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Abstract

The area of password-based authenticated key exchange protocols has been the subject
of a vast amount of work in the last few years due to its practical aspects. In these protocols,
the goal is to enable users communicating over an unreliable channel to establish a secure
session key even when the secret key that they share is drawn from a small set of values.
Despite the attention given to it, it was only recently that this problem has been formally
addressed in the three-party setting. In this setting, the users trying to establish a secret
session key are only required to share a password with a trusted server and not directly among
themselves. In this paper, we introduce a new three-party password-based authenticated key
exchange protocol based on the two-party encrypted key exchange of Bellovin and Merritt.
Our protocol is reasonably efficient and has a per-user computational cost that is comparable
to that of the underlying two-party encrypted key exchange. The proof of security is in the
random oracle model and is based on new and apparently stronger variants of the decisional
Diffie-Hellman problem which are of independent interest.

Keywords: password, authenticated key exchange, Diffie-Hellman assumptions, multi-party
protocols.
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1 Introduction

Motivation. Key exchange protocols are cryptographic primitives that allow users commu-
nicating over an unreliable channel to establish secure sessions keys. They are widely used in
practice and can be found in several different flavors. In this paper, we are interested in the set-
ting in which the secret keys shared among the users are not uniformly distributed over a large
space, but are rather drawn from a small set of values (e.g., a four-digit pin). This seems to be
a more realistic scenario since, in practice, these keys are usually chosen by humans. Moreover,
they also seem to be more convenient to use as they do not require the use of more specialized
hardware for storing or generating secret keys.

Due to the low entropy of the secret keys, password-based protocols are always subject to
password-guessing attacks. In these attacks, also known as dictionary attacks, the adversary
tries to impersonate a user by simply guessing the value of his password. Since these attacks
cannot be completely ruled out, the goal of password-based protocol is to limit the adversary’s
capability to the online case only. In an online attack, whose success probability is still non-
negligible, the adversary needs be present and interact with the system during his attempt to
impersonate a user. In other words, the adversary has no means of verifying off-line whether
or not a given password guess is correct. The idea of restricting the adversary to the online
case only is that we can limit the damage caused by such attacks by using other means, such
as limiting the number of failed login attempts or imposing a minimum time interval between
failed attempts.

password-based protocols in the 3-party model. Due to their practical aspects, pass-
word-based key exchange protocols have been the subject of extensive work in the recent years.
But despite the attention given to them, it was only recently [2] that the problem has been
formally addressed in the three-party model, where the server is considered to be a trusted third
party (TTP). This is the same scenario used in the popular 3-party Kerberos authentication
system. The main advantage of these systems is that users are only required to remember a
single password, the one they share with a trusted server, while still being able to establish
secure sessions with many users. The main drawback is the need of the trusted server during
the establishment of these secure sessions.

In [2], the authors put forth a formal model of security for 3-party password-based au-
thenticated key exchange (PAKE) and present a natural and generic construction of a 3-party
password-based authenticated key exchange from any secure 2-party one. There are three phases
in their generic construction. In the first phase, a high-entropy session key is generated between
the server and each of the two clients using an instance of the 2-party PAKE protocol for each
client. In the second phase, a message authentication code (MAC) key is distributed by the
server to each client using a 3-party key distribution protocol. In the final phase, both clients
execute an authenticated version of the Diffie-Hellman key exchange protocol [?] using the MAC
keys obtained in the previous phase.

Efficient 3-party password-based protocols. Though attractive and natural, the con-
struction given in [2] is not particularly efficient. Not only does it require a large amount of
computation by the server and the clients, but it also has a large number of rounds. In this
paper, we show how to improve both measures when the underlying 2-party password-based key
exchange protocol is based on the encrypted key exchange protocol of Bellovin and Merritt [8].

In order to understand our construction, let us first recall the example given in [2] of an
insecure 3-party password-based key exchange protocol, which we reproduce in Figure 1. As
noted in [2], this protocol is not secure because it allows one user in the system to perform an
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off-line dictionary attack against other users.

Public information: G, g, p, E ,D,H

Client A Server Client B
pwA ∈ D pwA,pwB ∈ D pwB ∈ D

x
R

← Zp ; XA ← gx y
R

← Zp ; YB ← gy

X⋆
A ← Epw

A
(XA) Y ⋆

B ← Epw
B
(YB)

X⋆
A−→

Y ⋆
B←−

XS ← Dpw
A
(X⋆

A)
YS ← Dpw

B
(Y ⋆

B)
Y ⋆

S ← Epw
A
(YS)

X⋆
S ← Epw

B
(XS)

Y ⋆
S←−

X⋆
S−→

YA ← Dpw
A
(Y ⋆

S ) XB ← Dpw
B
(X⋆

S)
KA ← Y x

A KB ← Xy
B

SKA ← H(A ‖B ‖S ‖KA) SKB ← H(A ‖B ‖S ‖KB)

Figure 1: An example of an insecure 3-party password-based encrypted key exchange protocol [2].

Re-encryption with randomization. The main problem with the protocol in Figure 1
resides in the fact that the same value is encrypted twice, once using pwA and once using pwB,
thus allowing both users A and B to learn each other’s password via an off-line dictionary attack.
To overcome this problem, it is crucial that the server randomizes the value received from one
participant before re-encrypting it using the password of the other participant.

Starting from this idea, we can design a provably-secure protocol, based on the encrypted
key exchange of Bellovin and Merritt [8]. The new protocol, whose simplified description is
given in Figure 2, is quite simple and elegant and, yet, we can prove its security (see Section 4).
Moreover, it is also rather efficient, specially when compared to the generic construction in [2].
In particular, the costs for each participant of the new 3-party protocol are comparable to those
of a 2-party key exchange protocol. The main drawback of the new 3-party protocol is that it
relies on stronger assumptions than those used by the generic construction in addition to being
in the random oracle model.

New Diffie-Hellman assumptions. Despite the simplicity of the protocol, its proof of
security does not follow directly from the standard Diffie-Hellman assumptions and requires
the introduction of some new variants of these standard assumptions. We call them chosen-
basis Diffie-Hellman assumptions due to the adversary’s capability to choose some of the bases
used in the definition of the problem. These assumptions are particularly interesting when
considered in the context of password-based protocols and we do expect to find applications for
them other than the ones in this paper. Despite being apparently stronger than the standard
Diffie-Hellman assumptions, no separations or reductions between these problems are known. 1

1This is no longer true, since in [25], Szydlo presents two simple and very efficient attacks against the two
versions of the chosen-basis decisional Diffie-Hellman problem being introduced in this paper. As a result, the
chosen-basis decisional Diffie-Hellman assumptions must no longer be considered to be valid assumptions. It is
also important to point out that, in previous versions of this paper, lower bound proofs in the generic model for
the chosen-basis decisional Diffie-Hellman assumptions were also presented. Unfortunately, those proofs contained
mistakes (which were exploited in the attack by Szydlo) and are no longer included in the current version of the
paper. More details will be included in future versions of this paper.
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Public information: G, g, p, E ,D,H

Client A Server S Client B
pwA ∈ D pwA,pwB ∈ D pwB ∈ D

x
R

← Zp ; X ← gx r
R

← Zp y
R

← Zp ; Y ← gy

X⋆ ← Epw
A
(X) Y ⋆ ← Epw

B
(Y )

A,B,X⋆

−−−−−−→
B,A, Y ⋆

←−−−−−
X ← Dpw

A
(X⋆)

Y ← Dpw
B
(Y ⋆)

X ← Xr

Y ← Y r

Y
⋆
← Epw

A
(Y )

X
⋆
← Epw

B
(X)

S,B, Y
⋆

←−−−−−
S,A,X

⋆

−−−−−→
Y ← Dpw

A
(Y

⋆
) X ← Dpw

B
(X

⋆
)

K ← Y
x

K ← X
y

SK ← H(Transcript ‖K) SK ← H(Transcript ‖K)

Figure 2: An efficient 3-party password-based encrypted key exchange protocol.

Related Work. Password-based authenticated key exchange has been quite extensively studied
in recent years. While the majority of the work deals with different aspects of 2-party key
exchange (e.g., [4, 9, 10, 15, 16, 18, ?]), only a few take into account the 3-party scenario
(e.g., [2, 11, 17, 20, 24, 26, 27]). Moreover, to the best of our knowledge, with the exception
of the generic construction in [2], none of the password-based schemes in the 3-party scenario
enjoys provable security. Other protocols, such as the Needham and Schroeder protocol for
authenticated key exchange [22] and the symmetric-key-based key distribution scheme of Bellare
and Rogaway [6], do consider the 3-party setting, but not in the password-based scenario. As we
mentioned above, the goal of the present work is to provide a more efficient and provably-secure
alternative to the generic protocol of [2].

Contributions. We make two main contributions in this paper.

An efficient construction in Random Oracle model. We present a new construction
of a 3-party password-based (implicitly) authenticated key exchange protocol, based on the
encrypted key exchange protocols in [7, 21, 10]. The protocol is quite efficient, requiring only
2 exponentiations and a few multiplications from each of the parties involved in the protocol.
This amounts to less than half of the computational cost for the server if the latter were to
perform two separate key exchange protocols, as in the generic construction of [2]. The gain in
efficiency, however, comes at the cost of stronger security assumptions. The security proof is
in the Random Oracle model and makes use of new and stronger variations of the Decisional
Diffie-Hellman assumption.

New Diffie-Hellman assumptions. The proof of security of our protocol makes use of new
non-standard variations of the standard Diffie-Hellman assumptions. These assumptions are of
independent interest as they deal with interesting relations between the computational and the
decisional versions of the Diffie-Hellman assumption. We call them chosen-basis decisional Diffie-
Hellman assumptions, given the adversary’s capability to choose some of the bases used in the
definition of the problem. Despite being apparently stronger than the standard Diffie-Hellman
assumptions, no separations or reductions between these problems are known 1.
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Organization. In Section 2, we recall the formal model of security for 3-party password-
based authenticated key exchange. Next, in Section 3, we recall the definitions of the standard
Diffie-Hellman assumptions and introduce some new variants of these assumptions, on which
the security of our protocol is based. We also present some relations between these assumptions.
Section 4 then presents our 3-party password-based key exchange protocol, called 3PAKE, along
with its security claims. Some important remarks are also presented in Section 4.3. We conclude
our paper by presenting detailed security proofs for 3PAKE and for the several lemmas described
in the paper, respectively, in Appendix A and Appendix B.

2 Definitions

We now recall the formal security model for 3-party password-authenticated key exchange pro-
tocols introduced in [2], which in turn builds upon those of Bellare and Rogaway [5, 6] and
that of Bellare, Pointcheval, and Rogaway [4]. In doing so, we omit the definitions for forward
security as the latter is out of the scope of the present paper.

2.1 Communication model

Protocol participants. The distributed system we consider is made up of three disjoint sets:
S, the set of trusted servers; C, the set of honest clients; and E , the set of malicious clients. We
also denote the set of all clients by U . That is, U = C ∪E . As in [2], we also assume S to contain
only a single trusted server.

Long-lived keys. Each participant U ∈ U holds a password pwU . The server S holds a vector
pwS = 〈pwU 〉U∈U with an entry for each client.

Execution of the protocol. The interaction between an adversary A and the protocol
participants occurs only via oracle queries, which model the adversary capabilities in a real
attack. While in a concurrent model, several instances may be active at any given time, only
one active user instance is allowed for a given intended partner and password in a non-concurrent
model. Let U i denote the instance i of a participant U and let b be a bit chosen uniformly at
random. These queries are as follows:

• Execute(U i1
1 , Sj , U i2

2 ): This query models passive attacks in which the attacker eavesdrops
on honest executions among client instances U i1

1 and U i2
2 and the server instance Sj .

The output of this query consists of the messages that were exchanged during the honest
execution of the protocol.

• Reveal(U i): This query models the misuse of session keys by clients. It returns to the
adversary the session key of client instance U i, if the latter is defined.

• SendClient(U i, m): This query models an active attack. It outputs the message that client
instance U i would generate upon receipt of message m.

• SendServer(Sj , m): This query models an active attack against a server. It outputs the
message that server instance Sj would generate upon receipt of message m.

• Test(U i): This query is used to measure the semantic security of the session key of client
instance U i, if the latter is defined. If the key is not defined, it returns ⊥. Otherwise, it
returns either the session key held by client instance U i if b = 0 or a random of key of the
same size if b = 1.
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2.2 Security definitions

Notation. Following [2], which in turn follows [5, 6], an instance U i is said to be opened if a
query Reveal(U i) has been made by the adversary. We say an instance U i is unopened if it is
not opened. We say an instance U i has accepted if it goes into an accept mode after receiving
the last expected protocol message.

Partnering. The definition of partnering uses the notion of session identifications (sid), which
in our case is the partial transcript of the conversation between the clients and the server before
the acceptance. More specifically, two instances U i

1 and U j
2 are said to be partners if the following

conditions are met: (1) Both U i
1 and U j

2 accept; (2) Both U i
1 and U j

2 share the same sid ; (3)

The partner identification for U i
1 is U j

2 and vice-versa; and (4) No instance other than U i
1 and

U j
2 accepts with a partner identification equal to U i

1 or U j
2 .

Freshness. An instance U i is considered fresh if that it has accepted, both U i and its partner
(as defined by the partner function) are unopened and they are both instances of honest clients.

AKE semantic security. Consider an execution of the key exchange protocol P by the
adversary A, in which the latter is given access to the Execute, SendClient, SendServer, and
Test oracles and asks at most one Test query to a fresh instance of an honest client. Let b′ be
his output. Such an adversary is said to win the experiment defining the semantic security if
b′ = b, where b is the hidden bit used by the Test oracle. Let Succ denote the event in which
the adversary wins this game.

The advantage of A in violating the AKE semantic security of the protocol P and the
advantage function of the protocol P , when passwords are drawn from a dictionary D, are
defined, respectively, as follows:

Advake
P,D(A) = 2 · Pr[Succ ]− 1

Advake
P,D(t, R) = max

A
{Advake

P,D(A) } ,

where maximum is over all A with time-complexity at most t and using resources at most R
(such as the number of oracle queries). The definition of time-complexity is the usual one, which
includes the maximum of all execution times in the experiments defining the security plus the
code size [1]. The probability rescaling was added to make the advantage of an adversary that
simply guesses the bit b equal to 0.

A 3-party password-based key exchange protocol P is said to be semantically secure if the
advantage Advake

P,D is only negligibly larger than kn/|D|, where n is number of active sessions
and k is a constant. Note that k = 1 is the best one can hope for since an adversary that simply
guesses the password in each of the active sessions has an advantage of n/|D|.

3 Diffie-Hellman assumptions

In this section, we recall the definitions of standard Diffie-Hellman assumptions and introduce
some new variants, which we use in the security proof of our protocol. We also present some
relations between these assumptions.

3.1 Definitions

Henceforth, we assume a finite cyclic group G of prime order p generated by an element g. We
also call the tuple G = (G, g, p) a represented group.
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Computational Diffie-Hellman assumption: CDH. The CDH assumption in a represented
group G states that given gu and gv, where u, v were drawn at random from Zp, it is hard to
compute guv. This can be defined more precisely by considering an Experiment Expcdh

G
(A), in

which we select two values u and v in Zp, compute U = gu, and V = gv, and then give both
U and V to A. Let Z be the output of A. Then, the Experiment Expcdh

G
(A) outputs 1 if

Z = guv and 0 otherwise. We define the advantage of A in violating the CDH assumption as
Advcdh

G (A) = Pr[Expcdh
G

(A) = 1 ] and the advantage function of the group, Advcdh
G (t), as the

maximum value of Advcdh
G (A) over all A with time-complexity at most t.

Decisional Diffie-Hellman assumption: DDH. Roughly, the DDH assumption states that
the distributions (gu, gv, guv) and (gu, gv, gw) are computationally indistinguishable when u, v, w
are drawn at random from Zp. As before, we can define the DDH assumption more formally
by defining two experiments, Expddh-real

G
(A) and Expddh-rand

G
(A). In both experiments, we

compute two values U = gu and V = gv as before. But in addition to that, we also provide
a third input, which is guv in Expddh-real

G
(A) and gz for a random z in Expddh-rand

G
(A). The

goal of the adversary is to guess a bit indicating the experiment he thinks he is in. We define
the advantage of A in violating the DDH assumption, Advddh

G (A), as Pr[Expddh-real
G

(A) = 1 ]−
Pr[Expddh-rand

G
(A) = 1 ]. The advantage function of the group, Advddh

G (t), is then defined in a
similar manner.

Chosen-basis Decisional Diffie-Hellman assumptions. The security of our protocol relies
on two new variations of the DDH assumption, which we call Chosen-basis Decisional Diffie-

Hellman assumptions 1 and 2, where 1 and 2 denote the number of values outputted by the
adversary at the end of the first phase. So, let us start by motivating the first of these, the
CDDH1 assumption. A similar argument can be used to justify our second assumption, CDDH2,
and hence we only provide its formal definition.

The CDDH1 assumption considers an adversary running in two stages. In a find stage, the
adversary is given three values U = gu, V = gv, and X = gx, where u, v, and x are random
elements in Zp. The adversary should then select an element Y in G. Using Y , we then consider
two games. In the first game (b = 0), we pick a random bit b0 and set another bit b1 = b0 to the
same value. We then choose two secret random values r0 and r1, we compute two pairs of values
(X0, K0) and (X1, K1) using bits rb0 and rb1 as in Definition 3.1 below and the value Y ′ = Y r0 ,
and we give them to the adversary. In other words, in this game, we compute both pairs using
the same exponent, which may or may not be the same used in the computation of Y ′ from Y ,
the value previously chosen by the adversary. The second game (b = 1) is similar to the first one
except that b1 is set to 1 − b0 and hence the pairs (X0, K0) and (X1, K1) are computed using
different exponents. The adversary wins if he guesses correctly the bit b = b0⊕b1.

To understand the subtlety of the assumption, let us consider the different strategies the
adversary may take. First, if the adversary chooses Y = gy knowing its discrete log y, then he
can compute CDH(X/U, Y ) as well as gr0 . He can also verify that each key Ki is in fact Xy

i .
Hence, the keys Ki do not leak any additional information. Let g0 = X/U and g1 = X/V . Then
Xi = g

rbi

i . Thus, the adversary in this case needs to be able to tell whether the same exponent
is used in Xi knowing only gr0 . We believe this is not easy.

Now let us consider the case in which the adversary chooses Y as a function of the inputs
that he was given at the find stage (hence not knowing y). In this case, the adversary should
not be able to compute the CDH value and hence the values Ki are not of much help either.
Consider the case where he chooses Y = X/U . Then, using Y ′, the adversary can easily know
the value of b0 by checking whether X0 = Y ′. However, that does not seem to be of much
help since he now needs to tell whether X0 = g

rb0

0 was computed using the same exponent as
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X1 = g
rb1

1 . Knowing b0 does not seem of any help. We now proceed with the formal definitions.

Definition 3.1 [CDDH1] Let G = (G, g, p) be a represented group and let A be an adversary.
Consider the following experiment, defined for b = 0, 1, where U , V , and X are elements in G
and r0 and r1 are elements in Zp.

Experiment Expcddh1
G,b (A, U, V, X, r0, r1)

(Y, s)
R
← A(find, U, V, X)

b0
R
← {0, 1} ; b1 = b ⊕ b0

X0 ← (X/U)rb0 ; K0 ← CDH(X/U, Y )rb0

X1 ← (X/V )rb1 ; K1 ← CDH(X/V, Y )rb1

Y ′ ← Y r0

d← A(guess, s, X0, K0, X1, K1, Y
′)

return d

Now define the advantage of A in violating the chosen-basis decisional Diffie-Hellman 1 assump-
tion with respect to (U, V, X, r0, r1), the advantage of A, and the advantage function of the
group, respectively, as follows:

Advcddh1
G (A, U, V, X, r0, r1) = 2 · Pr[Expcddh1

G,b (A, U, V, X, r0, r1) = b ]− 1

Advcddh1
G (A) = EU,V,X,r0,r1

[
Advcddh1

G (A, U, V, X, r0, r1)
]

Advcddh1
G (t) = max

A
{Advcddh1

G (A) },

where the maximum is over all A with time-complexity at most t. ♦

Definition 3.2 [CDDH2] Let G = (G, g, p) be a represented group and let A be an adversary.
Consider the following experiment, defined for b = 0, 1, where U and V are elements in G and
r0 and r1 are elements in Zp.

Experiment Expcddh2
G,b (A, U, V, r0, r1)

(X, Y, s)
R
← A(find, U, V )

b0
R
← {0, 1} ; b1 = b ⊕ b0

X0 ← (X/U)rb0 ; X1 ← (X/V )rb1 ; Y ′ ← Y r0

d← A(guess, s, X0, X1, Y
′)

return d

Now define the advantage of A in violating the chosen-basis decisional Diffie-Hellman 2 assump-
tion with respect to (U, V, r0, r1), the advantage of A, and the advantage function of the group,
respectively, as follows:

Advcddh2
G,A,U,V,r0,r1

= 2 · Pr[Expcddh2
G,b (A, U, V, r0, r1) = b ]− 1

Advcddh2
G (A) = EU,V,r0,r1

[
Advcddh2

G (A, U, V, r0, r1)
]

Advcddh2
G (t) = max

A
{Advcddh2

G (A) },

where the maximum is over all A with time-complexity at most t. ♦

Password-based Chosen-basis Decisional Diffie-Hellman assumptions. The actual
proof of security of our protocol uses password-related versions of the chosen-basis decisional
Diffie-Hellman assumptions, which we call password-based chosen-basis decisional Diffie-Hellman

assumptions 1 and 2.
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Definition 3.3 [PCDDH1] Let G = (G, g, p) be a represented group and let A be an adversary.
Consider the following experiment, defined for b = 0, 1, where P is a random function from
{1, . . . , n} into G, X is an element in G, k is a password in {1, . . . , n}, and r0 and r1 are
elements in Zp.

Experiment Exp
pcddh1
G,n,b (A,P, X, k, r0, r1)

(Y, s)
R
← AP(find, X)

U ← P(k)
X ′ ← (X/U)rb ; K ← CDH(X/U, Y )rb

Y ′ ← Y r0

d← A(guess, s, X ′, Y ′, K, k)
return d

Now define the advantage of A in violating the password-based chosen-basis decisional Diffie-
Hellman 1 assumption with respect to (P, X, k, r0, r1), the advantage of A, and the advantage

function of the group, respectively, as follows:

Adv
pcddh1
G,n (A,P, X, k, r0, r1) = 2 · Pr[Exp

pcddh1
G,n,b (A,P, X, k, r0, r1) = b ]− 1

Adv
pcddh1
G,n (A,P) = EX,k,r0,r1

[
Adv

pcddh1
G,n (A,P, X, k, r0, r1)

]

Adv
pcddh1
G,n (t,P) = max

A
{Adv

pcddh1
G,n (A,P) },

where the maximum is over all A with time-complexity at most t. ♦

Definition 3.4 [PCDDH2] Let G = (G, g, p) be a represented group and let A be an adversary.
Consider the following experiment, defined for b = 0, 1, where P is a random function from
{1, . . . , n} into G, k is a password in {1, . . . , n}, and r0 and r1 are elements in Zp.

Experiment Exp
pcddh2
G,n,b (A,P, k, r0, r1)

(X, Y, s)
R
← AP(find)

U ← P(k)
X ′ ← (X/U)rb

Y ′ ← Y r0

d← AP(guess, s, X ′, Y ′, k)
return d

Now define the advantage of A in violating the password-based chosen-basis decisional Diffie-
Hellman 2 assumption with respect to (P, k, r0, r1), the advantage of A, and the advantage

function of the group, respectively, as follows:

Adv
pcddh2
G,n (A,P, k, r0, r1) = 2 · Pr[Exp

pcddh2
G,n,b (A,P, k, r0, r1) = b ]− 1

Adv
pcddh2
G,n (A,P) = Ek,r0,r1

[
Adv

pcddh2
G,n (A,P, k, r0, r1)

]

Adv
pcddh2
G,n (t,P) = max

A
{Adv

pcddh2
G,n (A,P) },

where the maximum is over all A with time-complexity at most t. ♦
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3.2 Relations

Relations between the PCDDH1 and CDDH1 problems. The following two lemmas,
whose proofs are in Appendix B, present relations between the PCDDH1 and CDDH1 problems.
The first result is meaningful for small n (polynomially bounded in the asymptotic framework).
The second one considers larger dictionaries.

Lemma 3.5 Let G = (G, g, p) be a represented group and let n be an integer. If there exists a
distinguisher A such that

Adv
pcddh1
G,n (A) ≥

2

n
+ ǫ,

then there exists a distinguisher B and a subset S of G3 × Z2
p of probability greater than ǫ/8n2

such that for any (U, V, X, r0, r1) ∈ S,

Advcddh1
G,n (B, U, V, X, r0, r1) ≥

ǫ2

8
.

Lemma 3.6 Let G = (G, g, p) be a represented group and let n be an integer. If there exists a
distinguisher A such that

Adv
pcddh1
G,n (A) ≥ ǫ ≥

16

n
,

then there exists a distinguisher B and a subset S of G3 × Z2
p of probability greater than ǫ3/210

such that for any (U, V, X, r0, r1) ∈ S,

Advcddh1
G,n (B, U, V, X, r0, r1) ≥

ǫ2

8
.

Relations between the PCDDH2 and CDDH2 problems. The following two lemmas,
whose proofs can be easily derived from the proofs of the previous two lemmas, present relations
between the PCDDH2 and CDDH2 problems. While the first result is meaningful for small
values of n, the second one considers larger values.

Lemma 3.7 Let G = (G, g, p) be a represented group and let n be an integer. If there exists a
distinguisher A such that

Adv
pcddh2
G,n (A) ≥

2

n
+ ǫ,

then there exists a distinguisher B and a subset S of G2 × Z2
p of probability greater than ǫ/8n2

such that for any (U, V, r0, r1) ∈ S

Advcddh2
G,n (B, U, V, r0, r1) ≥

ǫ2

8
.

Lemma 3.8 Let G = (G, g, p) be a represented group and let n be an integer. If there exists a
distinguisher A such that

Adv
pcddh1
G,n (A) ≥ ǫ ≥

16

n
,

then there exists a distinguisher B and a subset S of G2 × Z2
p of probability greater than ǫ3/210

such that for any (U, V, r0, r1) ∈ S

Advcddh1
G,n (B, U, V, r0, r1) ≥

ǫ2

8
.
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Distinguishers. In all of the above relations, we show that if there exists an adversary against
the password version of the chosen-basis decisional problem that is capable of doing better than
just guessing the password, then we can construct a distinguisher for underlying chosen-basis
decisional problem, whose success probability is non-negligible over a non-negligible subset of
the probability space. Even though these results provide enough evidence of the hardness of
breaking the original password-based problem, one may want a more concrete result that works
for the most of the probability space. The next lemma, whose proof is also in Appendix B,
proves just that. More precisely, it shows that if a good distinguisher exists for a non-negligible
portion of the probability space, then the same distinguisher is a good distinguisher either for
the entire probability space or for at least half of it.

Lemma 3.9 [Amplification Lemma] Let Eb(x) be an experiment for b ∈ {0, 1} and x ∈ S. Let
D be a distinguisher between two experiments E0(x) and E1(x) with advantage ǫ for x ∈ S′,
where S′ ⊂ S is of measure µ = |S′|/|S|:

Pr
x

[x ∈ S′] = µ; Pr
b,x

[Eb(D, x) = b | x ∈ S′] ≥
1

2
+

ǫ

2
.

Then either D is a good distinguisher on the whole set S:

Pr
b,x

[Eb(D, x) = b] ≥
1

2
+

µǫ

4
,

or D is a good distinguisher for S′ and S\S′, one of which is a subset of measure greater than
or equal to one half:

Pr
x

[x ∈ S′] = µ Pr
b,x

[Eb(D, x) = b | x ∈ S′] ≥
1

2
+

ǫ

2
;

Pr
x

[x ∈ S\S′] = 1− µ Pr
b,x

[Eb(D, x) = b | x ∈ S\S′] ≤
1

2
−

µǫ

4
.

4 Our 3-party password-based protocol

In this section, we introduce our new protocol, a non-concurrent 3-party password-based authen-
ticated key exchange protocol called 3PAKE, whose security proof is in the random oracle model.
It assumes that the clients willing to establish a common secret session key share passwords with
a common server. Even though the proof of security assumes a non-concurrent model, we outline
in Section 4.3 ways in which one can modify our protocol to make it concurrent.

4.1 Description

Our 3-party password-based protocol, 3PAKE, is based the on password-based key exchange
protocols in [7, 10, 21], which in turn are based on the encrypted key exchange of Bellovin and
Merritt [8]. The description of 3PAKE is given in Figure 3, where (G, g, p) is the represented
group; ℓr and ℓk are security parameters; and G1 : U2 ×D→G, G2 : U2 × {0, 1}ℓr ×D ×G→G,
and H : U3 × {0, 1}ℓr ×G4→{0, 1}ℓk are random oracles.2

2In previous versions of this paper as well as in the extended abstract [3], there was a discrepancy between
the scheme description being presented in the main body of the paper and the one being used in the proof of
security in the appendix. More precisely, in the scheme description in the main body of the paper, the identities
of the clients were incorrectly omitted from the input of the hash functions G1 and G2. As shown in [13], such an
omission can lead to an attack when static corruptions of players are allowed in the model. In this new version,
this discrepancy has been fixed.
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The protocol consists of two rounds of message. First, each client chooses an ephemeral
public key by choosing a random element in Zp and raising g to the that power, encrypts it
using the output of the hash function G1 with his password, his own identity, and the identity
of his intended partner as the input, and sends it to the server. Upon receiving a message from
each client, the server decrypts these messages to recover each client’s ephemeral public key,
chooses a random index r ∈ Zp and a random element R ∈ {0, 1}ℓr , exponentiates each of the
ephemeral public keys to the r-th power, and re-encrypts them using the output of the hash
function G2, with R and the appropriate first-round message and password as input.

In the second round of messages, the server sends to each client the encrypted value of
the randomized ephemeral public key of their partner along with the messages that the server
exchanged with that partner, which are omitted in Figure 3 for clarity. Upon receiving a
message from the server, each client recovers the randomized ephemeral public key of his partner,
computes the Diffie-Hellman key K, and the session key SK via a hash function H using as
input K and the transcript of the conversation among the clients and the server. The session
identification is defined to be the transcript T = (R, X⋆, Y ⋆, X

⋆
, Y

⋆
) of the conversation among

the server and clients, along with their identity strings.

Public information: G, g, p, ℓr, ℓk, G1, G2, H

Client A Server S Client B

pwA ∈ D pwA, pwB ∈ D pwB ∈ D

x
R

← Zp ; X ← gx r
R

← Zp ; R
R

← {0, 1}ℓr y
R

← Zp ; Y ← gy

pwA,1 ← G1(A, B, pwA) pwB,1 ← G1(A, B, pwB)
X⋆ ← X · pwA,1 Y ⋆ ← Y · pwB,1

X⋆

−→
Y ⋆

←−
pwA,1 ← G1(A, B, pwA)
pwB,1 ← G1(A, B, pwB)

X ← X⋆/pwA,1

Y ← Y ⋆/pwB,1

X ← Xr

Y ← Y r

pwA,2 ← G2(A, B, R, pwA, X⋆)
pwB,2 ← G2(A, B, R, pwB , Y ⋆)

Y
⋆
← Y · pwA,2

X
⋆
← X · pwB,2

R, Y
⋆

←−−−
R, X

⋆

−−−→
pwA,2 ← G2(A, B, R, pwA, X⋆) pwB,2 ← G2(A, B, R, pwB , Y ⋆)

Y ← Y
⋆
/pwA,2 ; K ← Y

x
X ← X

⋆
/pwB,2 ; K ← X

y

T ← R, X⋆, Y ⋆, X
⋆
, Y

⋆
T ← R, X⋆, Y ⋆, X

⋆
, Y

⋆

SK ← H(A, B, S, T, K) SK ← H(A, B, S, T, K)

Figure 3: 3PAKE: A provably-secure 3-party password-based authenticated key exchange pro-
tocol.

Correctness. In an honest execution of the protocol in Figure 3, we have Y = Y r = gyr and
X = Xr = gxr. Hence, K = Y

x
= X

y
= gxyr.

Efficiency. 3PAKE is quite efficient, not requiring much computational power from the server.
Note that the amount of computation performed by the server in this case is comparable to that
of each user. That is at least half the amount of computation that it would be required if the
server were to perform a separate 2-party password-based encrypted key exchange with each
user.
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Rationale for the scheme. As pointed out in the introduction, the random value r is used
by the server to hide the password of one user with respect to other users. For this same reason,
it is also crucial that the server rejects any value X⋆ or Y ⋆ whose underlying value X or Y is
equal to 1. This is omitted in Figure 3 for clarity reasons only.

The reason for using two different masks pwA,1 and pwA,2 in each session, on the other hand,
is a little more intricate and is related to our proof technique. More precisely, in our proof of
security, we embed instances of the CDDH1 and CDDH2 problems in pwA,1 and pwA,2 and we
hope to get an answer for these problems from the list of queries that the adversary makes to
the G1 and G2 oracles. Unfortunately, this does not appear to be possible when the values of
pwA,1 and pwA,2 are fixed for all sessions since a powerful adversary could be able to learn the
values of pwA,1 and pwA,2 and break the semantic security of the scheme without querying the
oracles for G1 and G2.

To see how, let us assume two fixed but random values for pwA,1 and pwA,2 and that we are
dealing with an adversary that knows the password of a legitimate but malicious user. Let us
also assume that the adversary is capable of breaking the computational Diffie-Hellman inversion
(CDHI) problem, in which the goal is to compute gy from g, gx, and gxy. Since in the security
model, the adversary is allowed to intercept and replay messages, he can play the role of the
partner of A and ask a given query (A, gx ·pwA,1) twice to the server. From the answers to these
queries, the adversary would be able to compute two sets of values (gx ·pwA,1, g

y, gxr, gyr ·pwA,2)

and (gx · pwA,1, g
y, gxr′ , gyr′ · pwA,2) based on different values r and r′. By dividing the last

two terms of each set, the adversary can compute g(r′−r)x and g(r′−r)y. Moreover, since the
adversary plays the role of the partner of A and knows y, he can also compute gr′−r. Hence, the
adversary can learn the values of g, gr′−r, and g(r′−r)x as well as gx ·pwA,1. By solving the CDHI

problem, he can also learn the value of gx from g, gr′−r, and g(r′−r)x. Thus, he can recover
pwA,1 without querying the oracle G1 on various inputs pw . Moreover, since such adversary is
capable of computing gr from g, gx, and grx, and hence capable of computing gry, he can also
learn the value of pwA,2 without querying the oracle G2.

4.2 Security

As the following theorem states, 3PAKE is a secure non-concurrent 3-party password-based key
exchange protocol as long as the CDH, DDH, PCDDH1, and PCDDH2 problems are hard in
G. As shown in Section 3, the latter two problems are hard as long as CDDH1 and CDDH2
are hard in G. Please note that the proof of security assumes D to be a uniformly distributed
dictionary.

Theorem 4.1 Let G = (G, g, p) be a represent group of prime order p and let D be a uniformly
distributed dictionary of size |D|. Let 3PAKE describe the encrypted key exchange protocol
associated with these primitives as defined in Figure 3. Then, for any numbers t, qserver, qstart,
qexe, qG1

, qG2
, and qH ,

Advake
3PAKE,G,D(t, qserver, qstart, qexe, qG1

, qG2
, qH) ≤

2 qstart

|D|
+

q2
G1

+ q2
G2

+ (qexe + qstart)
2

p
+ 4 qexe Advddh

G (t) +

2 · qserver ·max{ 2 ·Adv
pcddh1
G,|D| (qstart · t) , Adv

pcddh2
G,|D| (t) }+

2 q2
G1

q2
G2

q2
H Advcdh

G (t + 3τe) + 2
qG1

+ qG2

p
+ 4

qH

p
,
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where qH , qG1
, and qG2

represent the number of queries to the H, G1 and G2 oracles, respectively;
qexe represents the number of queries to the Execute oracle; qstart represents the number of queries
to the SendClient oracle used to initiate an client oracle instance; qserver represents the number
of queries to the SendServer oracle; and τe denotes the exponentiation computational time in
G.

Proof idea. Here we only present a brief sketch of the proof. We refer the reader to Appendix A
for the full proof of security. The proof for 3PAKE defines a sequence of hybrid experiments,
starting with the real attack and ending in an experiment in which the adversary has no advan-
tage. Each experiment addresses a different security aspect.

Experiments 1 through 5 show that the adversary gains no information from passive attacks.
They do so by showing that keys generated in these sessions can be safely replaced by random
ones as long as the DDH assumption holds in G.

In Experiment 6, we change the simulation of the random oracle H in all those situations
for which the adversary may ask a valid test query. Such a change implies that the output of
the test query is random and hence the advantage of the adversary in this case is 0. However,
the difference between this experiment and previous still cannot be computed since it depends
on the event AskH that the adversary asks certain queries to the random oracle H. Our goal
at this point shifts to computing the probability of the event AskH.

In experiments 7 through 9, we deal with active attacks against the server. First, in Ex-
periment 7, we show that the output values X

⋆
and Y

⋆
associated with honest users can be

computed using random values and independently of each other as long as the PCDDH1 and
PCDDH2 assumptions hold in G. More precisely, we show how to upper-bound the difference
in the probability of the event AskH using the PCDDH1 and PCDDH2 assumptions. Then,
in the next two experiments, we show that for those cases in which we replaced X

⋆
and Y

⋆

with random values, the password is no longer used and that the Diffie-Hellman keys K used to
compute the session keys for these users are indistinguishable from random.

Finally, in Experiment 10, we consider active attacks against a user. More precisely, we
show that we can answer all SendClient queries with respect to honest users using random
values, without using the password of these users, and without changing the probability of the
event AskH. Moreover, at this moment, we also show how to bound the probability of the
event AskH based on the hardness of the CDH problem in G and on the probability that the
adversary successfully guesses the password of an honest user during an active attack against
that user.

4.3 Concluding remarks

First, the main reason for assuming an underlying group G of prime order p is to ensure that
the exponentiation of an element in the group other than the unit yields a generator. For the
same reason, it is crucial for the server to check whether the elements to which it applies the
randomization step are different from the unit element. Both these assumptions are implicitly
made in several parts of the proof and they are essential for the security of our protocol.

Second, the proof of security for 3PAKE assumes a non-concurrent model, in which only
one instance of each player can exist at a time. One can argue that such proof is not worth
much as it rules out most interesting attack scenarios or makes the scheme too restrictive to be
used in practice. To address the first of these concerns, we argue that, even though the non-
concurrent scenario rules out a significant class of attacks, it still allows many interesting ones.
For example, the identity-misbinding attacks in [?, 19] still work in the non-concurrent scenario.
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To address the second concern, we point out that several applications found in practice do not
require concurrency. And even when they do require concurrent sessions, it is usually between
different pairs of users. A simple modification is enough to make our protocol work in the latter
case, by including the users’ identification in the input of the G1 and G2 hash functions.

Third, if full concurrency is required, then one could modify 3PAKE to make it work in this
new scenario by adding two extra flows at the beginning of the protocol going from the server
to each of the two users. Such flows would include nonces in the input of the G1 and G2 hash
functions. Each user would also have to add its own nonce to the input of the G1 and G2 hash
functions, and send it to the server along with X⋆ or Y ⋆. Moreover, the protocol’s efficiency
would remain almost the same, except for the number of rounds, but would still be significantly
better than the round complexity of the generic construction in [2].

Fourth, some of the problems that we found in our proof may be avoidable in the “ideal-
cipher model,” in which the encryption function is considered to be a truly random permutation.
The reason for that is that non-linear properties of the ideal cipher model naturally remove
the algebraic properties existent in the the “one-time pad” version of the encryption function.
Nonetheless, we opted to rely only on a single idealized model, the random oracle model, which
is already a strong assumption as other papers have shown (e.g., [12]).
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s – On hash query H(q) (resp. H ′(q)) for which there exists a record (q, r) in
the list ΛH (resp. ΛH), return r. Otherwise, choose an element r ∈ {0, 1}ℓk ,
add the record (q, r) to the list ΛH (resp. ΛH), and return r.

– On hash query Gi(q), for which there exists a record (q, r, ⋆) in the list
ΛGi

, return r. Otherwise, choose an element r ∈ G, add the record (q, r,⊥)
to the list ΛGi

, and return r.

Figure 4: Simulation of random oracles H, H ′, G1, and G2.
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– On a query SendClient(U i
1, (U2, start)), assuming U i

1 is in the correct
state, we proceed as follows:

θ
R
← Zp ; Θ← gθ

pw1 ← G1(U1, U2, pwU1
)

Θ⋆ ← Θ · pwU1,1

return (U1, U2, Θ
⋆)

– On a query SendClient(U i
1, (U2, S, RS , Φ

⋆
)), assuming U i

1 is in the correct
state and U2 is the intended partner, we proceed as follows:

pwU1,2 ← G2(U1, U2, RS , pwU1
, Θ⋆)

Φ← Φ
⋆
/pwU1,2

K ← Φ
θ

SKU1
← H(A, B, S, RS , Θ⋆, Φ⋆, Θ

⋆
, Φ

⋆
, K)

Figure 5: Simulation of SendClient oracle query.

A Proof of security for 3PAKE

Our proof uses a hybrid argument consisting of a sequence of experiments, the first of which
corresponds to the actual attack. For each experiment Expn, we define an event Succn corre-
sponding to the case in which the adversary correctly guesses the bit b involved in the Test query.

Experiment Exp0. This experiment corresponds to the real attack, in the random oracle
model. By definition, we have

Advake
3PAKE,D(A) = 2 · Pr[Succ0 ]− 1 (1)

Experiment Exp1. In this experiment, we simulate the hash oracles G1, G2 and H as usual
by maintaining hash lists ΛG1

, ΛG2
, and ΛH (see Figure 4). In addition to these hash oracles,

we also simulate a private hash oracle H ′ which we will be using later. The Execute, Reveal,
SendClient, SendServer and Test oracles are also simulated as in the real attack (see Figure 5,
Figure 6, and Figure 7). One can easily see that this experiment is perfectly indistinguishable
from the real experiment. Hence,

Pr[Succ1 ] = Pr[Succ0 ] (2)

Experiment Exp2. In this experiment, we simulate all oracles as in Experiment Exp1, except
that we halt all executions in which a collision occurs in the output of the G1 and G2 oracles
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– On query SendServer(Si, ((U1, U2, Θ

⋆), (U2, U1, Φ
⋆))), proceed as follows:

r
R
← Zp

RS
R
← {0, 1}ℓr

pwU1,1 ← G1(U1, U2, pwU1
) ; pwU2,1 ← G1(U2, U1, pwU2

)

Θ← Θ⋆/pwU1,1 ; Φ← Φ⋆/pwU2,1

Θ← Θr ; Φ← Φr

pwU1,2 ← G2(U1, U2, RS , pwU1
, Θ⋆) ; pwU2,2 ← G2(U2, U1, RS , pwU2

, Φ⋆)

Φ
⋆
← Φ · pwU1,2 ; Θ

⋆
← Θ · pwU2,2

return ((U2, S, RS , Φ
⋆
), (U2, S, RS , Θ

⋆
))

Figure 6: Simulation of SendServer oracle query.

or in the transcript ((U1, U2, X
⋆), (U2, U1, Y

⋆), (S, U2, R, Y
⋆
), (S, U1, R, X

⋆
)). According to the

birthday paradox, the probability of collisions in the output of the Gi oracle is at most q2
Gi

/(2p),
for i = 1, 2. Similarly, the probability of collisions in the transcripts is at most (qstart+qexe)

2/(2p),
since either X⋆ or Y ⋆ was simulated and thus chosen uniformly at random. Consequently,

∣∣Pr[Succ2 ]− Pr[Succ1 ]
∣∣ ≤

q2
G1

+ q2
G2

+ (qexe + qstart)
2

2p
(3)

Experiment Exp3. In this experiment, we replace the Diffie-Hellman key K with a random
element in G for all sessions generated via an Execute oracle query. As the following lemma
shows, the difference between the current experiment and the previous one is negligible as long
as the DDH assumption holds.

Lemma A.1
∣∣Pr[Succ3 ]− Pr[Succ2 ]

∣∣ ≤ qexe ·Advddh
G (t) .

Proof: The proof of Lemma A.1 uses a sequence of hybrid experiments Hybrid3,j , where j is
an index between 0 and qexe. Let i represent the i-th query to a Execute oracle. We define
Experiment Hybrid3,j as follows. If i ≤ j, then we compute the Diffie-Hellman key K with a
random element in G for all sessions generated as we would in Experiment Exp2. Otherwise, we
compute the Diffie-Hellman key K as gk, where k is a random index in Zp. Note that Experiments
Exp2 and Exp3 are equivalent to Experiments Hybrid3,0 and Hybrid3,qexe

, respectively.

Let Pj be the probability of the event Succ in Experiment Hybrid3,j . Then,

Pr[Succ3 ] = Pqexe
and Pr[Succ2 ] = P0 ,

and

∣∣∣Pr[Succ3 ]− Pr[Succ2 ]
∣∣∣ =

∣∣∣
qexe∑

j=1

Pj − Pj−1

∣∣∣ =

qexe∑

j=1

∣∣Pj − Pj−1

∣∣ .

The lemma follows easily from the above by showing that
∣∣Pj − Pj−1

∣∣ is at most Advddh
G (t).

To do so, consider the following algorithm Dj against the Diffie-Hellman problem in G. Let X,
Y , and W be the input for Dj . Dj starts running A, answering all queries as in Experiment
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– On query Reveal(U i), proceed as follows:
if session key SK is defined for instance Ui

then return SK ,
else return ⊥.

– On query Execute(U i
1, U

j
2 , Sk), proceed as follows:

(U1, U2, Θ
⋆)← SendClient(U i

1, (U2, start))

(U2, U1, Φ
⋆)← SendClient(U j

2 , (U1, start))

((U2, S, RS , Φ
⋆
), (U1, S, RS , Θ

⋆
))←

SendServer(Sk, ((U1, U2, Θ
⋆), (U2, U1, Φ

⋆)))

SendClient(U i
1, (U2, S, RS , Φ

⋆
))

SendClient(U j
2 , (U1, S, RS , Θ

⋆
))

return ((U1, U2, Θ
⋆), (U2, U1, Φ

⋆), (U2, S, RS , Φ
⋆
), (U1, S, RS , Θ

⋆
))

– On query Test(U i), proceed as follows:
SK ← Reveal(U i)
if SK = ⊥ then return ⊥
else

b
R
← {0, 1}

if b = 0 then SK ′ ← SK else SK ′
R
← {0, 1}ℓk

return SK ′

Figure 7: Simulation of Execute, Reveal and Test queries.

Hybrid3,j−1, up until the j-th query to the Execute oracle. To answer to this query, Dj uses the
values X and Y that it received as input in place of Θ and Φ, respectively. It also sets the Diffie-
Hellman keys KU1

and KU2
relative to users U1 and U2 to W r. All remaining Execute oracle

queries are simulated as in Experiment Exp2. Finally, Dj outputs the same bit b outputted by
A as its guess.

In order to analyze the advantage of Dj , first note that if W = CDH(X, Y ), then the probability
of Dj outputting 1 equals the probability of A outputting 1 in Experiment Hybrid3,j−1. If W
is a random element in G, then the probability of Dj outputting 1 equals the probability of A
outputting 1 in Experiment Hybrid3,j . Hence,

Advddh
G (Dj) =

∣∣Pj − Pj−1

∣∣ ,

and, given that Dj runs in time at most t,

∣∣Pj − Pj−1

∣∣ , ≤ Advddh
G (t)

Experiment Exp4. In this experiment, we once again change the simulation of queries to the
Execute oracle. This time, we change the way we compute the values Θ and Φ so that a different
value of r is used to compute each of them. That is, we make Θ = Θr and Φ = Φr′ for random
and independent values r and r′ in Zp. As the following lemma shows, the difference between
the current experiment and the previous one is negligible as long as the DDH assumption holds.

Lemma A.2
∣∣Pr[Succ4 ]− Pr[Succ3 ]

∣∣ ≤ qexe ·Advddh
G (t) .
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Proof: The proof of Lemma A.2 is similar to that of Lemma A.1, so we only point out the
differences here. First, the main difference between the two is that we now rely on the fact the
adversary should not be able to distinguish the case where the same random index r is used
from the case where different random indices r and r′ are used. As shown in [14], this problem is
equivalent to the DDH problem. The other difference is that the DDH problem is now embedded
in the values of Φ and Θ, and not in the Diffie-Hellman key K as in the proof of Lemma A.1.

Experiment Exp5. In this experiment, we change for the last time the simulation of queries
to the SendClient and SendServer oracles whenever we have a passive attack executed either
via Execute queries so that the output of the SendServer oracle queries are independent of its
input and of the passwords of honest users. More specifically, we now compute Θ

⋆
and Φ

⋆
as

gθ
⋆

and gφ
⋆

, respectively, where θ
⋆

and φ
⋆

are random indices in Zp.
In order to understand the differences between the current experiment and the previous one,

please note that in the previous experiment, the values Θ
⋆

and Φ
⋆

were both independent from
the session key and uniformly distributed in G, as both values were computed using a different
random index r in Zp. Hence, no information on the password is leaked through these values.
As a result, the current experiment and the previous one are perfectly indistinguishable.

Pr[Succ5 ] = Pr[Succ4 ] . (4)

Experiment Exp6. In this experiment, we change the way we compute the session keys of
certain sessions, by using our private random oracle H ′ instead of H. The goal is to make
the session key of those sessions not only independent of the password but also independent
of the Diffie-Hellman secret K. This is achieved by changing the simulation of the SendClient

oracle so that the session key SK is computed via H ′(U1, U2, S, R, Θ⋆, Φ⋆, Θ
⋆
, Φ

⋆
). That is, the

Diffie-Hellman key K is no longer used.
The sessions in which we modify the simulation of a SendClient oracle are all of those for

which one of the following conditions is met.

• Both U1 and U2 are honest players and U2 is the intended partner of instance U i
1, and the

input query to the SendClient oracle for instance U i
1 does not match the output of any

SendServer oracle query. In other words, the input query was generated by the adversary;

• Both U1 and U2 are honest players, U2 is the intended partner of instance U i
1, and the input

query to SendClient oracle for instance U i
1 matches the output a SendServer oracle Sk, the

input to which contains one part matching the output of SendClient query (U i
1, (U2, start))

and the other part not matching the output of any SendClient query.

Please note that we can test the occurrence of any of these events by looking up the list of inputs
and outputs of each simulated oracle instance.

Let AskHn denote the event in which the adversary asks a query (U1, U2, S, R, X⋆, Y ⋆,
X

⋆
, Y

⋆
, KU1

) or (U1, U2, S, R, X⋆, Y ⋆, X
⋆
, Y

⋆
, KU2

) to the random oracle H for some execution
transcript ((U1, U2, X

⋆), (U2, U1, Y
⋆), (S, U2, R, Y

⋆
), (S, U1, R, X

⋆
)) when in Experiment Expn.

That is, AskHn denotes the event in Experiment Expn that either the oracle query (U1, U2, S,
R, X⋆, Y ⋆, X

⋆
, Y

⋆
, CDH(X⋆/pwU1,1, Y

⋆
/pwU1,2)) was asked to H and X⋆ was simulated or the

oracle query (U1, U2, S, R, X⋆, Y ⋆, X
⋆
, Y

⋆
, CDH(Y ⋆/pwU2,1, X

⋆
/pwU2,2)) was asked to H and Y ⋆

was simulated.
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There are some important observations to be made regarding the differences between the
current experiment and the previous one. First, experiments Exp5 and Exp6 can only be told
apart if event AskH5 or event AskH6 occurs since this is the only scenario in which the answers
to the hash query H may differ. Therefore,

Pr
[
Succ6 | AskH6

]
= Pr

[
Succ5 | AskH5

]
. (5)

Second, the probability of the events AskH5 and AskH6 are the same as the adversary has
equal chance in both experiments of asking a crucial query. Thus,

Pr[AskH5 ] = Pr[AskH6 ], (6)

which, combined with Equation 5, leads to

∣∣Pr[Succ6 ]− Pr[Succ5 ]
∣∣ ≤ Pr[AskH6 ]. (7)

Third, and lastly, the replacement of the random oracle H by the private random oracle H ′

in the current experiment together with the fact that the session key of passive attacks were
already made independent of the Diffie-Hellman key in previous experiments makes it impossible
for the adversary to tell apart the real session key from a random one in any valid Test query.
This is so because a random value is returned in all scenarios for which a valid Test query can
be made and because we removed transcripts collisions. Note that a transcript collision could
have leaked the session key to the adversary via a reveal query to the other session in which
the transcript appears. Therefore, the success probability of the adversary is exactly 1/2 in the
current experiment.

Pr[Succ6 ] =
1

2
(8)

As the adversary can no longer tell apart real session keys from random ones, we will not
consider the success probability of the adversary in the remaining experiments. Instead, we will
concentrate on the event AskH whose probability we still need to evaluate in order to determine
an upper bound on the adversary’s success probability in the real attack (Experiment Exp0).

Experiment Exp7. The goal of this experiment is to bound the advantage of the adversary
in those cases where the latter is performing an active attack against the server. Such attacks
occur when at least one or both parts of the input of a SendServer oracle are generated by
the adversary, thus not matching the output of a previous SendClient oracle query. In this
scenario, an active adversary may try to use the server to learn information about the password
of an honest user and later use it to impersonate that user. To achieve our goal, we change the
simulation of the SendServer oracle so that any output value corresponding to an honest user
is computed using a random value and not the input provided by the SendServer oracle input.

Let (Sk, (U1, U2, Θ
⋆), (U2, U1, Φ

⋆)) be a SendServer oracle query to server instance Sk. If
either (U1, U2, Θ

⋆) or (U2, U1, Φ
⋆) or both match the output of previous SendClient queries,

then we change the simulation of the SendServer oracle query as follows. If U1 is an honest user,
then we compute Φ

⋆
as gφ · pwU1,2, where φ is a random index in Zp. Otherwise, we compute

Φ
⋆

as we would in Experiment Exp6. Likewise, If U2 is an honest user, then we compute Θ
⋆

as gθ · pwU2,2, where θ is a random index in Zp. Otherwise, we compute Θ
⋆

as we would in
Experiment Exp6.

As the following lemma shows, the adversary cannot do much better than simply guessing
the password.
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Lemma A.3
∣∣AskH7 −AskH6

∣∣ ≤ qserver ·max{ 2 ·Adv
pcddh1
G,|D| (qstart · t) , Adv

pcddh2
G,|D| (t) } .

Proof: The proof of this lemma is based on a sequence of qserver + 1 hybrid experiments
Hybrid7,j , where j is an index between 0 and qserver. Let i represent the i-th query to a
SendServer oracle for which both parts of the input do not match the output of any SendClient

oracle query, and let (Sk, ((U1, U2, Θ
⋆), (U2, U1, Φ

⋆))) be this query. We define Experiment
Hybrid7,j as follows. If i ≤ j, then we check whether U1 and U2 are honest users. If U1

is an honest user, then we compute Φ
⋆

as gφ · pwU1,2, where φ is a random index in Zp. Other-

wise, we compute Φ
⋆

as we would in Experiment Exp6. If U2 is an honest user, then we compute

Θ
⋆

as gθ · pwU1,2, where θ is a random index in Zp. Otherwise, we compute Θ
⋆

as we would in
Experiment Exp6.

From the definition of the hybrid experiments, one can see that no changes are made to the
simulation when j = 0 and, thus, experiments Hybrid7,0 and Exp6 are equivalent. Moreover,
since there are at most qserver such queries, Experiment Hybrid7,qserver

corresponds to the case
where we modify the simulation of all SendServer oracle queries with inputs coming from the ad-
versary and, thus, experiments Hybrid7,j and Exp7 are also equivalent. Let us define AskH7,j

to be the event AskH in Experiment Hybrid7,j . Then,

AskH6 = AskH7,0 and AskH6 = AskH7,qserver
, (9)

and
∣∣Pr[AskH7 ]− Pr[AskH6 ]

∣∣ ≤
qserver∑

j=1

∣∣Pr[AskH7,j ]− Pr[AskH7,j−1 ]
∣∣ . (10)

We now claim that

∣∣Pr[AskH7,j ]− Pr[AskH7,j−1 ]
∣∣ ≤ max{ 2 ·Adv

pcddh1
G,|D| (qstart · t) , Adv

pcddh2
G,|D| (t) } . (11)

Lemma A.3 follows easily from above claim by substituting Equation 11 in Equation 10.

Let us now prove the claim in Equation 11. Let D be a distinguisher for the event AskH in both
experiments Hybrid7,j−1 and Hybrid7,j . Using D, we will build two distinguishers M1 and M2

for the PCDDH1 and PCDDH2 problems, respectively. M1 will be used whenever only one part
of the input for the j-th SendServer oracle query comes from the adversary (Case1). M2 will
be used whenever both parts of the input for the j-th SendServer oracle query comes from the
adversary (Case2). There is no need for us to guess which case we are in as this information is
available from the simulation. Case1 and Case2 are mutually exclusive.

We now define our distinguisher M1 for the PCDDH1 problem. Let X be the input to M1’s
find stage. M1 starts its find stage by choosing a random index k between 1 and qstart. Next,
M1 starts running D, the distinguisher for the event AskH in experiments Exp7 and Exp6.
M1 simulates all oracles as it normally would in Experiment Exp6, with the exception of the
SendServer oracle and SendClient oracles. The simulation of the SendClient oracle is modified
as follows. All queries to this oracle are answered as in Experiment Exp6, except for the k-th
query of the form (U1, U2, start). To answer this query, we use the input X that we received
and output (U1, U2, X). The simulation of the SendServer oracle is as follows. Let i represent
the i-th query to the SendServer oracle and let (Sk, ((U1, U2, Θ

⋆), (U2, U1, Φ
⋆))) be this query.

If i < j, then we check whether U1 and U2 are honest users. If U1 is an honest user, then we
compute Φ

⋆
as gφ · pwU1,2, where φ is a random index in Zp. Otherwise, we compute Φ

⋆
as we
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would in Experiment Exp6. If U2 is an honest user, then we compute Θ
⋆

as gθ · pwU1,2, where θ

is a random index in Zp. Otherwise, we compute Θ
⋆

as we would in Experiment Exp6. If i = j,
then let us assume wlog that (U1, U2, Θ

⋆) is the input that comes from the simulated oracle and
that (U2, U1, Φ

⋆) is the input that comes from the adversary. At this point, M1 should check
whether the tuple (U1, U2, Θ

⋆) matches the output of the k-th start query. If there is no match,
then M1 should restart D using fresh coins up to qstart times. If the tuple (U1, U2, Θ

⋆) matches
the output of the k-th start query, then M1 returns (s, Y ) as the output of its find stage, where
s contains all the necessary information that M1 may need to continue running the simulation
of D in the guess stage.

Let (s, X ′, Y ′, K, k) be the input to the guess stage of M1. We then choose a random value for
R in {0, 1}ℓr and return ((R, S, U2, Y

′), (R, S, U1, X
′)) as the the answer to the j-th SendServer

oracle query. The rest of the simulation of all oracles is done as in Experiment Exp6. The only
difference is that, from now on, we define K as the Diffie-Hellman key associated with SendClient

oracle. Hence, we can check for the AskH event associated with this session using the Diffie-
Hellman key K and the other values that we used in the simulation of oracle U1. If our guess for
the k-th start query is correct, then one can see that the only difference between experiments
Hybrid7,j−1 and Hybrid7,j stems from the hidden bit associated with the PCDDH1 problem.
Hence, we can use the event AskH to guess the hidden bit used in the computation of X ′ and
K given to us at the input of the guess stage. If AskH occurs, then we output 0 else 1. Since
we run this experiment up to qstart times, the probability that one of our guess for the index k is
right is at least 1−1/e ≥ 1/2, where e is the base of the natural logarithm. Hence, given that we
are in the correct scenario, we know that probability of success of M1 is at least the difference
between the probability of the event AskH in experiments Hybrid7,j−1 and Hybrid7,j . Using
the fact that the running time of M1 is at most qstart · t, we have

∣∣Pr [ AskH7,j | Case1 ]− Pr [ AskH7,j−1 | Case1 ]
∣∣ ≤ 2 ·Adv

pcddh1
G,|D| (M1)

≤ 2 ·Adv
pcddh1
G,|D| (qstart · t) .

We now define the distinguisher M2 for the PCDDH2 problem. M2 starts its find stage by
running D, the distinguisher for the event AskH in experiments Exp7 and Exp6. M2 simulates
all oracles as it normally would in experiment Exp6, with the exception of the SendServer

oracle. The simulation of the SendServer oracle is as follows. Let i represent the i-th query to
the SendServer oracle and let (Sk, ((U1, U2, Θ

⋆), (U2, U1, Φ
⋆))) be this query. We only consider

cases where at least one of the users U1 or U2 is honest, since the bound in the claim follows
trivially otherwise (experiments Hybrid7,j and Hybrid7,j are perfectly indistinguishable when
both U1 and U2 are dishonest in the j-th query). If i < j, then we check whether U1 and U2

are honest users. If U1 is an honest user, then we compute Φ
⋆

as gφ · pwU1,2, where φ is a

random index in Zp. Otherwise, we compute Φ
⋆

as we would in Experiment Exp6. If U2 is an

honest user, then we compute Θ
⋆

as gθ · pwU1,2, where θ is a random index in Zp. Otherwise,

we compute Θ
⋆

as we would in Experiment Exp6. If i = j, then let us assume wlog that U1

represents a honest player and we let the hidden k used in the definition of the PCDDH2 problem
be associated with the password of U1. Using the password for the user U2 and the input Φ⋆,
we then choose a random value for R in {0, 1}ℓr and compute the masks pwU2,1 and pwU2,2 and
the value Φ. Next, we return (s,Θ⋆, Φ) as the output of our find stage, where s contains all the
necessary information that we may need to continue running the simulation of D in the guess

stage.

Let (s, X ′, Y ′, k) be the input to the guess stage of M2. We set Θ
⋆

= X ′ · pwU2,2 and Φ
⋆

= Y ′
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and return ((R, S, U2, Φ
⋆
), (R, S, U1, Θ

⋆
)) as the the answer to the j-th SendServer oracle query.

We also query the oracle P on input k and use U = P(k) as the mask pwU1,1 for user U1 when
computing answers to future queries to SendClient and SendServer oracles with respect to U1.
pwU1,1 is also used to check for event AskH with respect to oracles associated with user U1.
The rest of the simulation proceeds as in Experiment Exp6. As one can see, the only difference
between experiments Hybrid7,j−1 and Hybrid7,j stems from the hidden bit associated with
the PCDDH2 problem. Hence, we can use the event AskH to guess the hidden bit used in
the computation of X ′ and Y ′ given to us at the input of the guess stage. If AskH occurs,
then we output 0 else 1. Given that we are in the correct scenario, we know that probability of
success of M2 is at least the difference between the probability of the event AskH in experiments
Hybrid7,j−1 and Hybrid7,j . Using the fact that the running time of M2 is at most t, we have

∣∣Pr [ AskH7,j | Case2 ]−Pr [ AskH7,j−1 | Case2 ]
∣∣ ≤ Adv

pcddh2
G,|D| (M2) ≤ Adv

pcddh2
G,|D| (t) . (12)

Since Case1 and Case2 are mutually exclusive,

Pr[Case1 ] + Pr[Case2 ] = 1 ,

and

∣∣Pr[AskH7,j ]− Pr[AskH7,j−1 ]
∣∣

≤
∣∣Pr [ AskH7,j | Case1 ] · Pr[Case1 ] + Pr [ AskH7,j | Case2 ] · Pr[Case2 ]−

Pr [ AskH7,j−1 | Case1 ] · Pr[Case1 ]− Pr [ AskH7,j−1 | Case2 ] · Pr[Case2 ]
∣∣

≤ δAdv
pcddh1
G,|D| (qstart · t) · Pr[Case1 ] + Adv

pcddh2
G,|D| (t) · Pr[Case2 ]

≤ max{ δAdv
pcddh1
G,|D| (qstart · t) , Adv

pcddh2
G,|D| (t) } · Pr[Case1 ] +

max{ δAdv
pcddh1
G,|D| (qstart · t) , Adv

pcddh2
G,|D| (t) } · Pr[Case2 ]

≤ max{ δAdv
pcddh1
G,|D| (qstart · t) , Adv

pcddh2
G,|D| (t) } .

Remark A.4 This is the only part of the proof that does not work in the concurrent model.
The reason for that is that in order to be able convert an adversary against our protocol into an
adversary against the PCDDH1 problem, we must be able to detect the event AskH. However,
when multiple concurrent sessions are allowed, we may not be able to detect the event AskH

associated with each of the concurrent sessions. More specifically, consider the values k and
U = P(k) used in the experiment defining the PCDDH1 problem. In our proof, we associate
these values to pwU1

and pwU1,1, where U1 is the user whose password the adversary is trying
to obtain. Hence, in order to be able to detect the AskH event associated with sessions of user
U1, we must be able to compute CDH(X⋆/pwU1,1, Y

⋆
). In the case where we have only one

session associated with U1, we can do so using the key K given to us in the input of the guess

stage. However, when multiple concurrent sessions are allowed, we are only able to do so for
sessions which are started after we learn the value U = pwU1,1 (by making X⋆ = gx · pwU1,1).
Unfortunately, this is not possible for sessions that started prior to the moment in which we
learn k and U , since for those sessions, we need to be able to compute CDH(X⋆/pwU1,1, Y

⋆
)

only knowing the discrete logarithm of X⋆.
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Experiment Exp8. In this experiment, we modify the simulation of the SendServer oracle in
cases where only one part of its input comes from a previous simulated SendClient oracle so that
we no longer use the password when computing the response to be sent to the simulated oracle.
in fact, we want to make this answer independent of the input value provided in the query.

Let (Sk, (U1, U2, Θ
⋆), (U2, U1, Φ

⋆)) be a SendServer oracle query to server instance Sk so that
either (U1, U2, Θ

⋆) or (U2, U1, Φ
⋆) matches the output of previous SendClient queries. Let us

assume wlog that (U1, U2, Θ
⋆) is the part of the input that came from a simulated oracle for U1

(the other case is equivalent) and that the latter is an honest user. Then, we compute Φ
⋆

as gφ
⋆

,
where φ

⋆
is a random index in Zp. In order to maintain the consistency of the simulation, we also

change the computation of the Diffie-Hellman key KU1
, setting it to Xφ

⋆

, where X = pwU2,1.

No change is made to the computation of Θ
⋆
.

We claim that the current experiment and the previous one are indistinguishable. To see
why this is the case, first note that, in the previous experiment, the output being sent to the
simulated oracle was already computed using a different random value r than the one used in
the part of the output. This is still the case in this experiment. Second, also note that the
relationship between the output being sent to the simulated oracle and its Diffie-Hellman key
used to detect the AskH event is still preserved in the current experiment. Finally, no change
was made to the part of the output that do not correspond to an oracle. Therefore,

Pr[AskH8 ] = Pr[AskH7 ]. (13)

Experiment Exp9. In this experiment, we modify the simulation of the SendServer oracle
once again in cases where only one part of its input comes from a previous simulated SendClient

oracle so that the part of the output being sent to the non-simulated but honest party no longer
uses the password in its computation.

Let (Sk, (U1, U2, Θ
⋆), (U2, U1, Φ

⋆)) be a SendServer oracle query to server instance Sk so that
either (U1, U2, Θ

⋆) or (U2, U1, Φ
⋆) matches the output of previous SendClient queries. Let us

assume wlog that (U1, U2, Θ
⋆) is the part of the input that came from a simulated oracle for U1

(the other case is equivalent) and that both U1 and U2 are honest players. Then, we compute

Θ
⋆

as gθ
⋆

, where φ
⋆

is a random index in Zp.
We claim that the current experiment and the previous one are indistinguishable. To see why

this is the case, just notice that, in the previous experiment, this output was already uniformly
distributed in G and already independent from the output being sent to the simulated oracle
and from the Diffie-Hellman keys, and hence, independent of the password. It follows that

Pr[AskH9 ] = Pr[AskH8 ] . (14)

Experiment Exp10. In this experiment, we change the simulation of SendClient oracles so
that we no longer use the password when answering to a (U i

1, (U2, start)) query, where U1 and
U2 are honest users. Such change does not change any of the probabilities associated with the
previous experiments since the passwords associated with these users were no longer being used
in the simulation of the SendServer oracle or in the computation of the session key. Thus, we
have

Pr[AskH10 ] = Pr[AskH9 ] . (15)

Moreover, since the passwords of honest users are no longer used anywhere else, we can
postpone choosing them until the very end of the simulation and only then use them to evaluate
the probability of the event AskH10. This is given by the following lemma.
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Lemma A.5 Pr[AskH10 ] ≤ qstart/|D|+ q2
G1
· q2

G2
· q2

H ·Advcdh
G (t + 3τe) +

qG1
+qG2

p + 2 qH

p .

Proof: Please recall that AskHn denotes the event that, for some transcript ((U1, U2, X
⋆),

(U2, U1, Y
⋆), (S, U2, R, Y

⋆
), (S, U1, R, X

⋆
)) in Experiment Expn, either one of the crucial oracle

queries (U1, U2, S, R, X⋆, Y ⋆, X
⋆
, Y

⋆
, CDH(X⋆/pwU1,1, Y

⋆
/pwU1,2)) or (U1, U2, S, R, X⋆, Y ⋆, X

⋆
,

Y
⋆
, CDH(Y ⋆/ pwU2,1, X

⋆
/pwU2,2)) lies in the list ΛH in one of following two cases:

AskH110: U1 and U2 are honest players, U2 is the intended partner of instance U i
1, and the

input query to the SendClient oracle for instance U i
1 matches the output a SendServer

oracle Sk, whose input only partially comes from a simulated oracle.

AskH210: U1 and U2 are honest players, U2 is the intended partner of instance U i
1, and the input

query (S, U2, R, X) to the SendClient oracle with respect to instance U i
1 was generated by

the adversary.

Before proceeding with the probability analyses of the events AskH110 and AskH210, let us
make two observations.

First, notice that we can disregard those cases for which the queries (U1, U2, pwU1
, R, X⋆) and

(U2, U1, pwU2
, R, Y

⋆
) were not asked to the G2 oracle since the probability of the event AskH

is negligible in this case as stated by the following claim.

Claim A.6 Let (X⋆, Y
⋆
, X

⋆
, Y ⋆) ∈ G4, R ∈ {0, 1}ℓr , S, U1, and U2 be a set of values involved

in the communication either with an instance i of a participant U1 in its role as an initiator or
an instance j of a participant U1 in its role as a responder, and let pwU1

and pwU2
represent

the passwords associated with U1 and U2. Let AskG2 denote the event in which either the
query (U1, U2, pwU1,2, R, X⋆) was asked to G2 when communicating with U i

1 or the query (U2,

U1, pwU2,2, R, Y ⋆) was asked to G2 when communicating with U j
2 . Then,

Pr[AskH10 ∧AskG2 ] ≤ 2
qH

p
,

Proof: The proof is straight-forward. Let us consider the case where the communication is with
instance U i

1 (CaseL). The other case is equivalent (CaseR). Let KU1
= CDH(X⋆/pwU1,1, Y

⋆
/

pwU1,2) be the key associated with values pwU1,1 = G1(U1, U2, pwU1
) and pwU1,2 = G2(U1, U2,

pwU1
, R, X⋆). Since the query (U1, U2, pwU1

, R, X⋆) has not been asked to the G2 oracle, both
pwU1,2 and pwU2,2 can take any value in G. Thus, the possible values for KU1

are also uniformly
distributed in G and the probability that a H query contains the value KU1

in it is exactly 1/p.
Therefore,

Pr[AskH10 ∧AskG2 ∧CaseL ] ≤ Pr
[
AskH10 ∧CaseL | AskG2

]

≤

qH∑

i=1

Pr
[
K ′i = KU1

| AskG2
]

≤

qH∑

i=1

1

p
=

qH

p
.

Similarly, we have

Pr[AskH10 ∧AskG2 ∧CaseR ] ≤
qH

p
.
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Since AskH10 is only defined for one of these cases, it follows that

Pr[AskH10 ∧AskG2 ] ≤ 2
qH

p
.

Second, as the following two claims show, we do not need to consider cases in which there are
two pairs of elements (pw1,1, pw1,2) and (pw2,1, pw2,2) outputted by the G1 and G2 oracles such
that:

• the queries (U1, U2, S, R, X⋆, Y ⋆, X
⋆
, Y

⋆
, Kj = CDH(X⋆/pwj,1, Y

⋆
/pwj,2)), for j = 1, 2,

were asked of H and (X⋆, Y
⋆
, X

⋆
, Y ⋆) ∈ G4, R ∈ {0, 1}ℓr , S, U1, and U2 be a set of values

involved in the communication with an instance i of a participant U1 in its role as an
initiator; or

• the queries (U1, U2, S, R, X⋆, Y ⋆, X
⋆
, Y

⋆
, Kj = CDH(X⋆/pwj,1, Y

⋆
/pwj,2)), for j = 1, 2,

were asked of H and (X⋆, Y
⋆
, X

⋆
, Y ⋆) ∈ G4, R ∈ {0, 1}ℓr , S, U1, and U2 be a set of

values involved in the communication with an instance i of a participant U2 in its role as
a responder.

Claim A.7 Let (X⋆, Y
⋆
, X

⋆
, Y ⋆) ∈ G4, R ∈ {0, 1}ℓr , S, U1, and U2 be a set of values involved

in the communication with an instance i of a participant U1 in its role as an initiator, where
both U1 and U2 are honest and the latter is the intended partner. Let Coll denote the event in
which there exist two different pairs of elements (pw1,1, pw1,2) and (pw2,1, pw2,2) outputted by

the G1 and G2 oracles such that the queries (U1, U2, S, R, X⋆, Y ⋆, X
⋆
, Y

⋆
, Kj = CDH(X⋆/pwj,1,

Y
⋆
/pwj,2)), for j = 1, 2, were asked of H. Then,

Pr[Coll ] ≤ q2
G1
· q2

G2
· q2

G ·Advcdh
G (t + 3τe) +

qG1
+ qG2

p
,

qG1
, qG2

, and qH are, respectively, the number of queries asked to the G1, G2, and H oracles.

Proof: The proof parallels the proof of Lemma 5 in [10]. Our goal is to use the event Coll in
the simulation of A to help us solve the CDH problem in G. Let Q1 and Q2 be the inputs to
CDH problem. Let us assume that Q1 and Q2 are different from 1 (this case is trivial).

We start running A simulating its oracles as in the current experiment except for the G1 and
G2 oracles. These last two oracles are simulated as follows. In order to answer to a query
(U1, U2, pw) to the G1 oracle, we first pick an element k1 ∈ Z⋆

p uniformly at random and set pw1,

the output of G1, to Qk1

1 . Similarly, a G2 oracle query (U1, U2, RS , pw , X⋆) is answered by first

picking an element k2 ∈ Z⋆
p uniformly at random and setting pw2, the output of G2, to Qki

2 .

One can see that such change in the simulation is indistinguishable from Experiment Exp9,
except when one of the outputs of the G1 or G2 oracles in the original experiment is 1. This
event occurs with probability at most

qG1
+qG2

p . Everything else remains the same.

Next, we notice that (X⋆, Y
⋆
, X

⋆
, Y ⋆) being involved in the communication with an instance i

of a participant U1 in its role as an initiator implies that we simulated that instance. Hence, we
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know x⋆ such that X⋆ = gx⋆
. As (pw1,1, pw1,2) and (pw2,1, pw2,2) were outputted by the G1 and

G2 oracles, we also know k1,1, k1,2, k2,1, k2,2 in Zp such that pwj,1 = Q
kj,1

1 and pwj,2 = Q
kj,1

2 for
j = 1, 2. Then, in case K1 and K2 lies in ΛH , we have

Kj = CDH(X⋆/pwj,1, Y
⋆
/pwj,2)

= CDH(X⋆ ·Q
kj,1

1 , Y
⋆
·Q

kj,2

2 )

= CDH(X⋆, Y
⋆
) · CDH(X⋆, Q

kj,2

2 ) · CDH(Q
kj,1

1 , Y
⋆
) · CDH(Q

kj,1

1 , Q
kj,2

2 )

= CDH(X⋆, Y
⋆
) · CDH(X⋆, Q2)

kj,2 · CDH(Q1, Y
⋆
)kj,1 · CDH(Q1, Q2)

kj,1kj,2

= Y
⋆x⋆

·Q
x⋆kj,2

2 · CDH(Q1, Y
⋆
)kj,1 · CDH(Q1, Q2)

kj,1kj,2 .

Let Zj = Kj · Y
⋆−x⋆

·Q
−x⋆kj,2

2 . It follows that

Z
k2,1

1 /Z
k1,1

2 = CDH(Q1, Q2)
k1,1k2,1(k1,2−k2,2),

and

CDH(Q1, Q2) =
(
Z

k2,1

1 /Z
k1,1

2

)u
,

where u is the inverse of k1,1k2,1(k1,2 − k2,2) in Zp, guaranteed to exist because pw2,2 6= pw1,2.
The claim follows easily by guessing the two H queries, the two G1 queries, and the two G2

queries.

Claim A.8 Let (X⋆, Y
⋆
, X

⋆
, Y ⋆) ∈ G4, R ∈ {0, 1}ℓr , S, U1, and U2 be a set of values involved

in the communication with an instance i of a participant U2 in its role as a responder, where
both U1 and U2 are honest players and U1 is the intended partner of U2. Let Coll denote
the event in which there exist two different pairs of elements (pw1,1, pw1,2) and (pw2,1, pw2,2)

outputted by the G1 and G2 oracles such that the queries (U1, U2, S, R, X⋆, Y ⋆, X
⋆
, Y

⋆
, Kj =

CDH(Y ⋆/pwj,1, X
⋆
/pwj,2)), for j = 1, 2, were asked of H. Then,

Pr[Coll ] ≤ q2
G1
· q2

G2
· q2

G ·Advcdh
G (t + 3τe) +

qG1
+ qG2

p
,

qG1
, qG2

, and qH are, respectively, the number of queries asked to the G1, G2, and H oracles.

Proof: The proof of this claim is similar to that of Claim A.7 and, hence, skipped here.

Let us now consider the event AskH110, in which both U1 and U2 are honest players, U2 is the
intended partner of instance U i

1, and the input query to the SendClient oracle for instance U i
1

matches the output a SendServer oracle Sk, whose input only partially comes from a simulated
oracle. This corresponds to the case where on one side of the SendServer oracle we have an
oracle instance and on the other side we have the adversary, playing the role of a honest user.

Let X⋆, Y
⋆
, X

⋆
, Y ⋆, R, S, U1, and U2 be a set of values involved in the communication with

an instance U i
1 in its role as an initiator, where U2 is the intended partner (the symmetric case,

in which the communication is with the responder, is similar). Note that since online guessing
attacks are always possible in this scenario, there is a non-negligible probability that event
AskH110 occurs.
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If the event Coll, defined in Claim A.7 and in Claim A.8, does not happen, then for each (X⋆,
Y

⋆
, X

⋆
, Y ⋆, R, S, U1, U2 set of values involved in the communication with an instance U i

1 in its
role as an initiator, where U2 is the honest intended partner, there is at most one pair of values
(pw1, pw2) such that Kj = CDH(X⋆/pw1, Y

⋆
/pw2) lies in the list ΛH . Since collisions in the

output of G1 and G2 oracles were removed, the latter implies that there is one unique pw such
that pw1 = G1(U1, U2, pw) and pw2 = G2(U1, U2, R, pw , X⋆). Since we only choose pw at the
very end of the simulation, the probability that the latter collides with the ones chosen by the
adversary is at most qstart/|D|. In other words,

Pr
[
AskH110 ∧AskG2 | Coll

]
≤ qstart/|D| ,

and

Pr[AskH110 ∧AskG2 ] ≤ Pr
[
AskH110 ∧AskG2 | Coll

]
· Pr[Coll ] +

Pr [ AskH110 ∧AskG2 | Coll ] · Pr[Coll ]

≤ Pr
[
AskH110 ∧AskG2 | Coll

]
+ Pr[Coll ]

≤ qstart/|D|+ Pr[Coll ] .

Next, let us consider the event AskH210, in which U1 and U2 are honest players, U2 is the
intended partner of instance U i

1, and the input query (S, U2, R, X) to the SendClient oracle with
respect to instance U i

1 in its role as an initiator (the responder case is similar) was generated by
the adversary.

Like in the previous case, if the event Coll does not happen, then for each (X⋆, Y
⋆
, X

⋆
, Y ⋆,

R, S, U1, U2 set of values involved in the communication with an instance U i
1 in its role as an

initiator, where U2 is the honest intended partner, there is at most one pair of values (pw1, pw2)
such that Kj = CDH(X⋆/pw1, Y

⋆
/pw2) lies in the list ΛH . Using a similar argument, we have

Pr
[
AskH210 ∧AskG2 | Coll

]
≤ qstart/|D| ,

and

Pr[AskH210 ∧AskG2 ] ≤ qstart/|D|+ Pr[Coll ] .

Finally, we can compute the probability of the event AskH10 as follows.

Pr[AskH10 ] ≤ Pr[AskH10 ∧AskG2 ] · Pr[AskG2 ] +

Pr[AskH10 ∧AskG2 ] · Pr[AskG2 ]

≤ Pr[AskH10 ∧AskG2 ] + Pr[AskH10 ∧AskG2 ]

≤ Pr[AskH110 ∧AskG2 ] · Pr[Case1 ] +

Pr[AskH210 ∧AskG2 ] · Pr[Case2 ] + Pr[AskH10 ∧AskG2 ]

≤ (qstart/|D|+ Pr[Coll ]) · Pr[Case1 ] +

(qstart/|D|+ Pr[Coll ]) · Pr[Case2 ] + Pr[AskH10 ∧AskG2 ]

≤ qstart/|D|+ Pr[Coll ] + Pr[AskH10 ∧AskG2 ]

≤ qstart/|D|+ q2
G1
· q2

G2
· q2

H ·Advcdh
G (t + 3τe) +

qG1
+ qG2

p
+ 2

qH

p
.
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B Proof of lemmas

B.1 The splitting lemma

For simplicity, we reproduce here the splitting lemma presented in [23].

Lemma B.1 [Splitting Lemma] Let A ⊂ X × Y such that Pr[(x, y) ∈ A] ≥ ǫ. For any α < ǫ,
define

B =

{
(x, y) ∈ X × Y Pr

y′∈Y
[(x, y′) ∈ A] ≥ ǫ− α

}
and B̄ = (X × Y )\B,

then the following statements hold:

(i) Pr[B] ≥ α

(ii) ∀(x, y) ∈ B,Pry′∈Y [(x, y′) ∈ A] ≥ ǫ− α.

Proof: In order to prove statement (i), we argue by contradiction. Assume that Pr[B] < α.
Then

ǫ ≤ Pr[B] · Pr[A |B] + Pr[B̄] · Pr[A | B̄] < α · 1 + 1 · (ǫ− α) = ǫ.

This implies a contradiction, hence the result. Statement (ii) is a straightforward consequence
of the definition.

B.2 Proof of Lemma 3.5

Let R represent the set of all random functions from {1, . . . , n} to G and let R[(k0, U0), . . . ,
(ks, Us)] denote the subset of R such that ki is mapped to Ui, for i = 0, . . . , s. Let A be an
adversary against the password-based chosen-basis decisional Diffie-Hellman 1 assumption with
an advantage greater than 2/n + ε. By the definition of Adv

pcddh1
G,n (A,P, X, k, r0, r1), we have

Pr[Exp
pcddh1
G,n,b (A,P, X, k, r0, r1) = b ] ≥ 1/2 + 1/n + ε/2 ,

where the probability space is on Ω0 = {(ω1, ω2,P, X, k, b, r0, r1)} (ω1 and ω2 are the random
tapes of A in the first step and second steps, respectively).

By applying the splitting lemma on the product probability space Ω′1 × Ω1, where Ω′1 =
{(ω1,P, X, r0, r1)} and Ω1 = {(ω2, k, b)}, one can show that there exists a subset S1 of Ω′1 with
probability measure greater than ε/4 such that, for any (ω1,P, X, r0, r1) ∈ S1,

PrΩ1

[
Exp

pcddh1
G,b (A,P, X, k, r0, r1 ; ω1) = b

]
≥ 1/2 + 1/n + ε/4 ,

where the probability space is now on Ω1 = {(ω2, k, b)}. In this game, since (ω1,P, X) is fixed,
so is the output (Y, s) at the end of the first stage. Furthermore, since r0 is also fixed, then so
is Y ′.

If we apply the splitting lemma once again on the product probability space Ω′2×Ω2, where
Ω′2 = {k} and Ω2 = {(ω2, b)}, one can show that there exists a subset S2(ω1,P, X, r0, r1) of Ω′2
with probability measure greater than 1/n + ε/8 > 1/n such that, for any k in S2(ω1,P, X, r0,
r1) (if (ω1,P, X, r0, r1) is in S1),

PrΩ2

[
Exp

pcddh1
G,b (A,P, X, k, r0, r1 ; ω1) = b

]
≥ 1/2 + ε/8 ,

30



where the probability space is now on Ω2 = {(ω2, b)}.

Here, one sees that S2(ω1,P, X, r0, r1) is a subset of {1, . . . , n} of measure strictly greater
than 1/n. Hence, it is at least 2/n. Therefore, there exist two values k0 and k1, and thus U0

and U1, for which this adversary can decide b with advantage greater than ε/4 in the following
experiment, for i = 0, 1:

Experiment Exp
pcddh1
G,b (A,P, X, ki, r0, r1 ; ω1)

(Y, s)← AP(find, X ; ω1)
Ui ← P(ki)
X ← (X/Ui)

rb ; K ← CDH(X/Ui, Y )rb

Y ′ ← Y r0

d← A(guess, s, X, K, Y ′, ki)
return d

In other words, if one randomly choose k0, k1
R
← {1, . . . , n}, X

R
← G, r0, r1

R
← Zp, Ui

R
← G,

for i = 0, 1 and P
R
← R[(k0, U0), (k1, U1)], as well as a tape ω1, with probability greater than

ε/4n2, the above adversary can decide b with advantage greater than ε/4, for both i = 0 and
i = 1.

Let us now use the splitting lemma one last time on the product probability space {(ω1, k0,
k1, r0, r1,P

′)} × {(X, U0, U1)}, where P ′ is randomly drawn from R[(k0, 1), (k1, g)], and when
U0 and U1 are defined, we set P to be equal to P ′ except that P(ki) is set to Ui. One can thus
show that there exists a subset S of {(ω1, k0, k1, r0, r1,P

′)} with probability measure greater
than ε/8n2 such that, for any (ω1, k0, k1, r0, r1,P

′) in S, with probability greater than ε/8n2

over (X, U0, U1), the above adversary can decide b with advantage greater than ε/4, for both
i = 0 and i = 1.

We now define an adversary against the CDDH1 problem as follows, for randomly chosen
(ω1, k0, k1, r0, r1,P

′), that we now assume to be in S:

Algorithm B(find, U, V, X)
P ← P ′ ; P(k0)← U ; P(k1)← V
(Y, s)← AP(find, X)
s̃← (U, V, s)
return (Y, s̃)

Algorithm B(guess, s̃, X0, K0, X1, K1, Y
′)

parse s̃ as (U, V, s)
d0 ← A

P(guess, s, X0, Y
′, K0)

d1 ← A
P(guess, s, X1, Y

′, K1)
return d = d0 ⊕ d1

If one denotes by εi,b the probability that di = 1 when bi = b in the game with experiment

Exp
pcddh1
G,n,b (A,P, X, ki, r0, r1 ; ω1), since the two games are independent (with independent bits
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b), one gets

Pr[d = 1|b = 1]

= Pr[d0 = 1 ∧ d1 = 0|(b0 = 1 ∧ b1 = 0) ∨ (b0 = 0 ∧ b1 = 1)]

+ Pr[d0 = 0 ∧ d1 = 1|(b0 = 1 ∧ b1 = 0) ∨ (b0 = 0 ∧ b1 = 1)]

= 2× Pr[d0 = 1 ∧ d1 = 0 ∧ ((b0 = 1 ∧ b1 = 0) ∨ (b0 = 0 ∧ b1 = 1))]

+2× Pr[d0 = 0 ∧ d1 = 1 ∧ ((b0 = 1 ∧ b1 = 0) ∨ (b0 = 0 ∧ b1 = 1))]

= 2 Pr[d0 = 1 ∧ d1 = 0 ∧ b0 = 1 ∧ b1 = 0] + 2 Pr[d0 = 1 ∧ d1 = 0 ∧ b0 = 0 ∧ b1 = 1]

+2 Pr[d0 = 0 ∧ d1 = 1 ∧ b0 = 1 ∧ b1 = 0] + 2 Pr[d0 = 0 ∧ d1 = 1 ∧ b0 = 0 ∧ b1 = 1]

= 2 Pr[d0 = 1 ∧ b0 = 1] Pr[d1 = 0 ∧ b1 = 0] + 2 Pr[d0 = 1 ∧ b0 = 0] Pr[d1 = 0 ∧ b1 = 1]

+2 Pr[d0 = 0 ∧ b0 = 1] Pr[d1 = 1 ∧ b1 = 0] + 2 Pr[d0 = 0 ∧ b0 = 0] Pr[d1 = 1 ∧ b1 = 1]

= Pr[d0 = 1|b0 = 1] Pr[d1 = 0|b1 = 0] + Pr[d0 = 1|b0 = 0] Pr[d1 = 0|b1 = 1]

+ Pr[d0 = 0|b0 = 1] Pr[d1 = 1|b1 = 0] + Pr[d0 = 0|b0 = 0] Pr[d1 = 1|b1 = 1]

= ε0,1(1− ε1,0) + ε0,0(1− ε1,1) + (1− ε0,1)ε1,0 + (1− ε0,0)ε1,1

= ε0,0 + ε0,1 + ε1,0 + ε1,1 − 2ε0,1ε1,0 − 2ε0,0ε1,1

The same way, one gets

Pr[d = 1|b = 0] = ε0,0 + ε0,1 + ε1,0 + ε1,1 − 2ε0,0ε1,0 − 2ε0,1ε1,1.

Then, the advantage is

Pr[d = 1|b = 1]− Pr[d = 1|b = 0] = 2(ε0,0ε1,0 + ε0,1ε1,1 − ε0,1ε1,0 − ε0,0ε1,1)

= 2ε0,0(ε1,0 − ε1,1) + 2ε0,1(ε1,1 − ε1,0)

= 2(ε0,1 − ε0,0)(ε1,1 − ε0,1)

≥ 2× ε/4× ε/4 = ε2/8 .

B.3 Proof of Lemma 3.6

The proof of this lemma is similar to that of Lemma 3.5. Let A be an adversary against the
password-based chosen-basis decisional Diffie-Hellman 1 assumption with an advantage greater
than ε ≥ 16/n. By the definition of Adv

pcddh1
G,n (A,P, X, k, r0, r1), we have

Pr[Exp
pcddh1
G,n,b (A,P, X, k, r0, r1) = b ] ≥ 1/2 + ε/2 ,

where the probability space is on Ω0 = {(ω1, ω2,P, X, k, b, r0, r1)} (ω1 and ω2 are the random
tapes of A in the first step and second steps, respectively).

By applying the splitting lemma on the product probability space Ω′1 × Ω1, where Ω′1 =
{(ω1,P, X, r0, r1)} and Ω1 = {(ω2, k, b)}, one can show that there exists a subset S1 of Ω′1 with
probability measure greater than ε/4 such that, for any (ω1,P, X, r0, r1) ∈ S1,

PrΩ1

[
Exp

pcddh1
G,b (A,P, X, k, r0, r1 ; ω1) = b

]
≥ 1/2 + ε/4 ,
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where the probability space is now on Ω1 = {(ω2, k, b)}. In this game, since (ω1,P, X) is fixed,
so is the output (Y, s) at the end of the first stage. Furthermore, since r0 is also fixed, then so
is Y ′.

If we apply the splitting lemma once again on the product probability space Ω′2×Ω2, where
Ω′2 = {k} and Ω2 = {(ω2, b)}, one can show that there exists a subset S2(ω1,P, X, r0, r1) of Ω′2
with probability measure greater than ε/8 ≥ 2/n such that, for any k in S2(ω1,P, X, r0, r1) (if
(ω1,P, X, r0, r1) is in S1),

PrΩ2

[
Exp

pcddh1
G,b (A,P, X, k, r0, r1 ; ω1) = b

]
≥ 1/2 + ε/8 ,

where the probability space is now on Ω2 = {(ω2, b)}.

Here, one sees that S2(ω1,P, X, r0, r1) is a subset of {1, . . . , n} of size at least 2/n. Therefore,
there exist two values k0 and k1, and thus U0 and U1, for which this adversary can decide b with
advantage greater than ε/4 in the following experiment, for i = 0, 1:

Experiment Exp
pcddh1
G,b (A,P, X, ki, r0, r1 ; ω1)

(Y, s)← AP(find, X ; ω1)
Ui ← P(ki)
X ← (X/Ui)

rb ; K ← CDH(X/Ui, Y )rb

Y ′ ← Y r0

d← A(guess, s, X, K, Y ′, ki)
return d

In other words, if one randomly choose k0, k1
R
← {1, . . . , n}, X

R
← G, r0, r1

R
← Zp, Ui

R
← G,

for i = 0, 1 and P
R
← R[(k0, U0), (k1, U1)], as well as a tape ω1, with probability greater than

ε/4 · ε/8 · (ε/8 − 1/n) ≥ ε3/29, the above adversary can decide b with advantage greater than
ε/4, for both i = 0 and i = 1.

Let us now use the splitting lemma one last time on the product probability space {(ω1, k0,
k1, r0, r1,P

′)} × {(X, U0, U1)}, where P ′ is randomly drawn from R[(k0, 1), (k1, g)], and when
U0 and U1 are defined, we set P to be equal to P ′ except that P(ki) is set to Ui. One can thus
show that there exists a subset S of {(ω1, k0, k1, r0, r1,P

′)} with probability measure greater
than ε3/210 such that, for any (ω1, k0, k1, r0, r1,P

′) in S, with probability greater than ε3/210

over (X, U0, U1), the above adversary can decide b with advantage greater than ε/4, for both
i = 0 and i = 1.

Using the above facts, one can then build an adversary for for CDDH1 problem exactly as
in the proof of Lemma 3.5. Moreover, by using similar arguments, one can also show that the
advantage of this adversary would be at least ε2/8. The bound claimed in Lemma 3.6 then
easily follows.

B.4 Proof of Lemma 3.9

Let us assume that D is not a good distinguisher:

Pr
b,x

[Eb(D, x) = b] ≤
1

2
+

α

2
,
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for α ≤ µǫ/2. Then

1

2
+

α

2
≥ Pr

b,x
[Eb(D, x) = b]

≥ Pr
b,x

[Eb(D, x) = b ∧ x ∈ S′] + Pr
b,x

[Eb(D, x) = b ∧ x 6∈ S′]

≥

(
1

2
+

ǫ

2

)
× µ + Pr

b,x
[Eb(D, x) = b | x 6∈ S′]× (1− µ)

≥

(
1

2
+

ǫ

2

)
× µ +

(
1− Pr

b,x
[Eb(D, x) 6= b | x 6∈ S′]

)
× (1− µ)

≥
µ

2
+

µǫ

2
+ 1− µ− Pr

b,x
[Eb(D, x) 6= b | x 6∈ S′]× (1− µ)

≥ 1−
µ

2
+

µǫ

2
− Pr

b,x
[Eb(D, x) 6= b | x 6∈ S′]× (1− µ)

≥
1

2
+

µǫ

2
+

(
1

2
− Pr

b,x
[Eb(D, x) 6= b | x 6∈ S′]

)
× (1− µ)

α− µǫ

2
≥

(
1

2
− Pr

b,x
[Eb(D, x) 6= b | x 6∈ S′]

)
× (1− µ)

As a consequence,

Pr
b,x

[Eb(D, x) 6= b | x 6∈ S′] ≥
1

2
+

µǫ− α

2(1− µ)
≥

1

2
+

µǫ− α

2
≥

1

2
+

µǫ

4
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