
Designs, Codes and Cryptography, Volume 28, Number 1, January 2003. Pages 5–32.

A New NP-Complete Problem

and Public-Key Identification

David Pointcheval and Guillaume Poupard

1 Département d’Informatique, École normale supérieure, Paris, France
David.Pointcheval@ens.fr

2 Direction Centrale de la Sécurité des Systèmes d’Information, Paris, France
Guillaume.Poupard@m4x.org

Abstract. The appearance of the theory of zero-knowledge, presented by Goldwasser, Micali and Rackoff
in 1985, opened a way to secure identification schemes. The first application was the famous Fiat-Shamir
scheme based on the problem of modular square roots extraction. In the following years, many other
schemes have been proposed, some Fiat-Shamir extensions but also new discrete logarithm based schemes.
Therefore, all of them were based on problems from number theory. Their main common drawback is high
computational load because of arithmetical operations modulo large integers. Implementation on low-cost
smart cards was made difficult and inefficient.

With the Permuted Kernels Problem (PKP), Shamir proposed the first efficient scheme allowing for an
implementation on such low-cost smart cards, but very few others have afterwards been suggested.

In this paper, we present an efficient identification scheme based on a combinatorial NP-complete prob-
lem: the Permuted Perceptrons Problem (PPP). This problem seems hard enough to be unsolvable even
with very small parameters, and some recent cryptanalysis studies confirm that position. Furthermore, it
admits efficient zero-knowledge proofs of knowledge and so it is well-suited for cryptographic purposes.
An actual implementation completes the optimistic opinion about efficiency and practicability on low-cost
smart cards, and namely with less than 2KB of EEPROM and just 100 Bytes of RAM and 6.4 KB of
communication.

Keywords: Zero-Knowledge Identification, (Permuted) Perceptrons Problem, NP-Complete Problem,
Simulated Annealing

1 Introduction

An interactive identification protocol involves two entities, Alice and Bob. Alice tries to convince Bob
that she is really Alice. She has a public key that everybody knows and an associated private key only
known to her and that nobody else can compute. In order to identify herself, Alice proves that she
knows this private key. Usually the public key is an instance of a difficult problem while the private
key is one of its solutions.

The theory of zero-knowledge [18] shows that one can prove some knowledge in such a way that the
verifier gets the conviction that the prover really knows without learning anything else. The first zero-
knowledge protocols were based on number theoretical problems (Fiat-Shamir [9] and its variants [19,
27, 28] which are based on modular roots [40], Schnorr [41] which is based on the discrete logarithm
problem). Even if they had, more or less recently, numerous improvements [22, 4, 12, 14, 5, 15, 43, 35–37,
33], they have two major drawbacks, both linked to the underlying problems.

– The different problems (factorization, RSA and the discrete logarithm problem), which are used
because of there strong algebraic properties, are related. Then a breakthrough would probably
involve many, and possibly, all of them. As one can remark, for the moment, the same NFS
technique provides the best algorithm against all of them.

– Modular operations using a large modulus, like multiplications or exponentiations, are hard to
perform. Even if they are practical on smart cards using arithmetical co-processors, such devices
are still expensive (at least twice or three times the price of the cheapest chips).

c© Kluwer Academic Publishers 2003.

2

1.1 Related Work

In order to circumvent the heavy computational load of previous protocols based on number theoretical
problems, new schemes have appeared since 1989. They rely on combinatorial NP-complete problems
and require only operations involving very small numbers: the Permuted Kernels Problem (PKP) [42],
the Syndrome Decoding (SD) [44, 46] or Constrained Linear Equations (CLE) [45]. But this list is
almost exhaustive.

1.2 Achievement

This paper investigates the so-called “Perceptrons Problem”, an NP-complete problem which comes
from learning machines. It has been introduced in cryptography by the first author [31, 32]. Then,
Knudsen and Meier [23] improved the analysis of the problem difficulty.

The statement of Perceptions Problem is very simple: given m vectors X i with coordinates equal
to +1 or −1 (X i ∈ {−1,+1}n) as constraints, one wants to find a vector V ∈ {−1,+1}n such that all
the products X i · V , for i = 1, . . . ,m, are nonnegative.

1.3 Outline of the Paper

After a more precise description of this problem and some variants, namely the Permuted Perceptrons
Problem, we study their properties in the complexity theoretic setting. Next, we provide a more
practical-oriented analysis of their difficulty in order to evaluate the size of the parameters required
for cryptographic purpose. Then, we present some zero-knowledge interactive identification protocols
based on the Permuted Perceptrons Problem, with an evaluation of their security. Finally we show
that those protocols are well-suited for smart card applications: an implementation has been realized
and we present the performance.

2 The Perceptrons Problems

This section is devoted to formally present the main problems from a complexity theoretic point of
view. We first study the Perceptrons Problem. Then, we focus on a sub-case, the Permuted Perceptrons
Problem.

2.1 The Perceptrons Problem

Let us first present this new problem. Then, we state several properties in the complexity theory
setting: this problem is NP-complete, and its optimization variation is Max-SNP-hard.

We call the following problem the Perceptrons Problem (or PP) because of its similarities with the
“Ising Perceptron Problem” in learning theory. This latter problem consists in learning a half-space
given some samples in the N -dimensional unit ball classified according to whether they are in the
half-space or not. The designation “Ising” refers to the ±1 constraint, which is present in the original
Ising model of magnetism with N interacting spins.

In the following, we call an ε-matrix (resp. an ε-vector) a matrix (resp. a vector) which components
are either +1 or −1. Furthermore, all the products between matrices and vectors are made in the ring
of integers, denoted

�
.

Problem 1 (The Perceptrons Problem – PP).
Given: an ε-matrix A of size m × n.
Question: is there an ε-vector Y such that A · Y ≥ 0?

Theorem 2. The Perceptrons Problem is NP-complete.

3

Proof. As usual, this proof needs two steps: first this problem lies in NP and it is furthermore NP-
hard.

PP ∈ NP . First, this problem is clearly in NP. A witness is an n-dimensional ε-vector, and its
correctness can be checked, by a simple matrix multiplication, within time O(mn).

PP is NP-hard. In order to prove that this problem is NP-hard, we polynomially reduce an
instance C = {C1, . . . , Cq} of 3-SAT into an instance of PP .

The intuition behind the reduction relies on a specific coding of clauses and truth assignments, both
as vectors. It is made in such a way that an unsatisfied clause provides a smaller dot product, between
its coding vector and the truth assignment coding, than a satisfied clause. More precisely, it provides
-6 whereas a satisfied one provides -2, 2 or +6. In a second step, we add some constraints to make a
PP solution vector to be a valid coding of a truth assignment. Finally, we add some components to
increase the dot products from -2 to 0.

Initialization: A 3-SAT instance C, with parameters (q, k), consists of q 3-clauses: for any i, the
clause C i is the disjunction of three distinct literals {`i

1, `
i
2, `

i
3} over the k boolean variables x1, . . . ,

xk. More concretely, for any j, `i
j ∈ {x1, x̄1, . . . , xk, x̄k}.

First Step: Each C i is first encoded by an ε-vector X i of size 2k which components depend on the
presence or absence of each literal: for any p ∈ {1, . . . , k},

Xi
p = Xi

p+k =

{

+1 if xp ∈ Ci,
−1 if x̄p ∈ Ci,

Xi
p = −X i

p+k = +1 otherwise.

In the same way, any truth assignment D is also encoded by an ε-vector V of size 2k: for any
p ∈ {1, . . . , k},

Vp = Vp+k =

{

+1 if xp ∈ D,
−1 if x̄p ∈ D.

Therefore, with both encodings, one can remark that variables xp which are not in C i do not
participate to the dot product, since whatever the related truth value, it leads to either +1 − 1 = 0
or −1 + 1 = 0. On the contrary, a satisfied literal in C i participates with +2, whereas an unsatisfied
literal participates with −2. As a consequence, since a clause is satisfied if at least one of its literals is
true:

Ci is satisfied under D ⇐⇒ X i · V ∈ {−2,+2,+6},
Ci is not satisfied under D ⇐⇒ X i · V = −6.

Second Step: However, an ε-vector V actually encodes a truth assignment if Vp = Vp+k for any
p ∈ {1, . . . , k}. Let us add further constraints with the k following ε-vectors Z 1, . . . , Zk: for any
j ∈ {1, . . . , k} and for any p ∈ {1, . . . , k},

Zj
p = −Zj

p+k =

{

+1 if p = j,
−1 if p 6= j.

An ε-vector V actually encodes a truth assignment if and only if Z j · V = 0 for any j ∈ {1, . . . , k}.
Therefore, a solution V to the following system

{

Xi · V ≥ −2 for i = 1, . . . , q,
Zj · V = 0 for j = 1, . . . , k.

encodes a valid truth assignment which satisfies all the clauses C i, for i = 1, . . . , q.

4

Final Step: In order to make the inequalities relative to zero, we add two components to each
vector: we extend every X i in X̃i with two more components equal to +1, and we force the new
components of V to be +1 extending every Z j into Z̃j

+ with (+1,−1) and Z̃j
− with (−1,+1):

X̃i = (X i,+1,+1), for any i ∈ {1, . . . , q},
Z̃j

+ = (Zj,+1,−1) and Z̃j
− = (Zj,−1,+1), for any j ∈ {1, . . . , k}.

Therefore, an ε-vector Ṽ of size 2k + 2 which satisfies

X̃j · Ṽ = Xj · V + Ṽ2k+1 + Ṽ2k+2 ≥ 0 for j = 1, . . . , q,

Z̃j
+ · Ṽ = Zj · V + Ṽ2k+1 − Ṽ2k+2 = 0 for j = 1, . . . , k,

Z̃j
− · Ṽ = Zj · V − Ṽ2k+1 + Ṽ2k+2 = 0 for j = 1, . . . , k,

furthermore satisfies Z j · V = 0 for j = 1, . . . , k and thus Ṽ2k+1 = Ṽ2k+2 which thus leads to Xj · V ≥ −2
for i = 1, . . . , q.

Then, we have polynomially transformed an instance of 3-SAT with q clauses over k variables,
into an instance of PP of size m × n with m = q + 4k and n = 2k + 2.

The problem PP is difficult to solve in the worst case, but what about its approximation? We now
claim that it cannot be efficiently approximated either. First, let us formally define the optimization
problem.

Problem 3 (Optimization Problem – Max-PP).
Given: an ε-matrix A of size m × n.
Question: find an ε-vector Y such that the number of nonnegative

components of the vector A · Y is maximal.

Using notations introduced by Papadimitriou and Yannakakis [29], it is clear that this problem
can be approximated within a factor 2. In fact, for a given instance A, let us denote by k the maximal
number of components of a product A · Y that we can make simultaneously nonnegative with a well-
chosen Y . Considering a random vector and its opposite, we get one for which the product by A admits
more than n/2 nonnegative components, which is greater than k/2, since k ≤ n.

Nevertheless, from the following theorem, there exists a constant ε > 0 for which one cannot
approximate this problem within a factor 1 + ε, unless P = NP .

Theorem 4. Max-PP is Max-SNP-hard.

Proof. The proof is similar to the previous one (for Theorem 2), but we provide an L-reduction [29] from
the canonical Max-SNP-complete problem: Max-2-SAT . An L-reduction is a polynomial reduction
from the original problem P1 into the other problem P2, for which there also exists a polynomial
algorithm which transforms any solution of P2 into a solution of P1 with a linear ratio. Therefore, if
one can linearly approximate P2 (within a factor 1 + ε), one can also linearly approximate P 1.

Basically, we encode the same way as before, a 2-clause, but this time, a satisfied 2-clause provides
a nonnegative dot product between its coding vector and the truth assignment coding. Then, we add
many constraints (which can be satisfied altogether) to enforce the optimal solution to be a valid truth
assignment coding.

With so many easily satisfied 2-clauses, one can show that any good approximation (within a
factor 1+ε) for the obtained Max-PP instance can be proven to satisfy all the additional constraints,
then it encodes a truth assignment. Each other satisfied inequality exactly corresponds with a satisfied
clause.

5

3 The Permuted Perceptrons Problem

As we have just seen, the Perceptrons Problem is NP-complete. Consequently, according to a very
general result [17], it admits a zero-knowledge interactive proof of knowledge. This latter could be
turned into a zero-knowledge identification protocol. Nevertheless, in order to get an efficient protocol,
we define a variant of this problem: the Permuted Perceptrons Problem (or PPP). For this new
problem, we need the notion of multi-sets of size m denoted by {{a1, . . . , am}}. The multi-sets are
simply sets which may contain some repeated elements.

Problem 5 (The Permuted Perceptrons Problem – PPP).
Given: an ε-matrix A of size m × n

and a multi-set S of m nonnegative integers.
Question: is there an ε-vector Y such that

the multi-set S is equal to {{(A · Y)i|i = 1, . . . m}}?

Theorem 6. The Permuted Perceptrons Problem is NP-complete.

Proof. For this proof, we reduce an instance of the NP-complete problem One-In-Three 3-SAT [10]
into an instance of PPP . The One-In-Three 3-SAT problem consists in solving a 3-SAT instance
in such a way that in each 3-clause, exactly one literal is true.

More precisely, the obtained PPP instance relies in particular sub-group of instances, namely
where S = {{0, . . . , 0}}. Indeed, using exactly the same reduction as for Theorem 2, satisfied clauses
in the one-in-three sense lead to the equation X i · V = −2 and the system to solve becomes:

{

Xi · V = −2 for i = 1, . . . , q,
Zj · V = 0 for j = 1, . . . , k.

which makes a solution V to encode a valid truth assignment which satisfies all the clauses C i in the
one-in-three sense, for i = 1, . . . , q. Adding the same two-components, we make a system with only
equalities with 0.

Since a sub-problem of PPP is NP-complete, the general PPP problem is also NP-complete.

4 Security of the Problem

In this section, we analyze the practical security of the two problems we have just presented. Since
they have never been used in computer science for cryptographic purposes, a careful analysis of their
complexity is necessary. Notice that the NP-complete property does not guarantee that those problems
are really well fitted for cryptographic applications because two additional properties also have to be
verified.

– First, the size of the parameters that one has to use in order to prevent known attacks must not
lead to inefficiency in terms of computation load or amount of transmission.

– Furthermore, the NP-completeness only guarantees the existence of worst cases which solutions
are hard to compute, but we need a much stronger property: all, but at most a negligible part of
the instances, must be hard to solve.

In the following, we only focus on odd values for m and n, for technical reasons. We note m = 2q+1
and n = 2p + 1. First, we study the link between m and n in order to have, on average, only one
solution per instance of PPP . Then we review several attacks against PP and we extend them to
PPP . Finally, we propose practical sizes for cryptographic purpose.

6

4.1 Number of Solutions for PP and for PPP

As we will see in the following, the choice of the parameters m and n depends on the efficiency of
the attacks. But we can first try to find a relation between them to maximize the complexity of any
attack. On the one hand, if m is too large the system will be too constrained. In fact, let us consider
the “Ising Perceptron Problem” where a vector V ∈ {+1,−1}n is given, it defines the half-space
V · X ≥ 0 denoted HV , as well as a number m of samples X1, . . . , Xm in the n-dimensional unit ball
classified according to whether they are in HV or not. Baum, Boneh and Garrett [2] proved that their
genetic algorithm can find V for m = O(n). On the other hand, if m is too small there will be a lot
of solutions. In both cases, most of the attacks will be more efficient, so we suggest to take m and n
such that PPP admits, on average, just one solution. To do so, we need to know the average number
of solutions for PP when we know there is at least one and the probability to get a given multi-set S.

In order to evaluate the expected number of solutions, we have to make precise the probability
distribution followed by the inputs A and V . In the sequel, we use the natural distribution which
comes from the following construction:

– one uniformly chooses random ε-vector V and ε-matrix A.
– for every row Ai of A, if Ai · V < 0 then one replaces this row by its opposite.

Now, we evaluate, by a combinatorial method, the total number of solutions for such an instance of
PP which admits at least one solution: the private key. Let α ∈ {−n, . . . , n} and X, V be two ε-vectors
such that X ·V = α. Let us use dH to denote the Hamming distance between two vectors (the number
of distinct coordinates), and #S to denote the cardinality of a given set S. For any integers k and δ,
and for any ε-vector W such that dH(W,V) = k and X · W = δ, we have

X · W = #{i Wi = Xi} − #{i Wi 6= Xi} = δ
(

n + α

2
− β + γ

)

−
(

n − α

2
− γ + β

)

= α + 2γ − 2β,

where every parameters are defined as described on the figure 1, and namely with the relation
k = β + γ. Therefore, one gets

β(k, α, δ) =
k

2
− δ − α

4
and γ(k, α, δ) =

k

2
+

δ − α

4

with the constraints 0 ≤ β, γ ≤ k, 0 ≤ β ≤ (n + α)/2 and 0 ≤ γ ≤ (n − α)/2. Then, δ lies in the set

E(n, k, α) =

{

δ − α ∈ 4
�

−2 · min{k, n − k + α} ≤ δ − α ≤ 2 · min{k, n − k − α}.

}

.

Let us consider the ε-vectors W at an even distance k from V (i.e. k ∈ 2 �):

Pr
W

dH(V,W)=k

[X · W = δ|X · V = α] =
f(n, k, α, δ)

(n
k

) ,

←−−−−−−−−−−−−−−−−−−−−−− n −−−−−−−−−−−−−−−−−−−−−−→
X

Xi = Vi Xi 6= Vi

←−−−−−−−−− n+α
2
−−−−−−−−−→ ←−−−−−−− n−α

2
−−−−−−−→

Wi = Vi Wi 6= Vi

...Wi 6= Vi Wi = Vi

←− β −→
...←− γ −→

Wi = Xi Wi 6= Xi Wi = Xi Wi 6= Xi

←−−−−− k −−−−−→

Fig. 1. Number of solutions of PP

7

where f(n, k, α, δ) =

(

n+α
2

β(k,α,δ)

)(

n−α
2

γ(k,α,δ)

)

.

By summing over every nonnegative δ, we get the probability for W to provide a nonnegative dot
product with V . Thus, for any vector Y , the number of solutions at even distance k from V , such that
A · V = Y , is equal to

N(m,n, k, Y) =

m
∏

i=1

∑

δ∈E(n,k,Yi)
δ≥0

f(n, k, Yi, δ)
(

n
k

) .

Then, by summing over every possible even distance k, we get the number of solutions at even distance
from V such that A · V = Y , denoted by N(m,n, Y).

Consequently, we can evaluate the average number of solutions N(m,n) for an instance of size
m × n, when the known solution vector Y = A · V follows a normal distribution, which will be the

case in practice, i.e. pn,α = Pr[Yi = α] ≈ e−
α2

2n

√

8/πn if α is even, and 0 otherwise.
Let Sm be a multiset with m nonnegative integers. We will use the following notations:

Notation 1 Pm,n,Sm = PrY [{{(A · Y)i}} = Sm | A · Y ≥ 0].

Notation 2 |Sm|j represents the number of elements of Sm equal to j.

If the rank of A is maximal, i.e. there exists an m-size submatrix R of A with an invertible determinant
in

�
, then

Pm,n,Sm = m!

j=n
∏

j=1

p
|Sm|j
n,j /|Sm|j !

. Furthermore, it is clear that the probability Pm,n,Sm is maximal if Sm is equal to the “normal”
multiset Σm, which follows a normal distribution (i.e. |Σm|i = m × pn,i). Thus, for any multiset Sm,
Pm,n,Sm ≤ Pm,n,Σm .

We can conclude that the number of solutions of an instance of PPP , for a given multiset Sm, can
be approximated by N(m,n) × Pm,n,Sm and therefore upper-bounded by N(m,n) × Pm,n,Σm .

On figure 2, one can check the correctness of this evaluation by comparing its answers with some
concrete tests:

– NPP and PΣm are the above evaluations for a given size m × n;
– E[NPPP] is an upper-bound on the expected number of solutions for a PPP instance of size m×n

from the above analysis;
– EC [NPP] and EC [NPPP] are the average numbers of solutions over 50 tests on instances of size

m × n.

m n NPP PΣm E[NPPP] EC [NPP] EC [NPPP]
11 17 148 0.017 3 181 3
13 17 65 0.013 1 76 1
13 19 212 0.010 2 238 2
15 19 65 0.007 1 82 1
17 21 107 0.004 1 141 1
19 23 105 0.003 1 119 1
21 25 160 0.002 1 170 1

Fig. 2. Some examples

If we want only one solution (or at least very few), on average, we have to choose m and n such
that the product N(m,n) × Pm,n,Σm is close to 1. We have presented such values on figure 3. We can
notice that the “good” sizes, around 100, are of the form n = m + 16.

8

4.2 Attacks against the Perceptrons Problem

A New Coding Let us now focus on how to solve the Perceptrons Problem. We can first remark that
PP can be transformed into an equivalent problem more suitable for implementations. It operates on
0-1 bits, instead of +1 and −1, and exclusive OR together with Hamming weight wH , instead of dot
product.

Problem 7.
Given: a binary matrix A of size m × n,
Question: find a binary vector V such that wH(Ai ⊕ V) ≤ n/2 for all i.

This does not lead to an attack of the problem but it gives a way to improve the computations, using
the native internal parallelism of the XOR operation, on 32-bit and 64-bit processors.

Approximation of the Solution Even if the theoretical analysis of Max-PP proves that it is
difficult to approximate (see Theorem 3), we can try to find a vector M such that A · M has many
positive coordinates. The first one which comes to mind, and that we call the majority vector, consists
of taking Mj = +1 if there are more components Ai,j equal to +1 than to −1, and Mj = −1 otherwise.
The following analysis proves two paradoxical results. First, the majority vector does not differ so much
from the solution we are looking for. But, even if we know that a large part of the coordinates is correct,
the number of vectors that still have to be tested in order to find a solution is very large, even if the
parameters m and n are small.

Lemma 8. The Hamming distance between the solution of an instance and the majority vector is, on
average, n ×

(

1
2 − 1

π

√

m
n

)

.

Proof. We consider the same probability for A and V as described in section 4.1, namely: one randomly
chooses an ε-matrix A′ and an ε-vector V and sets Ai = A′

i if Ai · V > 0 and Ai = −A′
i otherwise. If

m and n are chosen in order to have, on average, one solution per PPP -instance, we can say that V
is “the” solution.

Let us first recall that we assume that m = 2q+1 and n = 2p+1. Let us compare V and the majority
vector M . The probability for V and A′

i to have exactly r identical coordinates is 1
2n

(

n
r

)

. Consequently,

the average number of identical coordinates between V and Ai is equal to
1

2n+1
×

∑

2r>n

r
(

n

r

)

. Using

the well known identities
p

∑

i=0

(

2p+1

i

)

=

2p+1
∑

i=p+1

(

2p+1

i

)

= 22p

and
2p+1
∑

i=p+1

i
(

2p+1

i

)

=
2p + 1

2

(

22p +

(

2p

p

))

,

m n N(m, n) Pm,n,Σm

optimal
101 117 9.4 × 109 8.3 × 10−11

121 137 1.7 × 1011 8.6 × 10−12

151 169 2.1 × 1013 5.9 × 10−14

171 187 1.7 × 1014 5.0 × 10−15

191 207 2.3 × 1015 4.1 × 10−16

201 217 8.7 × 1015 1.2 × 10−16

Fig. 3. Optimal dimensions for PPP

9

and the approximation

2−n

(

2p

p

)

≈ 1√
2πn

,

which comes from the Stirling’s approximation of n!, we obtain that the probability Fn that Ai,j = Vj

is

Fn =
1

n
× 2−(n+1)

∑

2r>n

r
(

n

r

)

=
1

2
+ 2−n

(

2p

p

)

≈ 1

2
+

1√
2πn

.

Let Gm,n be the probability to have more than one half of the {Ai,j}i<m equal to Vj for any j. It can
be computed, using again above equations and approximations in the following way:

Gm,n =

2q+1
∑

s=q+1

(

m

s

)

(1 − Fn)m−sFn
s ≈ 1

2m

2q+1
∑

s=q+1

(

2q+1

s

)

(

1 +
2s − m√

πp

)

≈ 1

2m

(

1 − m√
πp

)

2m−1 +
1

2m

2√
πp

m

2

(

2m−1 +

(

2q

q

))

,

which can be approximated by 1
2 + m

2π
√

pq . In conclusion, the Hamming distance between the solution

V and the majority vector M is about n ×
(

1
2 − 1

π

√

m
n

)

.

For example, with the sizes suggested on figure 3, this shows that about 80% of the coordinates of
the majority vector are correct. So a first way to solve PP consists of computing the majority vector
and then testing vectors which differ in less than 20% of the coordinates. But there are more than
(

n
0.2×n

)

such vectors and as soon as n ≥ 91 the time complexity of this attack is greater than 264.

We can try to improve this algorithm by first modifying the coordinates corresponding to columns
which number of +1 is not very different from the number of −1. But many wrong coordinates of the
majority vector come from non-ambiguous cases so that the efficiency is not really improved.

0000000000000++++---
00000000++--+0-00-0+
00000+++00+0--+0--++
000--+0--0++00+0-0++

V

>0

+:=+1 and -:=-1

00000000++--+0-00-0+
00000+++00+0--+0--++
000--+0--0++00+0-0++

V

0000000000000++++---

>0 ?

+:=+1 and -:=-1

Fig. 4. A deterministic algorithm to solve PP

A Deterministic Attack Another idea to solve PP is based on trying to use the structure of the
matrix A and to perform a kind of Gaussian reduction.

More precisely, if Ai·V > 0 and Aj ·V > 0 then (Ai+Aj)·V > 0. Furthermore, the vector (Ai+Aj)/2
has on average n/2 null coordinates. From all the pairs of rows of A, a system of m(m−1)/2 inequalities
is obtained and after the permutation of the rows and columns we can hope to obtain a system which
looks a bit like a triangular one (see figure 4, on the left part).

For more concreteness, let us focus on the example (m,n) = (101, 117). We obtain a system of

m(m − 1)/2 = 5050 equations. The average number of rows with k zeros is m(m−1)
2

1
2n

(n
k

)

. As a
consequence, the average number of rows with k = 77 null coordinates is approximatively one. So,

10

with high probability, there is a row with 77 null coordinates. It is chosen as the first inequality and
the columns are permuted in order to have all the zeros ahead. Then, we can make the same analysis
with the remaining rows, considering only the first 77 coordinates. This leads, with high probability,
to a second row with 54 zeros ahead. Finally, we can expect to obtain a system of the form described
in figure 5.

row 1 2 3 4 5 6 7
number of zeros ahead 77 54 40 31 25 21 19

Fig. 5. Expected system

Once we have this system, we enumerate all the vectors of n − 77 = 40 coordinates obtained by mod-
ifying at most a fixed proportion p of the last 40 coordinates of the majority vector (see figure 4, on
the right part). For all those vectors which product with the first row is positive (this happens with
probability about 1/2), we enumerate the 77 − 54 = 23 previous coordinates in the same way and so
on.

Finally, this leads to an algorithm that solves the problem with an expected number of elementary
operations (product of two vectors) equal to

(

40
p × 40

)[

1 +
1

2

(

23
p × 23

)[

1 +
1

2

(

14
p × 14

)

[. . .]

]]

The value of the proportion p of coordinates that have to be changed have been statistically estimated
and we obtained a complexity roughly equal to 281. Furthermore, the algorithm can solve one instance
out of ten with complexity 261.

We investigated some ways to improve this deterministic algorithm. For example the fixed propor-
tion of modified coordinates of the majority vector can vary from one step to another. Furthermore,
one can try to add more than two rows of A to obtain rows with more than 77 zeros. However, we did
not really improve the efficiency of the algorithm with such modifications.

A Probabilistic Attack Another way to solve PP is to use a probabilistic algorithm which tries
to find a solution by successive approximations. It starts with a random vector and modifies it in
order to reduce the Hamming distance to the solution. Many such algorithms are known, from the
simple gradient descent to genetic algorithms [21, 8, 16]. We have chosen to implement the simulated
annealing method but, because of the general lack of theoretical understanding of its mechanism, we
can just give the actual results we obtained. However, we will see in section 4.3 that this is actually
not a real problem.

We first need to define the neighborhood Ngb(V) of any ε-vector V , i.e. the vectors that are
considered not to be very different, and an energy function E(V) which quantifies the distance from
the vector V to a solution of PP . The algorithm starts with a random vector V and chooses a vector
V ′ in its neighborhood. If the energy of V ′ is less than E(V), V ′ becomes the current vector and so on.
In order to avoid local minima, V ′ can also replace V even if its energy is higher but the probability of
such an event decreases with time, like the temperature during metal annealing. A detailed description
is presented on figure 6. It is parameterized by the initial temperature Θi, the final one Θf and the
rate τ .

Many energy functions can be used. For example, the number of indices i such that Ai ·V < 0 is a
possible choice, but the sum of −Ai · V over the indices such that Ai · V < 0 (i.e. −∑

i,Ai·V <0 Ai · V)
is much more efficient. The neighborhood of any vector can be defined as the vectors obtained by
changing only one coordinate.

11

1. Choose a random vector V
2. Let Θ = Θi

3. Choose V ′ ∈ Ngb(V)
4. Let ∆ = E(V ′)−E(V)
5. If ∆ > 0 then p = exp(−∆/Θ)

else p = 1
6. With probability p, let V = V ′

7. Let Θ = Θ × τ
8. If E(V) > 0 and Θ > Θf go to 3.

Fig. 6. Simulated annealing algorithm

As an example, with our implementation, the average time to find a solution for a 101 × 117-size
instance is 3.5 seconds with an old 50 MHz Sparc 10.

Recently, Knudsen and Meier [23] improved this attack, finding better energy functions. As a
consequence, they obtained an algorithm that solves PP 280 times faster than was estimated in [32].
This shows how it is difficult to tune the parameters of such probabilistic algorithms.

4.3 Attacks against the Permuted Perceptrons Problem

At first sight, the Permuted Perceptrons Problem gives much more information about the solution than
the basic Perceptrons Problem. In fact, it is straightforward to obtain one bit of the solution based on
the public data but we have not been able to use more efficiently the knowledge of {{Si}}. Let α (resp.
αi) be the number of coordinates of V (resp. Ai) equal to +1. We have Ai · V = n + 2α + 2αi mod 4.
Consequently, from Si mod 4, we learn α mod 2, i.e. one bit of the private key.

PPP is hard to solve because of the permutation of the values Si. If this permutation were known,
a single Gaussian reduction of the matrix would lead to the solution but the guess of this permutation
seems computationally infeasible. Furthermore, if we want to use simulated annealing algorithms
or genetic algorithms to directly solve PPP , we have to find a good energy function (or fitness
function). One which should suit well is defined as follows: E(V) =

∑

i |Ti − Ri|, where T = sort(S)
and R = sort(A · V). But, on average, the energy difference between two neighbors is similar to the
energy difference between two random points. It therefore does not provide any kind of continuity,
which does not help the algorithm to converge to the solution. So, the only way to solve PPP seems
to get a solution of the related Perceptrons Problem and test whether it solves PPP or not. It may
be possible to make the Perceptrons Problem algorithm to more likely find a PPP solution than any
one else, as attempted to do Knudsen and Meier [23], but the improvement is not so significant.

For suggested parameters (m,n), an instance of PPP has about one solution but there are so many
solutions for the related Perceptrons Problem that, even if we are able to compute them efficiently,
the time needed to find the good one is still very large.

According to our experiments and those of Knudsen and Meier, we therefore advise (m,n) =
(121, 137) as a minimal choice, and may be (201, 217) for very secure applications.

Note 9. When the problem PP is modified into PPP , it could seem surprising to keep the positivity
constraint on the values Si. The basic reason is that this enables to have instances with, on average,
just one solution. After such an observation, and since known attacks against PPP are derived from
attacks on PP , we could imagine to choose another constraint on the Si to reduce the average number
of solutions, for example |Si| > k instead of Si > 0. But, doing this, we would no longer be able to
generate instances with known solutions.

12

5 Application to Cryptography

Since small sizes of the parameters are enough to get a difficult problem, we propose to use it for
identification protocols. So, we present two schemes which security is equivalent to the Permuted
Perceptrons Problem.

5.1 The Three-Pass Identification Protocol

We first present a three-pass protocol, for a given security parameter k. Let us describe this scheme in
two phases: the initialization and the identification. In PPP , the arithmetical operations are performed
in

�
, however, the protocol needs to perform those operations in a finite set, the modular finite ring

�
p. Therefore, we have to determine the smallest value of p such that the reduction modulo p of the

operations does not modify the problem. More precisely, let V be an ε-vector of odd size n and S be a
positive and odd integer. We are looking for p such that V · Y = S is equivalent to V · Y = S mod p,
for any ε-vector Y . Since V · Y is odd, we require that V · Y = S + 2kp ⇐⇒ V · Y = S. Furthermore,
|V · Y − S| < 2n so the equivalence occurs as soon as p > n.

Then, we have a public integer p > n which defines the ring in which all the computations will
be done, together with a public hash function H. Next, any user chooses his public and private keys,
(A,S) and V as described above.

The global identification scheme consists of k sequential iterations of the following protocol, where
any random choice is performed uniformly in the finite space:

– the Prover chooses a random permutation P to permute the rows of A, and a random signed
permutation Q, to permute and possibly change the sign of the columns. Then, he chooses a
random vector W in (

�
p)

n.

– the Prover computes the new instance A′ = PAQ, with the new solution V ′ = Q−1V . The
multi-set remains unchanged.

– the Prover masks V ′ with the (previously randomly chosen) vector W into the vector R = V ′+W .

– Then, he begins interactions with the Verifier:

• the Prover computes the commitments of all the elements randomly chosen above h0 = H(P |Q)
and h1 = H(W) as well as the following commitments, h2 = H(R), h3 = H(A′W) and h4 = H(A′R).
Then, he sends all of them, h0, h1, h2, h3 and h4, to the Verifier.

• the Verifier chooses a random question c ∈ {0, 1, 2, 3}, and sends it to the Prover.

• the Prover answers according to the query c

if c = 0, he sends P , Q and W ;
if c = 1, he sends P , Q and R;
if c = 2, he sends A′W and A′V ′;
if c = 3, he sends the vectors W and V ′;

• the Verifier accepts after having checked, according to his query c:

for c = 0, if h0 = H(P |Q), h1 = H(W) and h3 = H(PAQW);
for c = 1, if h0 = H(P |Q), h2 = H(R) and h4 = H(PAQR);
for c = 2, if h3 = H(A′W), h4 = H(A′W + A′V ′) and {{(A′V ′)i}} = S;
for c = 3, if h1 = H(W), h2 = H(W + V ′) and V ′ ∈ {−1,+1}n.

If the Verifier accepts the k iterations, then he accepts the identification, otherwise, he rejects it.

We first state a lemma which proves the soundness of this interactive proof system.

Lemma 10. Let A be a probabilistic polynomial time Turing machine which can perform an imperson-

ation with probability π =
(

3
4

)k
+ ν, for some ν > 0. Then there is another machine which has control

over A and solves the Permuted Perceptrons Problem, or finds a collision for the hash function, with
probability greater than 3ν2/14 after less than 1 + 4k calls to A.

13

Proof. This proof is mostly inspired by [46], where one assumes that an attacker A can perform an

impersonation with probability π =
(

3
4

)k
+ ν for some ν > 0. Let us denote by ω and ω ′ the random

tapes of this adversary and of the Verifier respectively, and by I the list of the challenges asked by
the Verifier. It is clear that I is a random variable which may depend on both ω and ω ′. However,
in that proof, we only consider honest verifiers who uniformly, and independently from anything else,
chooses I. We can therefore identify ω ′ and I. Let us denote by S the set of the pairs (ω, I) which
lead to acceptance: Pr[(ω, I) ∈ S] = π. Let us define the set Ω = {ω PrI [(ω, I) ∈ S] ≥ π − ν/2}. If we
assume that Pr[Ω] < ν/2, then

π = Pr[S] = Pr[S Ω] · Pr[Ω] + Pr[S Ω̄] · Pr[Ω̄] < ν/2 + (π − ν/2) = π,

which implies a contradiction, so Pr[Ω] ≥ ν/2. Furthermore, using Bayes’ law one can show that

Pr[Ω S] = 1 − Pr[Ω̄ S] = 1 − Pr[S Ω̄] × Pr[Ω̄]/Pr[S] ≥ 1 − (π − ν/2)/π = ν/2π.

Consequently, if we run an attack for randomly chosen (ω, I), with probability greater than π,
(ω, I) ∈ S. In that latter case, with probability ν/2π, we furthermore have ω ∈ Ω. Let us assume
that holds in the following of the proof, therefore, PrI [(ω, I) ∈ S] ≥ π − ν/2. Let us consider the ex-
ecution tree T (ω) corresponding to all accepted I, with above ω. Using arguments analogous to [46],
we denote by ni the number of nodes at depth i. We know that n0 = 1 and nk = 3k + 4kν/2 (since
nk/4

k = PrI [(ω, I) ∈ S] ≥ π − ν/2). Using a convexity relation on the logarithm of the following rela-
tion,

k−1
∏

i=0

ni+1

ni
=

nk

n0
≥ 3k +

ν

2
· 4k ≥ (1 − ν

2
) · 3k +

ν

2
· 4k,

one obtains
k−1
∑

i=0

log
ni+1

ni
≥ (1 − ν

2
) log 3k +

ν

2
log 4k ≥ k

(

log 3 +
ν

2
log(4/3)

)

.

Hence, there exists i < k such that

ni+1

ni
≥ 3 · (4/3)ν/2 = 3 · e ν

2
·log(4/3) ≥ 3 ·

(

1 +
ν

2
· log(4/3)

)

≥ 3 ·
(

1 +
ν

7

)

.

Let us respectively denote by fi and ti the number of nodes at depth i with exactly 4 sons and the
number of nodes at depth i with at most 3 sons:

ni = fi + ti and ni+1 ≤ 4fi + 3ti = fi + 3ni.

Therefore, 3 + fi/ni ≥ 3 + 3ν/7, which implies fi/ni ≥ 3ν/7. And so, with probability greater than
3ν/7, the path I contains a node with 4 sons. In that case, we can find it by trying the 4k possible
nodes along this path.

Finally, after less than 4k+1 calls to the machine A, with probability greater than π × ν/2π × 3ν/7 = 3ν 2/14,
we have found a node with 4 sons. Such a node corresponds to the situation where the five commit-
ments h0, h1, h2, h3 and h4 have been made and the attacker can answer the four questions of the
verifier:

c = 0 H(P0|Q0) = h0 = H(P1|Q1) c = 1 (1)
c = 0 H(W0) = h1 = H(W3) c = 3 (2)
c = 1 H(R1) = h2 = H(W3 + V ′

3) c = 3 (3)
c = 0 H(P0AQ0W0) = h3 = H(Y2) c = 2 (4)
c = 1 H(P1AQ1R1) = h4 = H(Y2 + Z2) c = 2 (5)

14

Unless we have found a collision for the hash function H, we can consider that

(1) ⇒ P = P0 = P1,
(1) ⇒ Q = Q0 = Q1,
(2) ⇒ W = W0 = W3,
(3) ⇒ R = R1 = W3 + V ′

3 = W + V ′ mod p,
(4) ⇒ Y = Y2 = P0AQ0W0 = PAQW mod p,
(5) ⇒ Y + Z = Y2 + Z2 = P1AQ1R1 = PAQR mod p

such that V ′ ∈ {−1,+1}n and {{Zi}} = S mod p. Then,

Y + Z = PAQR = PAQW + Z = PAQW + PAQV ′ mod p,

consequently, Z = PAQV ′ mod p. If we let V = QV ′, we have Z = PAV mod p, hence {{(AV)i}} = S mod p.
Since p > n, we have also {{(AV)i}} = S. Finally, we have solved the Permuted Perceptrons Problem
instance in time 4k + 1, with probability greater than 3ν2/14.

Hence the following Theorem:

Theorem 11. If p > n, this protocol is an interactive proof system for PPP .

Proof. This protocol is clearly complete, and the previous lemma proves the soundness: if there exist
a polynomial P and an attacker A which can perform an impersonation, for any security parameter k,
in time t, with probability greater than (3/4)k + 1/P (k), then there exists a machine which can either
extract the secret key or find a collision, in time (4k +1)× t, with probability greater than 3/14P 2(k).

We now assume that m ≤ n and that the rank of the matrix A is equal to m, i.e. there exists an
m × m-sub-matrix K of A with an invertible determinant in

�
p.

Theorem 12. In the random oracle model, or with a secure commitment scheme, if the rank of the
matrix A is equal to m, this interactive proof system is zero-knowledge.

Proof. We want to prove that the interaction between the prover and a possibly crooked verifier
can be simulated by a probabilistic polynomial time Turing machine without the secret, with an
indistinguishable distribution.

Let us denote by Σ the strategy of the crooked verifier: for any history tape hist, and the
view of the five commitments h0, h1, h2, h3, h4, this strategy is used to get an optimal query c:
Σ(ω, hist, h0, h1, h2, h3, h4) outputs a query between 0 and 3. In the case of an honest verifier, this
strategy would be independent of hist, h0, h1, h2, h3, h4, but more generally we consider a crooked one.

Let us describe a probabilistic polynomial time Turing Machine S which builds communication
tapes with an indistinguishable distribution from the real ones. Once again, any random choices are
performed according to uniform distributions in the respective finite sets.

1. S chooses a uniformly random query C ∈ {0, 1, 2, 3}
if C = 0, S randomly chooses P , Q and W . It computes the commitments h0 = H(P |Q), h1 = H(W)

and h3 = H(PAQW) and randomly chooses the strings h2 and h4. Then, it lets x = (h0, h1, h2, h3, h4)
and y = (P,Q,W).

if C = 1, S randomly chooses P , Q and R. It computes the commitments h0 = H(P |Q), h2 = H(R) and
h4 = H(PAQR) and randomly chooses the strings h1 and h3. Then, it lets x = (h0, h1, h2, h3, h4)
and y = (P,Q,R).

if C = 2, S randomly chooses a vector Y such that {{Yi}} = S, and another vector X. Y is supposed to
be PAV and X is supposed to be PAQW . It is clear that Y follows the same distribution as
PAV . But what about the distribution of PAQW ? Let Z ∈ (

�
p)

m. We assume that Y = PAV

15

is fixed, which fixes the permutation P . The probability for PAQW to be equal to Z, over
uniformly distributed Q and W , is equal to

∑

Q #{W |AQW = P−1Z}
2nn!pn

=

∑

Q #{W |AW = P−1Z}
2nn!pn

,

since the Q are invertible. Randomly choosing the (n−m) coordinates, not corresponding to
the sub-matrix K, there is only one solution for the m others. Then the previous probability
is equal to

∑

Q pn−m/(2nn!pn) = 1/pm. S computes the commitments h3 = H(X), h4 =
H(X+Y) and randomly chooses the strings h0, h1 and h2. Then, it sets x = (h0, h1, h2, h3, h4)
and y = (X,X + Y).

if C = 3, S randomly chooses a vector W and an ε-vector E, computes the commitments h1 = H(W),
h2 = H(W + E) and randomly chooses the strings h0, h3 and h4. Then, it lets x = (h0, h1, h2, h3, h4)
and y = (W,W + E).

2. S evaluates c = Σ(ω, hist, x).
3. If c = C then S writes x, c and y, otherwise S rewinds the history tape and goes back to 1 (reset

[18]).

Consequently, if H is a random oracle [3], or represents a secure commitment scheme [7, 20], S simulates
communication tapes with an indistinguishable distribution from a real identification of k rounds after
an expected number of steps bounded by 4 × k.

These results prove the security of this identification scheme even against active attacks relative
to the Permuted Perceptrons Problem.

5.2 The Five-Pass Identification Protocol

As we have seen, the probability of impersonation is only upper bounded by 3/4 at each round. In
order to obtain an acceptable security level (say probability of impersonation less than one over a
million), we have to iterate the protocol 48 times.

The following protocol, the five-pass one, provides a better security level, since the probability of
impersonation is roughly upper bounded by 2/3 at each round.

For any security parameter k, the initialization is the same as before. The identification consists
of k repetitions of the following protocol, where any random choices follow uniform distributions:

– the Prover chooses a random permutation P to permute the rows of A and a random signed
permutation Q to permute and possibly change the sign of the columns. Then he chooses a
random vector W in (

�
p)

n.
– the Prover computes the new instance A′ = PAQ, together with the new solution V ′ = Q−1V .

The multi-set remains unchanged.
Until this stage, everything is the same as in the three-pass protocol, but the Prover waits before
computing R.

– Then, he begins interactions with the Verifier:
• the Prover computes the commitments h0 = H(P |Q), h1 = H(W |V ′) and h2 = H(A′W |A′V ′),

and sends them to the Verifier.
• the Verifier chooses a random t between 1 and p − 1, and sends it to the Prover.
• the Prover masks V ′ with W into the vector R = tW + V ′ and computes h3 = H(R) and

h4 = H(A′R). He sends h3 and h4 to the Verifier.
• the Verifier chooses a random question c ∈ {0, 1, 2}, and sends it to the prover.
• the Prover answers according to the query c

if c = 0, he sends P , Q and R;
if c = 1, he sends A′W and A′V ′;

16

if c = 2, he sends W and V ′.
• the Verifier accepted after having checked, according to his query c

for c = 0, if h0 = H(P |Q), h3 = H(R) and h4 = H(PAQR);
for c = 1, if h2 = H(A′W |A′V ′), h4 = H(tA′W + A′V ′) and the multi-set {{(A′V ′)i}} is equal to

S;
for c = 2, if h1 = H(W |V ′), h3 = H(tW + V ′) and V ′ ∈ {−1,+1}n.

If the Verifier accepts k iterations, then he accepts the identification, otherwise, he rejects it.

Theorem 13. If p is a prime number greater than n, this protocol is an interactive proof system for
PPP .

Proof. The same proof as for the three-pass scheme establishes this Theorem. However, for the sound-
ness, we need p to be prime, so that any non-zero element in

�
p is invertible.

In the reduction, we try to extract two distinct t for which the adversary can answer the three
values for the challenge c. This is not possible if the adversary can answer the three values of c for
just one t, and just two challenges for the other t: which represents 3 + 2(p − 2) successful situations,
and therefore 2(p − 1) + 1 among the 3(p − 1) possible challenges. One more possible success would
give us the possibility to extract what we are looking for.

Lemma 14. If there exist a polynomial P and an attacker A which can perform an impersonation, for
any security parameter k (the number of iterations), with probability greater than ((2p − 1)/(3(p − 1)))k + 1/P (k),
then there exists a machine which can either extract the secret key or find a collision, after less than
3pk calls to A, with probability greater than 3/14P 2(k).

That Lemma proves the Theorem.

Theorem 15. In the random oracle model, or with a secure commitment scheme, if the rank of the
matrix A is equal to m, for any fixed prime p greater than n, this interactive proof system is zero-
knowledge.

6 Practical Identification Scheme

In this section, we first study secure and efficient strategies to choose the system parameters and the
“per-entity” secrets. Next we describe a practical version of the identification schemes theoretically
analyzed in the previous section. Then, we summarize the results we obtained with an actual imple-
mentation of this protocol on a low-cost smart card. Finally, we compare the Permuted Perceptrons
based schemes with others also based on NP-complete problems.

6.1 Selection of the System Parameters

We first need to choose the parameters m and n. In order to have on average one solution per instance,
those parameters have to verify the heuristic relation n ≈ m+16. The choice of one of the convenient
pairs (m,n) will immediately fix the level of security of the underlying problem. As a conclusion of
the analysis of section 4.3, we can advise (m,n) = (121, 137) as a minimal choice and larger sizes, as
(m,n) = (201, 217) for a higher level of security (since it seems a million times harder to solve).

Next, as we have previously seen, we need to perform mathematical operations in a finite field in
order to hide information. So, we have to choose a prime p > n.

Finally, let A be a publicly known ε-matrix. The public keys of all the users will be derived from
this single matrix. For security and efficiency reasons, the matrix can be generated in the following
way: let g0 be a seed used by a pseudo-random generator to produce m secondary seeds g1, . . . , gm.
Then each gi is used to produce the ith row Ai of the matrix A using again a pseudo-random generator.
This way, the matrix can be stored using about 10 bytes and furthermore this is a guarantee of its
(pseudo)-randomness.

17

6.2 Selection of “Per- Entity” Secrets

Each user can choose his own private key V and compute the related public key. To achieve this
goal, he computes the unique vector L, defined by Li = sign(Ai · V) for all i, and the multi-set S =
{{Li × (Ai · V)}}.

We now show how to store efficiently the public key (L, S). First notice that, even if the elements
of S can be as large as n, usually, they are much smaller so we can assume that they are less than

a constant t. Furthermore, the average number of elements of S equal to k is m
2n−1

(

n
(n+k)/2

)

. Let us

define the function

Average(m,n, k) =

⌈

m

2n−1

(

n

(n+k)/2

)⌋

,

where for any real number x, dxc denotes the nearest integer from x. The values of this function for
(m,n) = (121, 137) are shown on figure 7. We can assume that for any odd k less than t, the number of

k 1 3 5 7 9 11 13 15
Average 16 16 15 14 12 11 9 7

k 17 19 21 23 25 27 29 ≥ 31
Average 6 4 3 2 2 1 1 0

Fig. 7. Function Average for (m, n) = (121, 137)

elements of S equal to k lies in [Average(m,n, k) − 2`−1, Average(m,n, k) + 2`−1[. Figure 8 presents

Percentage of instances
which can be coded for
(m,n) = (121, 137)

`\t 3 4 5 ∞

31 2 24 29 29
33 4 39 48 48
35 5 54 65 66
37 7 65 78 78
39 8 73 87 88
41 9 78 93 93
∞ 9 84 99 100

Key size (bits)
m n t ` Public Secret

(= `(t−1)
2

+ m) (= n)
121 137 35 4 189 137
141 157 39 4 217 157
161 177 43 4 245 177
181 197 45 4 269 197
201 217 45 5 311 217

Fig. 8. Practical parameters

the fraction (in percents) of the instances which can be coded for given t and `, for the parameters
(m,n) = (121, 137). Then, the second table shows that, if we just consider an half of the keys, the
public key can be stored very efficiently.

Of course this technique does not enable to use any instance as a pair of secret and public keys but
one can remark that the excluded instances are very special cases, which are probably easier to break.
For example, if too many products Ai · V have identical values, this drastically reduces the difficulty
of finding a permutation of the set S equal to A · V . Furthermore, if an element of S is too large, it
means that V is not very different from one of the LiAi’s, so it may be found quite easily. Therefore,
the optimization of key storage is not a drawback but it is even a way to avoid the choice of weaker
keys.

18

6.3 Practical Protocol

We now describe a practical version of the three-pass identification scheme. It differs from the original
one in the use of hash trees as commitment and of pseudo-random generators. These techniques allow
a huge reduction of the communication. We have chosen to focus on the three-pass version. Indeed,
even if the communication load is a little larger than for the five-pass version, it is more efficient from
a computational point of view and furthermore easier to implement: the size of the program is much
smaller, which is important for an implementation on a smart-card.

Let us assume that Alice wants to identify herself to Bob. First she randomly chooses two seeds
g1 and g2. The seed g1 is used to generate the permutation P of {0, . . . ,m − 1} and the signed
permutation Q of {0, . . . , n − 1}. The seed g2 generates the vector W in (

�
p)

n. Then she computes
the following hash values: h0 = H(g1), h1 = H(g2), h2 = H(Q−1V + W), h3 = H(PAQW) and
h4 = H(PAQW +PAV). Finally she sends the single commitment, which can be seen as the root of a
hash tree, C = H(H(h0, h1, h2),H(h3, h4)) (see figure 9). Then, Bob answers a challenge c ∈ {0, 1, 2, 3},

C
↙ ↘

H0 H1

↙↓↘ ↙↘
h0 h1 h2 h3 h4

Fig. 9. Hash tree

and Alice answers according to this query

– if c = 0, Alice sends g1, g2, h2 and h4.
– if c = 1, Alice sends g1, R = W + Q−1V , h1 and h3.
– if c = 2, Alice sends X = PAQW , Y = PAV and h012 = H(h0, h1, h2).
– if c = 3, Alice sends g2, V ′ = Q−1V , h0 and h34 = H(h3, h4).

And Bob accepts if

– for c = 0, C = H(H(H(g1),H(g2), h2),H(H(A′W), h4)), where A′ = PAQ.
– for c = 1, C = H(H(H(g1), h1,H(R)),H(h3,H(A′R))), where A′ = PAQ.
– for c = 2, C = H(h012,H(H(X),H(X + Y))) and S = {{Yi}}.
– for c = 3, C = H(H(h0,H(W),H(W + V ′)), h34) and V ′ ∈ {−1,+1}n.

Let us denote respectively by |x|, |H| and |g| the number of bits needed to represent any x, the
size of the hash values and the size of the seeds. Then, the number of bits transmitted during each
round is |H| for the first commitment, plus 2 bits for the query and

– if c = 0, 2|g| + 2|H|.
– if c = 1, |g| + 2|H| + n|p|.
– if c = 2, m|p| + m|(t − 1)/2| + |H|.
– if c = 3, |g| + n + 2|H|.

Globally, this amounts to |H|+2 plus a quarter, on average, of the sum of each case: 4|g| + 7|H| + n(|p| + 1) + m(|p| + |(t − 1)/2|),
that is

11

4
|H| + |g| + |p| + 1

4
n +

|p| + |(t − 1)/2 − 1|
4

m + 2.

For m = 121, n = 137, |p| = 7, t = 35, |H| = 160 and g = 80, this is equal to 1131.4 bits. If the protocol
needs 48 rounds to achieve a requested level of security, the average size of the communications with
those parameters is 6.63 KBytes.

19

6.4 Pseudo-Random Generators

The identification protocol needs the random generation of mathematical objects. First, in order
to randomly choose objects like vectors or permutations and then to store them efficiently, a very
convenient technique consists of choosing a random seed and then generating an object of the accurate
format with a pseudo-random generator. As a first application, we have already said that the matrix
A was generated from a single seed. We just want the matrix to look random so we can use very simple
pseudo-random generators like the truncated congruential linear one [24].

The same technique can also be used with the seeds g1 and g2 of the practical identification
scheme to generate the objects needed to hide information. We insist on the fact that we do not
need the pseudo-random generator to be cryptographically secure; we just need a procedure to pick
mathematical objects “uniformly” in a large set. For example, if we use seeds of 64 bits to generate
a permutation of {0, . . . , 2117 − 1}, we immediately see that we cannot produce all the permutations
but we want the subset of permutations that can be generated to look like any subset of cardinality
264 randomly chosen in the large set. A very efficient way to generate pseudo-random permutations,
studied by Luby and Rackoff [25], uses the well-known structure proposed by Feistel.

6.5 Actual Implementation on a Low-Cost Smart Card

We have implemented this protocol on a low-cost smart card based on a Motorola 6805 microprocessor
running at 3.57 MHz. This is a very simple chip, performing classical operations on 8 bits. A smart
card possesses three kinds of memory, a ROM of 4 KBytes, an EEPROM of 2 KBytes where the
program and the static data are stored and a 160-Bytes RAM, among which only 120-Bytes can be
used to store variables. The communication rate is 19200 bit/s and the verifier is a simple PC.

At first sight, due to the size of the objects, it seems difficult to implement the protocol with
such a small RAM. Furthermore, the stack is automatically set in the middle part of the RAM, and
consequently the available memory is even not contiguous. But, using pseudo-random generators,
it becomes possible to implement the scheme with sufficiently large parameters. We have chosen
the parameters m = 121, n = 137 with p = 127, t = 35. Moreover, we have implemented a version
of Snefru [38] as a hash function; it works with 12 bytes long blocks of data and is based on 4
repetitions of an elementary round. Even if this primitive cannot be advised for a secure application,
the use of SHA-1 [26] or MD5 [39] in real applications would even save some EEPROM since they are
implemented in ROM of most of the actual smart-cards.

Let us now focus on the performance. First notice that, whatever the performance may be, it is
already an interesting result to prove the feasibility of implementing a zero-knowledge identification
scheme without precomputation and just using an 8-bit microprocessor. It would be impossible to do
such a thing with a number theoretical based protocol that needs to perform modular arithmetic with
large integers.

In order to perform 48 rounds of identification and consequently to be able to identify a cheater
with probability 1 − 10−6, the card needs 23 seconds of computation and the communication takes
5 seconds. So finally a complete identification needs less than 30 seconds. A few comments are in
order. First, 40% of the computation time is used by the hash function and 35% by the computation
of products of matrices and vectors. Furthermore, the implementation has been done with a low-end
smart-card, presently obsolete, and an implementation on current low-cost smart cards would be much
more efficient, mainly because the time needed by the computation could be greatly reduced

– because of a higher internal frequency (up to 10MHz)

– because of a faster communication rate (up to 115200 bit/s)

– with just a little more EEPROM.

Consequently, a complete authentication could be performed in about 10 seconds.

20

Finally, in many applications like pay-TV or pay-phone for which it does not matter if a lucky
cheater is able to use a resource during a few seconds, the identification can be performed as a
background job. In fact, each iteration of the protocol takes less than a second, and the RAM can be
completely cleared between two iterations, and freed to another application.

7 Comparison with other Protocols

It is interesting to compare the known protocols based on non-number-theoretical, NP-complete
problems. The first one, PKP, has been proposed by Shamir [42]. Then Stern proposed SD [44, 46],
a scheme based on error-correcting codes, and CLE [45]. The figure 10 summarizes the size of the

scheme PKP CLE SD PPP
3p 5p 3p 5p 3p 5p

matrix size 16 × 34 24 × 24 256 × 512 121 × 137
on the field � 251 � 257 � 2 � 2

number of rounds 35 20 35 20 35 48 35
Public key size (bits) 272 96 256 189
Secret key size (bits) 141 96 512 137
Communication (KB) 2.20 1.63 2.41 1.95 3.62 6.34 6.40

Fig. 10. Comparison of NP-complete problems based identification schemes in terms of communication complexity

public and secret keys and of the communication for those schemes with parameters chosen in such
a way that the security is about the same [11, 1, 6, 30, 34], using hash functions of 128 bits like MD5
and seeds of 120 bits. The communication needed by PPP seems to be its main drawback but this
is not very important for many applications. Furthermore, 6.4 KBytes take only 2.8 seconds to be
transmitted at 19200 bit/s, and less than 0.5 second if transmitted at 115200 bit/s.

All those NP-complete problem based schemes can be implemented on the smart card we used,
i.e. using about 100 Bytes of RAM and a few KB of EEPROM. In comparison, it would be much
more difficult to implement classical schemes like Fiat-Shamir [9] or Schnorr [41] since they need the
implementation of a modular exponentiation. Notice that some variants like GPS [13, 35] partially
solve this problem by using precomputed coupons.

8 Conclusion

In this paper, we have presented a new combinatorial problem, the Permuted Perceptrons Problem. We
have studied its complexity properties, both theoretically and practically. The results we have obtained
prove that this problem is well suited for cryptographic applications. In fact, no efficient algorithm can
solve it, even for small sizes. Furthermore, we have proposed two efficient zero-knowledge identification
schemes which security relies on this problem. The performances of those protocols are comparable
with those of other identification schemes based on NP-complete problems.

Acknowledgments

We thank Louis Granboulan for the results about the majority vector, as well as Jacques Stern
for having proposed the perceptrons problem as a candidate for efficient identification schemes and
for many fruitful discussions. We also thank Russell Impagliazzo for discussions about probabilistic
algorithms and the reviewers for their valuable feedback.

21

References

1. T. Baritaud, M. Campana, P. Chauvaud, and H. Gilbert. On the Security of the Permuted Kernel Identification
Scheme. In Crypto ’92, LNCS 740, pages 305–311. Springer-Verlag, Berlin, 1992.

2. E. B. Baum, D. Boneh, and C. Garrett. On Genetic Algorithms. In Proc. of the 8th COLT, pages 230–239. ACM
Press, New York, 1995.

3. M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for Designing Efficient Protocols. In Proc.

of the 1st CCS, pages 62–73. ACM Press, New York, 1993.
4. E. F. Brickell and K. S. McCurley. An Interactive Identification Scheme Based on Discrete Logarithms and Factoring.

In Eurocrypt ’90, LNCS 473, pages 63–71. Springer-Verlag, Berlin, 1991.
5. E. F. Brickell and K. S. McCurley. An Interactive Identification Scheme Based on Discrete Logarithms and Factoring.

Journal of Cryptology, 5:29–39, 1992.
6. F. Chabaud. On the Security of Some Cryptosystems Based on Error-Correcting Codes. In Eurocrypt ’94, LNCS

950, pages 131–139. Springer-Verlag, Berlin, 1995.
7. I. B. Damg̊ard, T. P. Pedersen, and B. Pfitzmann. On the Existence of Statistically Hiding Bit-Commitment Schemes

and Fail-Stop Signatures. In Crypto ’93, LNCS 773, pages 250–267. Springer-Verlag, Berlin, 1994.
8. L. Davis, editor. Genetics Algorithms and Simulated Annealing. Los Altos CA, 1987.
9. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions of Identification and Signature Problems. In

Crypto ’86, LNCS 263, pages 186–194. Springer-Verlag, Berlin, 1987.
10. M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of NP-Completeness. Freeman,

San Francisco, CA, 1979.
11. J. Georgiades. Some Remarks on the Security of the Identification Scheme Based on Permuted Kernels. Journal of

Cryptology, 5(2):133–137, 1992.
12. M. Girault. An Identity-Based Identification Scheme Based on Discrete Logarithms Modulo a Composite Number.

In Eurocrypt ’90, LNCS 473, pages 481–486. Springer-Verlag, Berlin, 1991.
13. M. Girault. Self-Certified Public Keys. In Eurocrypt ’91, LNCS 547, pages 490–497. Springer-Verlag, Berlin, 1992.
14. M. Girault and J.-C. Paillès. An Identity-Based Identification Scheme Providing ZeroKnowledge Authentication and

Authenticated Key Exchange. In ESORICS ’90, LNCS, pages 173–184. Springer-Verlag, Berlin, 1990.
15. M. Girault and J. Stern. On the Length of Cryptographic Hash-Values used in Identification Schemes. In Crypto

’94, LNCS 839, pages 202–215. Springer-Verlag, Berlin, 1994.
16. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading MA,

1989.
17. O. Goldreich, S. Micali, and A. Wigderson. How to Prove All NP Statements in Zero-Knowledge and a Methodology

of Cryptographic Protocol Design. In Crypto ’86, LNCS 263, pages 171–185. Springer-Verlag, Berlin, 1987.
18. S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proof Systems. In Proc. of the

17th STOC, pages 291–304. ACM Press, New York, 1985.
19. L. C. Guillou and J.-J. Quisquater. A Practical Zero-Knowledge Protocol Fitted to Security Microprocessor Mini-

mizing Both Transmission and Memory. In Eurocrypt ’88, LNCS 330, pages 123–128. Springer-Verlag, Berlin, 1988.
20. S. Halevi and S. Micali. Practical and Provably-Secure Commitment Schemes from Collision-Free Hashing. In Crypto

’96, LNCS 1109, pages 201–215. Springer-Verlag, Berlin, 1996.
21. J. H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, 1975.
22. H. J. Knobloch. A Smart Card Implementation of the Fiat-Shamir Identification Scheme. In Eurocrypt ’88, LNCS

330, pages 87–95. Springer-Verlag, Berlin, 1988.
23. L. Knudsen and W. Meier. Cryptanalysis of an Identification Scheme Based on the Permuted Perceptron Problem.

In Eurocrypt ’99, LNCS 1592, pages 363–374. Springer-Verlag, Berlin, 1999.
24. D. E. Knuth. The Art of Computer Programming, volume 2. Addison–Wesley, London, 1969.
25. M. Luby and Ch. Rackoff. How to Construct Pseudorandom Permutations from Pseudorandom Functions. SIAM

Journal of Computing, 17(2):373–386, 1988.
26. NIST. Secure Hash Standard (SHS). Federal Information Processing Standards PUBlication 180–1, April 1995.
27. K. Ohta and T. Okamoto. A Modification of the Fiat-Shamir Scheme. In Crypto ’88, LNCS 403, pages 232–243.

Springer-Verlag, Berlin, 1989.
28. H. Ong and C.P. Schnorr. Fast Signature Generation with a Fiat-Shamir-Like Scheme. In Eurocrypt ’90, LNCS 473,

pages 432–440. Springer-Verlag, Berlin, 1991.
29. C. Papadimitriou and M. Yannakakis. Optimization, Approximation, and Complexity Classes. Journal of Computer

and Systems Sciences, 43:425–440, 1991.
30. J. Patarin and P. Chauvaud. Improved Agorithms for the Permuted Kernel Problem. In Crypto ’93, LNCS 773,

pages 391–402. Springer-Verlag, Berlin, 1994.
31. D. Pointcheval. Neural Networks and their Cryptographic Applications. In Eurocode ’94, pages 183–193. INRIA,

1994.
32. D. Pointcheval. A New Identification Scheme Based on the Perceptrons Problem. In Eurocrypt ’95, LNCS 921, pages

319–328. Springer-Verlag, Berlin, 1995.
33. D. Pointcheval. The Composite Discrete Logarithm and Secure Authentication. In PKC ’00, LNCS 1751, pages

113–128. Springer-Verlag, Berlin, 2000.

22

34. G. Poupard. A Realistic Security Analysis of Identification Schemes based on Combinatorial Problems. European

Transactions on Telecommunications, 8(5):471–480, September 1997.
35. G. Poupard and J. Stern. Security Analysis of a Practical “on the fly” Authentication and Signature Generation.

In Eurocrypt ’98, LNCS 1403, pages 422–436. Springer-Verlag, Berlin, 1998.
36. G. Poupard and J. Stern. On The Fly Signatures based on Factoring. In Proceedings of 6th ACM-CCS, pages 37–45.

ACM press, 1999.
37. G. Poupard and J. Stern. Short Proofs of Knowledge for Factoring. In PKC 2000, LNCS 1751, pages 147–166.

Springer-Verlag, 2000.
38. B. Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis, Katholieke Universiteit Leuven,

Departement Elektrotechniek, January 1993.
39. R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, The Internet Engineering Task Force, April 1992.
40. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public Key Cryptosystems.

Communications of the ACM, 21(2):120–126, February 1978.
41. C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In Crypto ’89, LNCS 435, pages 235–251.

Springer-Verlag, Berlin, 1990.
42. A. Shamir. An Efficient Identification Scheme Based on Permuted Kernels. In Crypto ’89, LNCS 435, pages 606–609.

Springer-Verlag, Berlin, 1990.
43. V. Shoup. On The Security of a Practical Identification Scheme. In Eurocrypt ’96, LNCS 1070, pages 344–353.

Springer-Verlag, Berlin, 1996.
44. J. Stern. A New Identification Scheme Based on Syndrome Decoding. In Crypto ’93, LNCS 773, pages 13–21.

Springer-Verlag, Berlin, 1994.
45. J. Stern. Designing Identification Schemes with Keys of Short Size. In Crypto ’94, LNCS 839, pages 164–173.

Springer-Verlag, Berlin, 1994.
46. J. Stern. A New Paradigm for Public-Key Identification. IEEE Transaction on Information Theory, IT–42:1757–

1768, 1996.

