
Extended abstract, which appeared in
Advances in Cryptology – Proceedings of CRYPTO ’2004 (15 – 19 august 2004, Santa Barbara, California, USA)
M. Franklin Ed. Springer-Verlag, LNCS 3152, pages 477–493.

IPAKE: Isomorphisms for Password-based Authenticated Key Exchange

Dario Catalano1, David Pointcheval1, and Thomas Pornin2

1 CNRS–LIENS, Ecole Normale Supérieure, Paris, France
{Dario.Catalano,David.Pointcheval}@ens.fr.

2 Cryptolog, Paris, France
Thomas.Pornin@cryptolog.com.

Abstract. In this paper we revisit one of the most popular password-based key exchange protocols, namely
the OKE (for Open Key Exchange) scheme, proposed by Luck in 1997. Our results can be highlighted as
follows. First we define a new primitive that we call trapdoor hard-to-invert isomorphisms, and give some
candidates. Then we present a generic password-based key exchange construction, that admits a security
proof assuming that these objects exist. Finally, we instantiate our general scheme with some concrete
examples, such as the Diffie-Hellman function and the RSA function, but more interestingly the modular
square root function, which leads to the first scheme with security related to the integer factorization
problem. Furthermore, the latter variant is very efficient for one party (the server). Our results hold in the
random-oracle model.

1 Introduction

Shortly after the introduction of the revolutionary concept of asymmetric cryptography, proposed in
the seminal paper by Diffie and Hellman [9], people realized that properly managing keys is not a
trivial task. In particular private keys tend to be pretty large objects, that have to be safely stored
in order to preserve whatever kind of security. Specific devices have thus been developed in order to
help human beings in storing their secrets, but it is clear that even the most technologically advanced
device may become useless if lost or stolen. In principle the best way to store a secret is to keep it in
mind. In practice, however, human beings are very bad at remembering large secrets (even if they are
passwords or pass-phrases) and very often they need to write passwords down on a piece of paper in
order to be able to keep track of them. As a consequence, either one uses a short (and memorable)
password, or writes/stores it somewhere. In the latter case, security eventually relies on the mode of
storage (which is often the weakest part in the system: a human-controlled storage). In the former
case, a short password is subject to exhaustive search.

Indeed, by using a short password, one cannot prevent a brute force on-line exhaustive search
attack: the adversary just tries some passwords of its own choice in order to try to impersonate a
party. If it guesses the correct password, it can get in, otherwise it has to try with another password.
In many applications, however, the number of such active attacks can be limited in various ways. For
example one may impose some delay between different trials, or even closing the account after some
fixed number of consecutive failures. Of course the specific limitations depend very much on the context
– other kind of attacks, such as Denial of Service ones, for example, should be made hard to mount
either. In any case, the important point we want to make here is that the impact of on-line exhaustive
search can be limited. However on-line attacks are not the only possible threats to the security of
a password-based system. Imagine for example an adversary who has access to several transcripts
of communication between a server and a client. Clearly the transcript of a “real” communication
somehow depends on the actual password. This means that a valid transcript (or several ones) could
be used to “test” the validity of some password: the adversary chooses a random password and simply
checks if the produced transcript is the same as the received one. In this way it is possible to mount
an (off-line) exhaustive search attack that can be much more effective than the on-line one, simply
because, in this scenario, the adversary can try all the possible passwords just until it finds the correct
one. Such an off-line exhaustive search is usually called “dictionary attack”.

c© IACR 2004.

2

1.1 Related Work

A password-based key exchange is an interactive protocol between two parties A and B, who initially
share a short password pw , that allows A and B to exchange a session key sk. One expects from
this key to be semantically secure w.r.t. any party, but A and B who should know it at the end of
the protocol. The study of password-based protocols resistant to dictionary attacks started with the
seminal work of Bellovin and Merritt [3], where they proposed the so-called Encrypted Key Exchange
protocol (EKE). The basic idea of their solution is the following: A generates a public key and sends
it to B encrypted – using a symmetric encryption scheme – with the common password. B uses the
password to decrypt the received ciphertext. Then it proceeds by encrypting some value k using the
obtained public key. The resulting ciphertext is then re-encrypted (once again using the password)
and finally sent to A. Now A can easily recover k, using both his own private key and the common
password. A shared session key is then derived from k using standard techniques.

A classical way to break password-based schemes is the partition attack [4]. The basic idea is
that if the cleartexts encrypted with the password have any redundancy, or lie in a strict subset, a
dictionary attack can be successfully mounted: considering one flow (obtained by eavesdropping) one
first chooses a password, decrypts the ciphertext and checks whether the redundancy is present or not
(or whether the plaintext lies in the correct range.) This technique allows to quickly select probable
passwords, and eventually extract the correct one.

The partition attack can be mounted on many implementations of EKE, essentially because a
public key usually contains important “redundancy” (as a matter of fact a public key – or at least its
encoding – is not in general a random-looking string). Note that in the described approach (for EKE),
the same symmetric encryption (using the same password) is used to encrypt both the public key, and
the ciphertext generated with this key. This may create additional problems basically because these
two objects (i.e. the public key and the ciphertext) are very often defined on completely unrelated sets.
A nice exception to this general rule are ElGamal keys [12]. This is thus the sole effective application
of EKE.

As noticed by the original authors [3], and emphasized by Lucks [17], it is “counter-intuitive (. . .)
to use a secret key to encrypt a public key”. For this reason Lucks [17] proposed OKE, (which stands
for Open Key Exchange). The underlying idea of this solution is to send the public key in clear and to
encrypt the second flow only. Adopting this new approach, additional public-key encryption schemes
can be considered (and in particular RSA [23] for instance). However, one has to be careful when
using RSA. The problem is that the RSA function is guaranteed to be a permutation only if the
user behaves honestly and chooses his public key correctly. In real life, however, a malicious user may
decide to generate keys that do not lead to a permutation at all. In such a case a partition attack
becomes possible: an RSA-ciphertext would lie in a strict subset if Z?

n. For this reason Lucks proposed
a variant of his scheme, known as Protected OKE, to properly deal with the case of RSA. Later on,
however, MacKenzie et al. [19, 18] proved that the scheme was flawed by presenting a way to attack
it. At the same time they showed how to repair the original solution by proposing a new protocol
they called SNAPI (for Secure Network Authentication with Password Identification), for which they
provided a full proof of security in the random-oracle model. This proof, however, is specific to RSA,
in the random-oracle model, and very intricate.

Interestingly enough, in the standard model, the problem of secure password-based protocols was
not treated rigorously until very recently. The first rigorous treatment of the problem was proposed
by Halevi and Krawczyk [15] who, however, proposed a solution that requires other setup assumptions
on top of that of the human password. Later on, Goldreich and Lindell [14] proposed a very elegant
solution that achieves security without any additional setup assumption. The Goldreich and Lindell
proposal is based on sole existence of trapdoor permutations and, even though very appealing from a
theoretical point of view, is definitely not practical. The first practical solution was proposed by Katz,
Ostrovsky and Yung [16]. Their solution is based on the Decisional Diffie-Hellman assumption and
assumes that all parties have access to a set of public parameters (which is of course a stronger set-up
assumption than assuming that only human passwords are shared, but still a weaker one with respect

3

to the Halevi-Krawczyk ones for example). Even more recently Gennaro and Lindell [13] presented an
abstraction of the Katz, Ostrovsky and Yung [16] protocol that allowed them to construct a general
framework for authenticated password-based key exchange in the common reference string model.

We note here that even though from a mathematical point of view a proof in the standard model is
always preferable to a proof in the random-oracle model, all the constructions in the standard model
presented so far are way less efficient with respect to those known in the random-oracle model. It is
true that a proof in the random-oracle model should be interpreted with care, more as a heuristic
proof than a real one. On the other hand in many applications efficiency is a big issue and it may be
preferable to have a very efficient protocol with a heuristic proof of security than a much less efficient
one with a complete proof of security.

1.2 Our Contributions

In this paper, we revisit the generic OKE construction by clearly stating the requirements about the
primitive to be used: we need a family of isomorphisms with some specific computational properties
that we call trapdoor hard-to-invert isomorphisms (see next section for a formal definition for these
objects). Very roughly a trapdoor hard-to-invert isomorphism, can be seen as an isomorphic function
that is in general hard to invert, unless some additional information (the trapdoor) is provided. Note
that such an object is different with respect to traditional trapdoor functions. A trapdoor one-way
function is always easy to compute, whereas a trapdoor hard-to-invert function may be not only hard
to invert, but – at least in some cases – also hard to compute [10]. As it will become apparent in the
next sections, this requirement is not strong because basically all the classical public-key encryption
schemes fit it (RSA [23], Rabin with Blum moduli [22], ElGamal [12], and even the recent Okamoto-
Uchiyama’s [20] and Paillier’s schemes [21]). More precisely our results can be described as follows.

First, after having described our security model, we present a very general construction – de-
noted IPAKE for Isomorphism for Password-based Authenticated Key Exchange – and we prove it is
secure. Our security result relies on the computational properties of the chosen trapdoor hard-to-
invert isomorphism family, in the random-oracle model. As a second result we pass instantiating the
general construction with specific encryption schemes. We indeed show that trapdoor hard-to-invert
isomorphisms can be based on the Diffie-Hellman problem, on the RSA problem, and even on integer
factoring.

For lack of space, we refer to the full version [8] for the two first applications, since they are not
really new. Plugging ElGamal directly leads to one of the AuthA variants, proposed to IEEE P1363 [2],
or to PAK [5]. The security has already been studied in several ideal models [5–7]. The case of RSA
leads to a scheme similar to RSA-OKE, SNAPI [19, 18], or to the scheme proposed by Zhu et al. [26].

More interestingly using such methods we can construct a very efficient solution from the Rabin
function. To our knowledge this is the first efficient password-based authenticated key exchange scheme
based on factoring.

2 Preliminaries

Denote with N the set of natural numbers and with R+ the set of positive real numbers. We say that
a function ε : N → R+ is negligible if and only if for every polynomial P (n) there exists an n0 ∈ N
such that for all n > n0, ε(n) ≤ 1/P (n).

If A is a set, then a ← A indicates the process of selecting a at random and uniformly over A
(which in particular assumes that A can be sampled efficiently).

2.1 Trapdoor Hard-to-Invert Isomorphisms

Let I be a set of indices. Informally a family of trapdoor hard-to-invert isomorphisms is a set F =
{fm : Xm → Ym}m∈I satisfying the following conditions:

4

1. one can easily generate an index m, which provides a description of the function fm – a morphism –,
its domain Xm and range Ym (which are assumed to be isomorphic groups), and a trapdoor tm;

2. for a given m, one can efficiently sample pairs (x, fm(x)), with x uniformly distributed in Xm;
3. for a given m, one can efficiently decide Ym;
4. given the trapdoor tm, one can efficiently invert fm(x), and thus recover x;
5. without the trapdoor, inverting fm is hard.

This is almost the same definition as for trapdoor one-way permutations with homomorphic properties.
There is a crucial difference however: one can sample pairs, but may not necessarily be able to compute
fm(x) for a given x (point 2 above). As a consequence, the function is hard-to-invert, but it may be
hard to compute as well.

More formally we say that F defined as above is a family of trapdoor hard-to-invert isomorphisms
if the following conditions hold:

1 – There exist a polynomial p and a probabilistic polynomial time Turing Machine Gen which on input
1k (where k is a security parameter) outputs pairs (m, tm) where m is uniformly distributed in I
and |tm| < p(k). The index m defines Xm and Ym, which are isomorphic groups, an isomorphism
fm from Xm onto Ym and a set Rm of values uniformly samplable, which will be used to sample
(x, fm(x)) pairs. The information tm is referred as the trapdoor.

2.1 – There exists a polynomial time Turing Machine Samplex which on input m ∈ I and r ∈ Rm

outputs x ∈ Xm. Furthermore, for any m, the machine Samplex(m, ·) implements a bijection from
Rm onto Xm.

2.2 – There exists a polynomial time Turing Machine Sampley, such that on input m ∈ I and r ∈ Rm

it outputs fm(x) for x = Samplex(m, r). Therefore, Sampley(m, r) = fm(Samplex(m, r)).
3 – There exists a polynomial time Turing Machine Checky which, on input m ∈ I and any y, answers

whether y ∈ Ym or not.
4 – There exists a (deterministic) polynomial time Turing Machine Inv such that Inv(m, tm, fm(x)) =

x, for all x ∈ Xm and for all m ∈ I.
5 – For every probabilistic polynomial time Turing Machine A we have that, for large enough k,

Pr[m R← I ; x
R← Xm ; y = fm(x) : A(m, y) = x] ≤ ε(k),

where ε(·) is a negligible function.

The last property is our formal hard-to-invert notion, which is quite similar to the usual one-way
notion: they just differ if Samplex(m, ·) is one-way.

2.2 Verifiable Sub-Family of Trapdoor Hard-to-Invert Isomorphisms

In the above definition, it is clear that for any m ∈ I, the function fm is an isomorphism from the group
Xm onto Ym. However, in practice, the family of functions {fm}m maybe indexed by a potentially
larger set S (i.e. I ⊆ S), for which there may exist some indices that do not lead to an isomorphism.
Therefore, we require more properties to be satisfied.

– there exists a large subset I ⊆ S, such that F = {fm : Xm → Ym}m∈I is a family of trapdoor
hard-to-invert isomorphisms;

– there exists a set J , of indices which provide an isomorphism – such that I ⊆ J ⊆ S –, which
admits an efficient zero-knowledge proof of membership.

The last property turns out to be crucial for the application we have in mind. In our setting the client
has to choose the specific function to use in the protocol. This means that a dishonest client (i.e. one
that does not share a password with the server) could propose an index whose corresponding function
is not an isomorphism. This would give him the ability to run a partition attack (as already explained
for RSA). For this reason we require the client to produce a function f together with a proof that it
is actually an isomorphism.

5

2.3 Zero-Knowledge Proofs of Membership

As noticed above, the only property we want to be able to verify is the isomorphic one, and thus
the fact that the index m actually lies in J : we just want the adversary not to be able to prove a
wrong statement, we do not care about malleability [11]. One second point is that the zero-knowledge
property will be required in the security proof: a valid index m is given, one tries to use the adversary
to solve a hard problem related to m. Thus, we need to be able to provide a proof of validity of m,
without any witness. Note however that the simulation is performed for valid statements only, and thus
simulation soundness [24] is not required. Moreover, since we just have to simulate one proof without
the witness (other executions will be performed as in an actual execution) concurrent zero-knowledge
is not needed either.

For efficiency reasons, we will focus on a specific class of zero-knowledge proofs: for a given state-
ment m, the verifier sends a random seed seed and then the prover non-interactively provides a proof
p = Provem(m,w, seed) using a witness w that m ∈ J , w.r.t. the random seed seed; the proof can be
checked without the witness Checkm(m, seed, p). In our protocol, honest players will sample m ∈ I,
and thus together the trapdoor tm. This trapdoor will generally be a good witness. More formally we
require:

– Completeness – Provem and Checkm are two efficient (polynomial time) algorithms, and for any
m ∈ J and any challenge seed, a witness helps to build a proof p = Provem(m,w, seed) which is
always accepted: Checkm(m, seed, p) accepts;

– Soundness – for any m 6∈ J , the probability for any adversary (on its random tape and the random
seed seed) to forge a valid proof (accepted by the Checkm algorithm) is negligible within time t:
Succforge(t) will denote the maximal success probability for any adversary within time t;

– ROM-simulatability – granted the programmability of the random oracle, for any m ∈ I and any
seed, there exists an efficient way to perfectly simulate an accepted proof.

2.4 Concrete Examples

The Diffie-Hellman Family. The most natural example of family of trapdoor hard-to-invert iso-
morphisms is the Diffie-Hellman one. The machine Gen, on input the security parameter k, does as
follows. First it chooses a random prime q of size k, and a prime p such that q divides p− 1. Next, it
chooses a subgroup G of order q in Z?

p and a corresponding generator g. Finally it chooses a random
element a in Zq, it sets h = ga mod p and outputs the pair (m, tm) where tm = a and m is an encoding
of (g, p, q, h). This defines our set I.

Now fm is instantiated as follows. Set Xm = Ym = G\{1}, Rm = Zq and Samplex : Zq → G
is defined1 as Samplex(x) = gx mod p. Moreover fm is defined as (for any X ∈ G\{1}): fm(X) =
Xa mod p.

Clearly, to efficiently evaluate fm on a random point X, one should know either the trapdoor
information a or any x such that Samplex(x) = X (assuming, of course, that the computational Diffie-
Hellman problem is infeasible in G): Sampley(x) = hx. Similarly knowledge of the trapdoor is sufficient
to invert fm on a random point Y : Inv(a, Y) = Y 1/a. However inverting the function without knowing
the trapdoor seems to be infeasible. Nevertheless, Ym = G is efficiently decidable: Checky(y) simply
checks whether yq = 1 mod p or not.

For our functions to be isomorphisms, one just needs a to be co-prime with q, where q is actually
the order of g. For better efficiency, the group informations (g, p, q) can be fixed, and considered as
common trusted parameters. Therefore, Gen just chooses a and sets h = ga mod p: one just needs to
check that h 6= 1 mod p and hq = 1 mod p, no witness is required, nor additional proof: Provem does not
need any witness for outputting any proof, since Checkm simply checks the above equality/inequality.

1 Note that we allow a slight misuse of notation here. Actually the function Samplex should be defined as Samplex :
I × Zq → G. However we prefer to adopt a simpler (and somehow incorrect) notation for visual comfort.

6

The RSA Family. Another natural example is the RSA permutation. In this case the machine Gen
on input the security parameter k does as follows. First it chooses two random primes p, q of size k/2
and sets n = pq. Next, it chooses a public exponent e such that gcd(e, ϕ(n)) = 1. Finally it outputs
the pair (m, tm) where tm = (p, q) and m is an encoding of (n, e). This defines our set I.

The function fm is instantiated as follows. Set Xm = Ym = Rm = Z?
n, and Samplex : Z?

n → Z?
n is

the identity function, i.e. Samplex(x) = x. The function fm is defined as (for any x ∈ Z?
n): fm(x) =

xe mod n. Hence, Sampley(x) = xe mod n. The Inv algorithm is straightforward, granted the trapdoor.
And the Checky algorithm simply has to check whether the element is prime to n.

As already noticed, since Samplex is easy to invert, the RSA family is not only a trapdoor hard-
to-invert isomorphism family, but also a trapdoor one-way permutation family. However, to actually
be an isomorphism, (n, e) does not really need to lie in I, which would be very costly to prove (while
still possible). It just needs to satisfy gcd(e, ϕ(n)) = 1, which defines our set J . An efficient proof of
validity is provided in the full version [8], where both Provem and Checkm are formally defined.

The Squaring Family. As a final example, we suggest the squaring function which is defined as the
RSA function with the variant that e = 2. A problem here arises from the fact that squaring is not
a permutation over Z?

n, simply because 2 is not co-prime with ϕ(n). However, if one considers Blum
moduli (i.e. composites of the form n = pq, where p ≡ q ≡ 3 mod 4) then it is easy to check that the
squaring function becomes an automorphism onto the group of quadratic residues modulo n (in the
following we refer to this group as to Qn.) However this is not enough for our purposes. An additional
difficulty comes from the fact that we need an efficient way to check if a given element belongs to Ym

(which would be Qn here): the need of an efficient algorithm Checky. The most natural extension of
Qn is the subset Jn of Z?

n, which contains all the elements with Jacobi symbol equal to +1. Note that
for a Blum modulus n = pq, this set is isomorphic to {−1,+1} ×Qn (this is because −1 has a Jacobi
symbol equal to +1, but is not a square). By these positions we get the signed squaring2 isomorphism:

fn : {−1,+1} × Qn → Jn

(b , x) 7→ b× x2 mod n.

For this family, the machine Gen, on input the security parameter k, does as follows. First it chooses two
random Blum primes p, q of size k/2 and sets n = pq. Then it outputs the pair (m, tm) where tm = (p, q)
and m is an encoding of n. This thus defines our set I. The function fm is instantiated as follows. Set
Xm = Rm = {−1,+1} ×Qn, Ym = Jn and Samplex : {−1,+1} ×Qn → {−1,+1} ×Qn is the identity
function, i.e. Samplex(b, x) = (b, x). The function fm is defined as (for any (b, x) ∈ {−1,+1} × Qn):
fm(b, x) = b×x2 mod n. Hence, Sampley(b, x) = fm(b, x). The Inv algorithm is straightforward, granted
the trapdoor. And the Checky algorithm simply computes the Jacobi symbol.

As above, since Samplex is easy to invert, the squaring family is not only a trapdoor hard-to-invert
isomorphism family, but also a trapdoor one-way permutation family. However, to actually be an
isomorphism, n does not really need to be a Blum modulus, which would be very costly to prove.
What we need is just that −1 has Jacobi symbol +1 and any square in Z?

n admits exactly 4 roots. A
validity proof is provided, with the mathematical justification, in the section 6, which thus formally
defines both Provem and Checkm.

3 The Formal Model

3.1 Security Model

Players. We denote by A and B two parties that can participate in the key exchange protocol P . Each
of them may have several instances called oracles involved in distinct, possibly concurrent, executions
of P . We denote A (resp. B) instances by Ai (resp. Bj), or by U when we consider any user instance.

2 By signed, we mean that the output of the function has a sign (plus or minus).

7

The two parties share a low-entropy secret pw which is drawn from a small dictionary Password,
according to a distribution D. In the following, we use the notation D(n) for the probability to be in
the most probable set of n passwords:

D(n) = max
P⊆Password

{
Pr

pw
R←D

[pw ∈ P | Card(P) ≤ n]

}
.

If we denote by UN the uniform distribution among N passwords, UN (n) = n/N .

Queries. We use the security model introduced by Bellare et al. [1], to which paper we refer for more
details. In this model, the adversary A has the entire control of the network, which is formalized by
allowing A to ask the following queries:

– Execute(Ai, Bj): This query models passive attacks, where the adversary gets access to honest
executions of P between the instances Ai and Bj by eavesdropping.

– Reveal(U): This query models the misuse of the session key by any instance U (use of a weak
encryption scheme, leakage after use, etc). The query is only available to A if the attacked instance
actually “holds” a session key and it releases the latter to A.

– Send(U,m): This query models A sending a message to instance U . The adversary A gets back
the response U generates in processing the message m according to the protocol P . A query
Send(Ai, Start) initializes the key exchange algorithm, and thus the adversary receives the flow
A should send out to B.

In the active scenario, the Execute-query may seem rather useless: after all the Send-query already
gives the adversary the ability to carry out honest executions of P among parties. However, even in
the active scenario, Execute-queries are essential to properly deal with dictionary attacks. Actually the
number qs of Send-queries directly asked by the adversary does not take into account the number of
Execute-queries. Therefore, qs represents the number of flows the adversary may have built by itself,
and thus the number of passwords it may have tried. Even better, qa + qb is an upper-bound on the
number of passwords it may have tried, where qa (and qb resp.) is the number of A (B resp.) instances
involved in the attack. For the sake of simplicity, we restricted queries to A and B only. One can
indeed easily extend the model, and the proof, to the more general case, keeping in mind that we are
interested in the security of executions involving at least A or B, with the password pw shared by
them. Additional queries would indeed use distinct passwords, which could be assumed public in the
security analysis (known to our simulator).

3.2 Security Notions

Two main security notions have been defined for key exchange protocols. The first one is the semantic
security of the key, which means that the exchanged key is unknown to anybody else than the players.
The second one is unilateral or mutual authentication, which means that either one, or both, of the
participants actually know the key.

AKE Security. The semantic security of the session key is modeled by an additional query Test(U).
The Test-query can be asked at most once by the adversary A and is only available to A if the
attacked instance U is Fresh. The freshness notion captures the intuitive fact that a session key is not
“obviously” known to the adversary. An instance is said to be Fresh if the instance has accepted (i.e.
the flag accept is set to true) and neither it nor its partner (i.e. the other instance with same session tag
—or SID— which is defined as the view the player has of the protocol —the flows— before it accepts)
have been asked for a Reveal-query. The Test-query is answered as follows: one flips a (private) coin b
and forwards sk (the value Reveal(U) would output) if b = 1, or a random value if b = 0.

8

We denote the AKE advantage as the probability that A correctly guesses the value of b. More
precisely we define Advake

P (A) = 2Pr[b = b′]− 1, where the probability space is over the password, all
the random coins of the adversary and all the oracles, and b is the output guess of A for the bit b
involved in the Test-query. The protocol P is said to be (t, ε)-AKE-secure if A’s advantage is smaller
than ε for any adversary A running with time t.

Entity Authentication. Another goal of the adversary is to impersonate a party. We may consider
unilateral authentication of either A (A-Auth) or B (B-Auth), thus we denote by SuccA−auth

P (A) (resp.
SuccB−auth

P (A)) the probability that A successfully impersonates an A instance (resp. a B instance)
in an execution of P , which means that B (resp. A) terminates (i.e. the terminate flag is set to true)
even though it does not actually share the key with any accepting partner A (resp. B).

A protocol P is said to be (t, ε)-Auth-secure if A’s success for breaking either A-Auth or B-
Auth is smaller than ε for any adversary A running with time t. This protocol then provides mutual
authentication.

4 Algorithmic Assumptions

In this section we state some algorithmic assumptions we need in order to construct an IPAKE protocol.
As already sketched in section 1.2, our basic building block is a family of trapdoor hard-to-invert
bijections F . More precisely each bijection f ∈ F needs to be a group isomorphism from a group
(Xf , ⊕f) into a group (Yf , ⊗f), where 	f (resp. �f) is the inverse operation of ⊕f (resp. ⊗f)3. As
additional assumption we require the existence of a generalized full-domain hash function G, which on
a new input (f, q), outputs a uniformly distributed element in Yf . This is the reason why we need the
decidability of Yf : in practice, G will be implemented by iterating a hash function until the output is
in Yf .

The non-invertibility of the functions in the family F is measured by the “ability”, for any adversary
A, in inverting a random function (in F) on a random point, uniformly drawn from Yf :

SuccNI
F (A) = Pr[f R← F , x

R← Xf : A(f, f(x)) = x].

More precisely, we denote by SuccNI
F (t) the maximal success probability for all the adversaries running

within time t. A simpler task for the adversary may be to output a list of n elements which contains
the solutions:

SuccInSetNI
F (A) = Pr[f R← F , x

R← Xf , S ← A(f, f(x)) : x ∈ S].

As above, we denote by SuccInSetNI
F (n, t) the maximal success probability for all the adversaries running

within time t, which output sets of size n.

4.1 The RSA Family: F = RSA

As described in section 2.4 the function f is defined by n and e, Yf = Xf = Z?
n. And, for any x ∈ Z?

n,
f(x) = xe mod n. For a correctly generated n and a valid e (i.e an e such that gcd(ϕ(n), e) = 1) the
non-invertibility of the function is equivalent to the, widely conjectured, one-wayness of RSA. This
leads to the following

Succow
RSA(t + nTexp) = SuccNI

RSA(t + nTexp) ≥ SuccInSetNI
RSA(n, t) = SuccInSetowRSA(n, t)

where Texp is an upper-bound on the time required to perform an exponentiation.

3 For visual comfort in the following we adopt the symbols f, Xf , Yf rather than (respectively) fm, Xm, Ym.

9

Alice Bob

Common password pw
accept← false accept← false

terminate← false

(f, t)
R← Gen(1k)

Alice, f−−−−−−−−−−−→
Bob, seed←−−−−−−−−−−− seed

R← {0, 1}k

p← Provem(f, t, seed)
p−−−−−−−−−−−→ Checkm(f, seed, p)?

r
R← Rf

x← Samplex(f, r)
y ← Sampley(f, r)

PW← G(f, pw) PW← G(f, pw)
ŷ←−−−−−−−−−−− ŷ ← y ⊗f PW

y′ ← ŷ �f PW, x′ ← Inv(f, t, y′)
Auth−−−−−−−−−−−→

Auth valid?⇒ accept← true
accept← true terminate← true

Fig. 1. An execution of the IPAKE protocol: Auth is computed by Alice (Bob resp.) as H1(Alice‖Bob‖f‖ŷ‖pw‖x)
(H1(Alice‖Bob‖f‖ŷ‖pw‖x′) resp.), and sk is computed by Alice (Bob resp.) as H0(Alice‖Bob‖f‖ŷ‖pw‖x)
(H0(Alice‖Bob‖f‖ŷ‖pw‖x′) resp.)

4.2 The Diffie-Hellman Family: F = DH

Let G = 〈g〉 be any cyclic group of (preferably) prime order q. As sketched in section 2.4, the function
f is defined by a point P = gx in G\{1} (and thus x 6= 0 mod q), and Xf = Yf = G. For any
Q = gy ∈ G, f(Q) = gxy.

A (t, ε)-CDHg,G attacker, in the finite cyclic group G of prime order q, generated by g, is a proba-
bilistic machine ∆ running in time t such that

Succcdh
g,G(∆) = Pr

x,y
[∆(gx, gy) = gxy] ≥ ε

where the probability is taken over the random values x and y in Zq. As usual, we denote by Succcdh
g,G(t)

the maximal success probability over every adversary running within time t. Then, when g and G are
fixed, SuccNI

DH(t) = Succcdh
g,G(t). Using Shoup’s result [25] about “self-correcting Diffie-Hellman”, one

can see that if SuccInSetNI
DH(n, t) ≥ ε, then SuccNI

DH(t′) ≥ 1/2 for some t′ ≤ 6/ε× (T + nTexp).

4.3 The Squaring Family: F = Rabin

As discussed in section 2.4 if one assumes that the modulus n is the product of two Blum primes, the
signed squaring function f becomes an isomorphism from {−1,+1} ×Qn onto Jn. Furthermore, for a
correctly generated n the non-invertibility of f is trivially equivalent to the one-wayness of factoring
Blum composites. This leads us to the following inequality

Succow
Rabin(t + nTexp) = SuccNI

Rabin(t + nTexp) ≥ SuccInSetowRabin(n, t),

which provides a very tight bound because, in this case, Texp represents the time required to perform
a single modular multiplication (i.e. to square).

5 Security Proof for the IPAKE Protocol

5.1 Description and Notations

In this section we show that the IPAKE protocol distributes session keys that are semantically secure
and provides unilateral authentication for the client A. The specification of the protocol can be found
on Figure 1. Some remarks, about notation, are in order

10

– We assume F to be a correct family, with a verifiable sub-family of trapdoor hard-to-invert
isomorphisms f from Xf into Yf . In the following, we identify m to fm, and thus f . We denote
by s the size of I. Furthermore, we denote by q a lower bound on the size of any Yf .

– For this choice of parameters for the family F , we can define the function G which is assumed
to behave like a generalized full-domain random oracle. In particular we model G as follows: on
input a couple (f, q) it outputs a random element, uniformly distributed in Yf .

Since we only consider unilateral authentication (of A to B), we just introduce a terminate flag for B.

5.2 Security Proof

Theorem 1 (AKE/UA Security). Let us consider the protocol IPAKE, over a family F of trapdoor
hard-to-invert isomorphisms, with parameter (s, q), where Password is a dictionary equipped with the
distribution D. For any adversary A within a time bound t, with less than qs active interactions with
the parties (Send-queries) and qp passive eavesdroppings (Execute-queries), and asking qg and qh hash
queries to G and any Hi respectively: Advake

ipake(A) ≤ 4ε and AdvA−auth
ipake (A) ≤ ε, with ε upper-bounded

by

3D(qa + qb) + 6qaSuccInSetNI
F (q2

h, t + 2q2
hτlaw) + qbSuccforge(t) +

qb

2`1
+

Q2

2q
+

Q2
P

2s
,

where qa and qb denote the number of A and B instances involved during the attack (each upper-bounded
by qp + qs), Q ≤ qg + qh + 2qp + qs and QP denotes the number of involved instances (QP ≤ 2qp + qs),
and τlaw is the time needed for evaluating one law operation. Let us remind that `1 is the output length
of H1 (the authenticator.)

For lack of space, we refer to the full version [8] for the full proof, here we justify the main terms in
the security result.

Ideally, when one considers a password-based authenticated key exchange, one would like to prove
that the two above success/advantage are upper-bounded by D(qa + qb), plus some negligible terms.
For technical reasons in the proof (to get a clear proof) we have a small additional constant factor.
This main term is indeed the basic attack one cannot avoid: the adversary guesses a password and
makes an on-line trial. Other ways for it to break the protocol are:

– use a function f that is not a permutation, and in particular not a surjection. With the view of
ŷ, the adversary tries all the passwords, and only a strict fraction leads to y in the image of f :
this is a partition attack. But for that, it has to forge a proof of validity for f . Hence the term
qb × Succforge(t);

– use the authenticator Auth to check the correct password. But this requires the ability to compute
f−1(PW). Hence the term qa × SuccInSetNI

F (·, ·).
– send a correct authenticator Auth, but being lucky. Hence the term qb/2`1 .

Additional negligible terms come from very unlikely collisions. All the remaining kinds of attacks need
some information about the password.

6 A Concrete Example: The SQRT-IPAKE Protocol

An important contribution of this work (at least from a practical point of view) is the first efficient
and provably secure password-based key exchange protocol based on factoring. The formal protocol
appears in Figure 2. Here we describe the details of this specific implementation.

11

Alice Bob

Shared password: pw

accept← false accept← false
terminate← false

p1, p2 ∈ BlumPrimes(k/2)

n← p1p2
Alice, n−−−−−−−−−−−→

Bob, seed←−−−−−−−−−−− seed
R← {0, 1}k

p← Provem(n, (p1, p2), seed)
p−−−−−−−−−−−→ Checkm(n, seed, p)?

z
R← Z?

n, x← z2 mod n

b
R← {0, 1}, y ← (−1)bx2 mod n

PW← G(n, pw) PW← G(n, pw)
ŷ←−−−−−−−−−−− ŷ ← y × PW mod n

y′ ← ŷ × PW−1 mod n

x′ = SQRT(y′) mod n
Auth−−−−−−−−−−−→

Auth valid?⇒ accept← true
accept← true terminate← true

sk = H0(Alice‖Bob‖n‖ŷ‖pw‖x)
Auth = H1(Alice‖Bob‖n‖ŷ‖pw‖x)

Fig. 2. SQRT – IPAKE protocol

6.1 Description of the SQRT-IPAKE Protocol

In order for the protocol to be correct we need to make sure that the adopted function is actually an
isomorphism. As seen in section 2.4 this is the case if one assumes that the modulus n is the product
of two Blum primes, and fn : {−1,+1} ×Qn → Jn is the signed squaring function.

We thus set Xf = {−1,+1}×Qn and Yf = Jn, and, of course, the internal law is the multiplication
in the group Z?

n. In order for the password PW to be generated correctly, we need a G(n, ·) hash function
onto Jn. Constructing such a function is pretty easy: we start from a hash function onto {0, 1}k, and
we iterate it until we get an output in Jn. The details of this technique are deferred to the full version
of this paper [8]. Here we stress that if n ≥ 646 then very few iterations are sufficient. As already
noticed, we require Alice to prove the following about the modulus n, so that the function is actually
an isomorphism:

– The modulus n is in the correct range (n ≥ 646);
– The Jacobi symbol of −1 is +1 in Z?

n (this is to make sure that fn is actually a morphism);
– The signed squaring function is actually an isomorphism from {−1,+1} ×Qn onto Jn (this is to

make sure that any square in Z?
n has exactly 4 roots).

Proving the first two statements is trivial. For the third one we need some new machinery.

6.2 Proof of Correct Modulus.

With the following theorem (whose proof can be found in the full version of this paper [8]) we show
that if n is a composite modulus (with at least two different prime factors) then the proposed function
is an isomorphism.

Theorem 2. Let n be a composite modulus containing at least two different prime factors and such
that −1 has Jacobi symbol +1 in Z?

n. Moreover let fn be the morphism defined above. The following
facts are true

1. If fn is surjective then it is an isomorphism.
2. If fn is not surjective, then at most half of the elements in Jn have a pre-image.

12

Protocol Prove-Composite Protocol Prove-Surjective

H2(n, ·, ·) and H4(n, ·, ·) are full-domain hash functions onto Jn

H3 (H5 resp.) is a random oracle onto {0, 1}k ({0, 1}` resp.)

Bob chooses a random seed seed and sends it to Alice

For i← 1 to `, Alice
1. Sets yi = H2(n, seed, i) ∈ Jn

2. Computes (βi, αi,0, αi,1, αi,2, αi,3)
such that

– αi,0 = −αi,1 mod n
– αi,2 = −αi,3 mod n
– α2

i,j = yiβi mod n (j = 0, . . . , 3),
where βi ∈ {−1, +1}

3. Sets hi,j = H3(n, αi,j) (j = 0, . . . , 3)

One defines c1 . . . , c` = H5(n, seed, {hi,j})

1. Sets zi = H4(n, seed, i) ∈ Jn

2. Computes (bi, xi) = f−1(zi) such that
(bi, xi) ∈ {−1, +1} ×Qn

3. Computes a value γi such that γ2
i = xi mod n

(this is to make sure that xi is actually in Qn);

Alice answers with, for i = 1, . . . , `,
(βi, αi,2ci , αi,2ci+1) (γi, bi)

Bob checks that, for each i = 1, . . . , `,
1. the hi,j , for j = 0, . . . , 3, are all distinct
2. αi,2ci = −αi,2ci+1 mod n
3. hi,2ci = H3(n, αi,2ci)

and hi,2ci+1 = H3(n, αi,2ci+1)
4. H2(n, seed, i) = βiα

2
i,2ci

mod n

biγ
4
i = H4(n, seed, i) mod n

Fig. 3. Proof of Correct Modulus

The theorem above leads to the protocol Prove-Surjective (see Figure 3). The basic idea of this
protocol is that we prove that our function is a bijection by proving it is surjective. Soundness follows
from the second statement. However, in order to fall into the hypotheses of the theorem, we need
to make sure n is actually a composite modulus of the required form (i.e. with at least two distinct
prime factors). We achieve this with the Prove-Composite protocol (see Figure 3). The correctness
(completeness, soundness and zero-knowledge properties) of these protocols is deferred to the full
version of this paper [8].

Remark 3. We point out that our protocol is very efficient, for the verifier, in terms of modular
multiplications. It is also possible for Alice to use the same modulus for different sessions.

Acknowledgments

We thank the anonymous referees for their fruitful comments.

References

1. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against Dictionary Attacks. In
Eurocrypt ’00, LNCS 1807, pages 139–155. Springer-Verlag, Berlin, 2000.

2. M. Bellare and P. Rogaway. The AuthA Protocol for Password-Based Authenticated Key Exchange. Contributions
to IEEE P1363. March 2000.

3. S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Protocols Secure against Dictionary
Attacks. In Proc. of the Symposium on Security and Privacy, pages 72–84. IEEE, 1992.

4. C. Boyd, P. Montague, and K. Nguyen. Elliptic Curve Based Password Authenticated Key Exchange Protocols. In
ACISP ’01, LNCS 2119, pages 487–501. Springer-Verlag, Berlin, 2001.

5. V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password Authenticated Key Exchange Using Diffie-Hellman.
In Eurocrypt ’00, LNCS 1807, pages 156–171. Springer-Verlag, Berlin, 2000.
Full version available at: http://cm.bell-labs.com/who/philmac/research/.

6. E. Bresson, O. Chevassut, and D. Pointcheval. Security Proofs for Efficient Password-Based Key Exchange. In Proc.
of the 10th CCS, pages 241–250. ACM Press, New York, 2003.

13

7. E. Bresson, O. Chevassut, and D. Pointcheval. New Security Results on Encrypted Key Exchange. In PKC ’04,
LNCS, pages 145–159. Springer-Verlag, Berlin, 2004.

8. D. Catalano, D. Pointcheval, and T. Pornin. IPAKE: Isomorphisms for Password-based Authenticated Key Exchange.
In Crypto ’04, LNCS. Springer-Verlag, Berlin, 2004. Full version “Trapdoor Hard-to-Invert Group Isomorphisms and
Their Application to Password-based Authentication” available from http://www.di.ens.fr/users/pointche/.

9. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Information Theory, IT–
22(6):644–654, November 1976.

10. Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong Key-Insulated Signature Schemes. In PKC ’03, LNCS, pages 130–144.
Springer-Verlag, Berlin, 2003.

11. D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal on Computing, 30(2):391–437,
2000.

12. T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Transactions
on Information Theory, IT–31(4):469–472, July 1985.

13. R. Gennaro and Y. Lindell. A Framework for Password-Based Authenticated Key Exchange. In Eurocrypt ’03,
LNCS 2656, pages 524–543. Springer-Verlag, Berlin, 2003.

14. O. Goldreich and Y. Lindell. Session-Key Generation Using Human Passwords Only. In Crypto ’01, LNCS 2139,
pages 408–432. Springer-Verlag, Berlin, 2001.

15. S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Protocols. In Proc. of the 5th CCS. ACM
Press, New York, 1998.

16. J. Katz, R. Ostrovsky, and M. Yung. Efficient Password-Authenticated Key Exchange Using Human-Memorizable
Passwords. In Eurocrypt ’01, LNCS 2045, pages 475–494. Springer-Verlag, Berlin, 2001.

17. S. Lucks. Open Key Exchange: How to Defeat Dictionary Attacks Without Encrypting Public Keys. In Proc. of the
Security Protocols Workshop, LNCS 1361. Springer-Verlag, Berlin, 1997.

18. P. MacKenzie, S. Patel, and R. Swaminathan. Password-Authenticated Key Exchange Based on RSA. In Asiacrypt
’00, LNCS 1976, pages 599–613. Springer-Verlag, Berlin, 2000.

19. P. MacKenzie and R. Swaminathan. Secure Network Authentication with Password Identification. Submission to
IEEE P1363a. August 1999.

20. T. Okamoto and S. Uchiyama. A New Public Key Cryptosystem as Secure as Factoring. In Eurocrypt ’98, LNCS
1403, pages 308–318. Springer-Verlag, Berlin, 1998.

21. P. Paillier. Public-Key Cryptosystems Based on Discrete Logarithms Residues. In Eurocrypt ’99, LNCS 1592, pages
223–238. Springer-Verlag, Berlin, 1999.

22. M. O. Rabin. Digitalized Signatures. In R. Lipton and R. De Millo, editors, Foundations of Secure Computation,
pages 155–166. Academic Press, New York, 1978.

23. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public Key Cryptosystems.
Communications of the ACM, 21(2):120–126, February 1978.

24. A. Sahai. Non-Malleable Non-Interactive Zero-Knowledge and Chosen-Ciphertext Security. In Proc. of the 40th
FOCS. IEEE, New York, 1999.

25. V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In Eurocrypt ’97, LNCS 1233, pages
256–266. Springer-Verlag, Berlin, 1997.

26. F. Zhu, A. H. Chan, D. S. Wong, and R. Ye. Password Authenticated Key Exchange based on RSA for Imbalanced
Wireless Network. In Proc. of ISC ’02, LNCS 2433, pages 150–161. Springer-Verlag, Berlin, 2002.

