experiment Exp2.

The hybrids in this case consist of a sequence of random variables Vi, where 0 ≤ i ≤ qs and
qs = (qexe+qkd), such that (1) the random variable Vi is constructed as follows : in the first (i−1)
sessions, the session keys are generated according to experiment Exp3, (i.e. at random), and in
the (qs − i + 1) sessions, they are generated according to the Exp2, (i.e. according to the real
protocol); (2) extreme hybrids (i = 0) and (i = qs) collide with Exp2 and Exp3 respectively;
(3) random values of each hybrid can be produced by a probabilistic polynomial time algorithm
and the session that we modify is independent of the other sessions; and (4) there are only
polynomially many hybrids.

The hybrids allow us to define qs different experiments where we only ask queries to the
Send oracles of the KD scheme with respect to a single session in each of the hybrids. Indeed,
we start with a distinguisher A3,i for experiments Vi−1 and Vi and we build an adversary Ai

kd

against the KD protocol. The adversary Ai
kd will choose at random the MAC keys km for the

first i− 1 sessions as well as the secret keys skA and skB shared between the server and clients
A and B, respectively. Hence, it can perfectly answer to the queries made by the adversary
A3,i to SendClient, SendServer, Execute, and Test oracles for the (i − 1) first sessions. In the
i-th session of hybrid experiment Exp3,i, A

i
kd will use the KD oracles to answer its queries. It

also makes a Test query with respect to this session to obtain a key k̃m and uses it in order to
simulate the remainder of the GPAKE protocol for that session.

If the output of the Test query is the real key, then Ai
kd is running A3,i as in the hybrid

experiment Vi−1. If the session key returned by the Test query is a random key, then Ai
kd is

running A3,i as in the hybrid experiment Vi Note the number of queries asked by Ai
kd to its

Send oracles is at most the maximum number of messages in a single execution of the protocol,
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c, hence the bound given in the lemma. Finally, when answering to the Test queries made by
A3,i, A

i
kd uses the same random bit b chosen at random at the beginning of its execution. Let

b′ be the output of adversary A3,i. If b′ = b, then Ai
kd returns 1 or 0, otherwise. Using classical

probability analysis and the fact that Ai
kd has time-complexity t and asks queries to its Send

oracle with respect to a single session and no Reveal queries, we can show that the difference
between the probabilities that Ai

kd in experiments Vi and Vi−1 is at most 2 ·Advftg−kd
KD (t, 1, 0).

The lemma follows immediately by noticing that there are at most qs hybrids.

Experiment Exp4. In this experiment, we modify the oracle instances as follows. If the adver-
sary asks a SendClient query containing a new pair message-MAC not previously generated by
an oracle, then we consider the MAC invalid and force the instance in question (which received
a forged message) to terminate without accepting. As the following lemma shows, the difference
between the current and previous experiments should be negligible if we use a secure MAC
scheme.

Lemma 6.
∣

∣Pr[Succ4 ]− Pr[Succ3 ]
∣

∣ ≤ qake ·Adveuf−cma
MAC (t, 2, 0) .

Proof. The proof of this lemma also uses hybrid arguments in the same as in the proof of
Lemma 5. The total number of hybrids in this case is qake, since Execute queries do not need to
be taken into account in this case. In hybrid Vi, where 0 ≤ i ≤ qake, queries in the first i sessions
are answered as in experiment Exp4 and all other queries are answered as in experiment Exp3.
Let A4,i be a distinguisher for hybrids Vi and Vi−1. Using A4,i, we can build an adversary for
the MAC scheme as follows.

For the first i− 1 sessions, the adversary Ai
mac will choose random values for the MAC key

and is therefore able to perfect simulate the oracles given to A4,i. In the i-th session, Ai
mac makes

use of its MAC generation and verification oracles to answer queries from A4,i. If A4,i generates a
pair message-MAC not previously generated by Ai

mac, then Ai
mac halts and outputs that pair as

its forgery. If no such pair is generated, we output a failure indication. For all remaining sessions,
Ai

mac uses the actual MAC keys obtained via the key distribution scheme as in experiment Exp3

to answer queries from A4,i.
Let F be the event in which a MAC is considered invalid in hybrid Vi but valid in hybrid Vi−1.

Notice that Pr[F ] is at most the probability that an adversary Ai
mac can forge a MAC under a

chosen-message attack. Since Ai
mac has time-complexity t and makes at most two queries to its

MAC generation oracle (to answer the SendClient queries) and no queries to its verification oracle,
we have that Pr[F ] ≤ Succeuf−cma

MAC (t, 2, 0). Moreover, since the two hybrids proceed identically
until F occurs, we have Pr[SuccVi−1 ∧ ¬F ] = Pr[SuccVi

∧ ¬F ]. By Lemma 1 of [30], we have
|Pr[SuccVi−1 ] − Pr[SuccVi

]| ≤ Pr[F ]. The lemma follows from the fact that there are at most
qake hybrids.

Experiment Exp5. In this experiment, we try to avoid the use of the discrete-log of the elements
X,Y,Z in the Test queries in order to correctly compute the CDH(X,Y ). We thus introduce a
random DDH triples (X,Y,Z). Then, using the classical random self-reducibility of the Diffie-
Hellman problem, one can introduce the above triples in all the sessions which can be tested by
the adversary. We do not need to modify the other sessions.

The behavior of our simulation in this experiment is as follows. Experiment Exp5 is identical
to experiment Exp4, except that we apply the following special rules when dealing with Test(U i)
and SendClient(U i,m) queries for the last two flows of GPAKE:

R1: When processing a SendClient(Ai,Start) query, the simulator picks two random values a0

and x0 in Zq, computes X0 = Xa0gx0 , and stores in some X -table (a0, x0, X0).
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R2: When processing a SendClient(Bj, (X0,m0)) query in the last message of the protocol,

– if the element X0 has been computed by our simulator and thus have been stored in
the X -table, then it generates the same way its answer by choosing two random values
b0, y0

R
← Zq, it computes Y0 = Y b0gy0 and stores in some Y-table (b0, y0, Y0). It can now

compute Z0 = Za0b0 × Y x0b0 ×Xa0y0 × gx0y0 for the Test queries.

– if the elements X0 has not been previously computed by our A-simulation, then it
proceeds as in the experiment Exp4.

R3: When processing a Test(U i) query, we know that such a query only reveal information
about the hidden bit when asked on an accepting instance, and an accepting instance can
only happen when the simulator knows the correct value Z0 and can answer such query as
in the experiment Exp4.

It is easy to see that in the second case of rule R2, as in experiment Exp4, the adversary will
not been able to forge a MAC tag, and then he will not be able to generate a correct message for
either one of the two last flows. Consequently, the session will not be accepted by any party and
so the adversary will not be able to send a Test query to any instance. Hence, the simulation
will be consistent.

It is then clear that experiments Exp4 and Exp5 are equivalent, since we have consistently
replaced one set of random variables by another set of identically distributed random variables.
In particular, Pr[Succ4] = Pr[Succ5].

Experiment Exp6. Experiment Exp6 is exactly the same as experiment Exp5, except that in
all the rules, we use a random triple (X,Y,Z) coming from a random distribution (gx, gy , gz),
instead of a DDH triple. As the following lemma shows, the difference between the current and
previous experiments should be negligible if DDH is hard in G.

Lemma 7.
∣

∣Pr[Succ6 ]− Pr[Succ5 ]
∣

∣ ≤ Advddh
G (t + 8(qexe + qake)τe) .

Proof. Let A be an attacker that breaks the semantic security experiment of GPAKE with a
different advantage in Experiment Exp6 than in Experiment Exp5. We can build an adversary
Addh for the DDH problem in G as follows. Let (X,Y,Z) be the input given to Addh. Addh first
selects a bit b at random and then starts running A. If A asks a SendClient, Execute, or Test

query, then Addh computes its output exactly as in the previous experiment but using the triple
(X,Y,Z) that it had received as input. Let b′ be the output of A. If b′ = b, then Addh returns 1
or 0, otherwise.

Let us now analyze the success probability of Addh. Clearly, when the triple (X,Y,Z) is a
true Diffie-Hellman triple, Addh runs A exactly as in experiment Exp5 and thus the probability
that Addh outputs 1 is exactly Pr[Succ5]. On the other hand, when (X,Y,Z) is a random
triple, Addh runs A exactly as in experiment Exp6 and thus the probability that Addh outputs
1 is exactly Pr[Succ6]. The lemma follows from the fact that Addh has time-complexity at
most t + 8(qexe + qake)τe, due to the additional time for the computations of the random
self-reducibility.

Due to the random self-reducibility property of the Diffie-Hellman problem, all the sessions
keys Z0 used to answer Test queries in experiment Exp6 are randomly and independently
distributed in G. As a result, no information on the hidden bit b used by the Test oracle is leaked
to the adversary and thus Pr[Succ6] = 1

2 . This result combined with the previous lemmas yields
the result in Theorem 1.
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Key privacy. The proof of key privacy uses arguments similar to those used in experiments
Exp5 and Exp6 in the proof of semantic security of GPAKE. Let Akp be an adversary against
the key privacy of GPAKE with time-complexity at most t, and asking at most qexe queries to
its Execute oracle, qtest queries to its TestPair oracle, and qake queries to SendClient oracle with
respect to the final MAC-based authenticated key exchange protocol. Using Akp, we can build
an adversary Addh for the DDH problem in G as follows.

Let (X,Y,Z) be the input given to Addh. Addh first chooses the passwords for all users in
the system according to the distribution of D. It also chooses a bit b at random that is used
to answer queries to the TestPair oracle. It then starts running Akp giving all the password of
all users to it. Since Addh knows the password of all users, it can easily answer queries made
by Akp. However, in order to use Akp to help it solve the DDH problem, Addh will use the
classical random self-reducibility of the Diffie-Hellman problem to introduce its input triple in
the answers to SendClient, Execute, and TestPair queries with respect to the last two flows of
GPAKE.

To simulate the Execute oracle, we simply use the passwords that we have chosen and
SendClient queries. The simulation of the SendClient and TestPair are as follows:

R1: When processing a SendClient(Ai,Start) query, Addh picks two random values a0 and x0

in Zq, computes X0 = Xa0gx0 , and stores in some X -table (a0, x0, X0).

R2: When processing a SendClient(Bj, (X0,m0)) query in the last message of the protocol,

– if the element X0 has been computed by Addh and thus have been stored in the X -
table, then Addh generates the same way its answer by choosing two random values
b0, y0

R
← Zq. It computes Y0 = Y b0gy0 and stores in some Y-table (b0, y0, Y0). Addh can

now compute Z0 = Za0b0 × Y x0b0 ×Xa0y0 × gx0y0 for the TestPair queries.

– if the elements X0 has not been previously computed by Addh, then Addh proceeds with
the simulation as it would in a real attack.

R3: When processing a TestPair(U i
1, U

j
2 ) query, Addh first checks whether U i

1 and U j
2 have both

accepted and have the same key. If the check fails, then Addh returns ⊥. If the check passes,
then Addh knows the corresponding value Z0 for the secret key and can answer it based on
the hidden bit b it had previously chosen.

Let b′ be the output of Akp. If b′ = b, then Addh returns 1 and 0, otherwise.

We would like to observe here that the second case of rule R2 has no influence over TestPair

queries, since the latter can only be asked to pair of oracle instances which share the same key.
This is because even though the instance involved in the SendClient may itself accept, its partner
would not be an oracle instance. Hence, a TestPair query involving this instance would always
return the invalid symbol ⊥.

In order to analyze the success probability of Addh, first consider the case in which the triple
(X,Y,Z) is a true Diffie-Hellman triple. Then, in this case, one can see that simulation of the Akp

oracles is perfect. Hence, the probability that Addh outputs 1 is exactly 1
2 + 1

2Advkp−ake
GPAKE,D(Akp).

On the other hand, when (X,Y,Z) is a random triple, the keys Z0 used to answer TestPair

queries are all random and independent as a result of the random self-reducibility property of
the Diffie-Hellman problem. Hence, no information on b is leaked through TestPair queries and
the probability that Addh outputs 1 is exactly 1

2 in this case. The proof of Theorem 2 follows
from the fact that Addh has time-complexity at most t + 8(qexe + qake)τe, due to the additional
time for the computations of the random self-reducibility.
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B Building blocks

In this section, we recall the definitions for the cryptographic primitives that we use in the
construction of our generic 3-party password-based authenticated key exchange, GPAKE.

Decisional Diffie-Hellman assumption: DDH. The decisional Diffie-Hellman assumption,
DDH, states, roughly, that the distributions (gu, gv , guv) and (gu, gv, gw) are computationally
indistinguishable when u, v, w are drawn at random from {1, . . . , |G|}. This can be made more
precise by defining two experiments, Expddh-real

G (A) and Expddh-rand
G (A). In both experiments,

we compute two values U = gu and V = gv to be given to A. But in addition to that, we also
provide a third input, which is guv in Expddh-real

G (A) and gz for a random z in Expddh-rand
G (A).

The goal of the adversary is to guess a bit indicating the experiment it thinks it is in. We define
the advantage of A in violating the DDH assumption, Advddh

G (A), as Pr[Expddh-real
G (A) = 1 ]−

Pr[Expddh-rand
G

(A) = 1 ]. The advantage function of the group, Advddh
G (t) is then defined as

the maximum value of Advddh
G (A) over all A with time-complexity at most t.

Message authentication codes (MAC). A Message Authentication Code MAC = (Key,
Tag,Ver) is defined by the following three algorithms: (1) A MAC key generation algorithm

Key, which on input 1k, produces a `-bit secret-key sk uniformly distributed in {0, 1}`; (2) A
MAC generation algorithm Tag, possibly probabilistic, which given a message m and a secret
key sk ∈ {0, 1}`, produces an authenticator µ; and (3) A MAC verification algorithm Ver, which
given an authenticator µ, a message m, and a secret key sk , outputs 1 if µ is a valid authenticator
for m under sk and 0 otherwise.

Like in signature schemes, the classical security level for a MAC is to prevent existential
forgeries, even for an adversary which has access to the generation and verification oracles. We
define the advantage of A in violating the security of the MAC as

Adveuf−cma
MAC (A) = Pr

[

sk ← {0, 1}`, (m,µ)← ATag(sk ;·),Ver(sk ;·,·)() : Ver(sk ;m,µ) = 1
]

,

and the advantage function of the MAC, Adveuf−cma
MAC (t, qg, qs), as the maximum value of the

advantage Adveuf−cma
MAC (A) over all A that asks up to qg and qv queries to the generation and

verification oracles, respectively, and with time-complexity at most t. Note that A wins the
above experiment only if it outputs a new valid authenticator.

3-party key distribution. A secure key distribution protocol KD is a 3-party protocol between
2 parties and a trusted server S where S picks a session key at random and securely sends it to
the users. The security model, formally introduced in [7], is a generalization of that for 2-party
authenticated key exchange protocols, to which a new oracle was added to represent the trusted
server. Their security is in the Find-Then-Guess (FTG) model, using the terminology that we
introduced for key exchange protocols.

In our generic construction, we only need a KD secure with respect to a single session since
the symmetric keys used as input to the key distribution protocol differ from session to session.
They are the session keys obtained from the 2-party password-based authenticated key exchange
protocols between the server and each of the two parties. Since in this case, both the FTG and
the ROR notions are equivalent, we opted to use their definition (i.e. FTG) adapted to our

terminology. That is, we define Advftg−kd
KD (A) as the advantage of adversary A in violating

the semantic security of a key distribution KD in the FTG sense, and Adv ftg−kd
KD (t, s, r) as the
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advantage function of KD, which is the maximum value of Advftg−kd
KD (A) over all A with

time-complexity at most t, asking Send queries with respect to at most s sessions and asking at
most r Reveal queries.

C Relations between notions

In this section, we prove the relation between the Find-Then-Guess (FTG) and Real-Or-Random
(ROR) notions of security for authenticated key exchange protocols. The relation is not specific
to password-based schemes, but its implications are more important in that scenario. We do not
present proofs for the forward-secure case as these proofs can be easily derived from the proofs
in the non-forward-secure case.

Lemma 8. For any AKE, Advftg−ake
AKE (t, qsend, qreveal, qexe) ≤ 2 · Advror−ake

AKE (t, qsend, qreveal + 1,
qexe).

Proof. In order to prove this lemma, we show how to build an adversaryAror against the semantic
security of an authenticated key exchange AKE protocol in the ROR model given an adversary
Aftg against the semantic security of the same protocol AKE in the FTG model. We know that
Aftg has time-complexity at most t and that it asks at most qsend, qreveal, and qexe queries to its
Send, Reveal, and Execute oracles, respectively.

The description of Aror is as follows. Aror starts by choosing a bit b uniformly at random
and starts running Aftg. If Aftg asks a Send query, then Aror asks the corresponding query to its
Send oracle. If Aftg asks a Execute query, then Aror asks the corresponding query to its Execute

oracle. If Aftg asks a Reveal query, then Aror asks a Test query to its Test oracle and uses the
answer it receives as the answer to the Reveal query. If Aftg asks a Test query, then Aror asks
the corresponding query to its Test oracle. If b = 1, then Aror uses the answer it received as the
answer to the Test query. Otherwise, it returns a random key to Aftg. Let b′ be the final output
of Aftg. If b′ = b, then Aror outputs 1. Otherwise, it outputs 0.

Note that Aror has time-complexity at most t and asks at most qsend, qreveal + 1, and qexe

queries to its Send, Test, and Execute oracles, respectively.

In order to analyze the advantage of Aror, first consider the case in which its Test oracle
returns random keys. It is easy to see that, in this case, Aftg cannot gain any information
about the hidden bit b used to answer its single Test query. Therefore, the probability that
Aror outputs 1 is exactly 1

2 . Now consider the case in which its Test oracle returns the actual
sessions keys. In this case, the simulation of Reveal is perfect and Aror runs Aftg exactly as in the
experiment defining the semantic security of Aftg in the FTG model. Therefore, the probability

that Aror outputs 1 is exactly 1
2 + 1

2Advftg−ake
AKE (Aftg) and, as a result, Advftg−ake

AKE (Aftg) ≤

2 ·Advror−ake
AKE (Aror) ≤ Advror−ake

AKE (t, qsend, qreveal + 1, qexe). The lemma follows easily.

Lemma 9. For any AKE, Advror−ake
AKE (t, qsend, qtest, qexe) ≤ qtest · Advftg−ake

AKE (t, qsend, qtest − 1,
qexe).

Proof. In order to prove this lemma, we show how to build a sequence of adversaries Ai
ftg against

the semantic security of an authenticated key exchange AKE protocol in the FTG model given
an adversary Aror against the semantic security of the same protocol AKE in the ROR model.
We know that Aror has time-complexity at most t and that it asks at most qsend, qtest, and qexe

queries to its Send, Test, and Execute oracles, respectively.
The proof uses a standard hybrid argument, in which we define a sequence of qtest + 1

hybrid experiments Vi, where 0 ≤ i ≤ qtest. In experiment Vi, the first i − 1 queries to the
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Test oracle are answered using a random key and all remaining Test queries are answered using
the real key. Please note that the hybrid experiments at the extremes correspond to the real
and random experiments in the definition of semantic security in the ROR model. Hence, in
order to prove the bound in the lemma, it suffices to prove that the difference in probability
that adversary Aror returns 1 between any two consecutive experiments Vi and Vi−1 is at most
Advftg−ake

AKE (t, qsend, qtest − 1, qexe). This is achieved by building a sequence of qtest adversaries
Ai

ftg, as described below.

Let Ai
ftg be a distinguisher Ai

ftg for experiments Vi and Vi−1, where 1 ≤ i ≤ qtest. A
i
ftg starts

running Aror answering to its queries as follows. If Aror asks a Send or Execute query, then Aftg

answers it using its corresponding oracle. If Aror asks a Test query, then Aftg answers it with a
random key if this query is among the first i− 1. If this is the i-th Test query, then Aftg uses its
Test oracle to answer it. All remaining Test queries are answered using the output of the Reveal

query. Aftg finishes its execution by outputting the same guess bit b outputted by Aror.
Note that Ai

ftg has time-complexity at most t and asks at most qsend, qtest − 1, and qexe

queries to its Send, Reveal, and Execute oracles, respectively.
In order to analyze the advantage of Ai

ftg, first notice that when Test oracle returns a random

key, Ai
ftg runsAror exactly as in the experiment Vi. Next, notice that when Test oracle returns the

real key, Ai
ftg runsAror exactly as in the experiment Vi. It follows that the difference in probability

that adversary Aror returns 1 between experiments Vi and Vi−1 is at most Advftg−ake
AKE (Aror) ≤

Advftg−ake
AKE (t, qsend, qtest − 1, qexe). The lemma follows easily.

Even though the reduction in Lemma 9 is not security-preserving (i.e., there is a non-constant
factor loss in the reduction), it does not imply that a gap really exists— there might exist a
tight reduction between the two notions that we have not yet found. In order to prove that the
non-constant factor loss in the reduction is indeed intrinsic, we need to show that there exist
schemes for which the gap does exist.

To achieve this goal, one can use techniques similar to those used to prove that a gap exists
between the Left-Or-Right and Find-Then-Guess notions of security for symmetric encryption
schemes [3]. In that paper, they show how to construct a new symmetric encryption scheme E ′

from a secure encryption scheme E such that E ′ exhibits the gap. E ′ was constructed in such a
way that its encryption function works like the encryption function of E most of the time, except
in a few cases (which are easily identifiable) in which the ciphertext it generates contains the
plaintext. The probability in which such bad cases happen in their construction is exactly 1/q,
where q is the non-constant factor in the reduction.

A similar technique can be applied to authenticated key exchange protocols. Imagine a secure
authenticated key exchange protocol AKE exists. For simplicity, assume qtest = 2l, for some
integer l. We can construct a new scheme AKE′ such that the session key k that it generates
equals the one generated by AKE most of the time except when the first l bits are 0. In this
case, we just make k = 0. Using a proof technique similar to that used in [3], one can prove
the the gap in Lemma 9 cannot be avoided and we thus omit the detail. But before stating
our proposition, we make a final remark that when the underlying scheme AKE is a password-
based key exchange, not every choice of parameters will yield the desired result claimed in the
proposition. However, there are (easy) choices of parameters for which the gap does exist and
that suffices for the purpose of the proposition. We are now ready to state our claim.

Proposition 10. The gap exhibited in Lemma 9 is intrinsic and cannot be avoided.


