
This is the full version of the extended abstract which appears in
Advances in Cryptology – Proceedings of Eurocrypt ’02 (28 april – 2 may 2002, Amsterdam, Netherlands)
L. Knudsen Ed. Springer-Verlag, LNCS 2332, pages 321–336.

Dynamic Group Diffie-Hellman Key Exchange

under Standard Assumptions

Emmanuel Bresson1, Olivier Chevassut2,3?, and David Pointcheval1

1 École normale supérieure, 75230 Paris Cedex 05, France
http://www.di.ens.fr/∼ {bresson,pointche}, {Emmanuel.Bresson,David.Pointcheval}@ens.fr.

2 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,
http://www.itg.lbl.gov/∼chevassu, OChevassut@lbl.gov.

3 Université Catholique de Louvain, 31348 Louvain-la-Neuve, Belgium.

Abstract. Authenticated Diffie-Hellman key exchange allows two principals commu-
nicating over a public network, and each holding public/private keys, to agree on a
shared secret value. In this paper we study the natural extension of this cryptographic
problem to a group of principals. We begin from existing formal security models and re-
fine them to incorporate major missing details (e.g., strong-corruption and concurrent
sessions). Within this model we define the execution of a protocol for authenticated
dynamic group Diffie-Hellman and show that it is provably secure under the decisional
Diffie-Hellman assumption. Our security result holds in the standard model and thus
provides better security guarantees than previously published results in the random
oracle model.

1 Introduction

Authenticated Diffie-Hellman key exchange allows two principals A and B com-
municating over a public network and each holding a pair of matching pub-
lic/private keys to agree on a shared secret value. Protocols designed to deal
with this problem ensure A (B resp.) that no other principals aside from B (A
resp.) can learn any information about this value; the so-called authenticated
key exchange with “implicit” authentication (AKE). These protocols addition-
ally often ensure A and B that their respective partner has actually computed
the shared secret value (i.e. authenticated key exchange with explicit key con-
firmation). A natural extension to this protocol problem would be to consider a
scenario wherein a pool of principals agree on a shared secret value. We refer to
this extension as authenticated group Diffie-Hellman key exchange.

Consider scientific collaborations and conferencing applications [5, 11], such
as data sharing or electronic notebooks. Applications of this type usually involve
users aggregated into small groups and often utilize multiple groups running in
parallel. The users share responsibility for parts of tasks and need to coordinate
their efforts in an environment prone to attacks. To reach this aim, the prin-
cipals need to agree on a secret value to implement secure multicast channels.
Key exchange schemes suited for this kind of application clearly needs to allow
concurrent executions between parties.

We study the problem of authenticated group Diffie-Hellman key exchange
when the group membership is dynamic – principals join and leave the group

? The second author was supported by the Director, Office of Science, Office of Advanced Scientific
Computing Research, Mathematical Information and Computing Sciences Division, of the U.S.
Department of Energy under Contract No. DE-AC03-76SF00098. This document is report LBNL-
49087.

c© IACR 2002.

2

at any time – and the adversary may generate cascading changes in the mem-
bership for subsets of principals of his choice. After the initialization phase, and
throughout the lifetime of the multicast group, the principals need to be able
to engage in a conversation after each change in the membership at the end of
which the session key is updated to be sk′. The secret value sk′ should be only
known to the principals in the multicast group during the period when sk′ is
the session key.

(2-party) Diffie-Hellman key exchange protocols also usually achieve the
property of forward-secrecy [15, 16] which entails that corruption of a principal’s
long-term key does not threaten the security of previously established session
keys. Assuming the ability to erase a secret, some of these protocols achieve
forward-secrecy even if the corruption also releases the principal’s internal state
(i.e. strong-corruption [24]). In practice secret erasure is, for example, imple-
mented by hardware devices which use physical security and tamper detection to
not reveal any information [12, 22, 21, 28]. Protocols for group Diffie-Hellman key
exchange need to achieve forward-secrecy even when facing strong-corruption.

Contributions. This paper is the third tier in the formal treatment of the
group Diffie-Hellman key exchange using public/private key pairs. The first tier
was provided for a scenario wherein the group membership is static [7] and the
second, by extension of the latter for a scenario wherein the group membership
is dynamic [8]. We start from the latter formal model and refine it to add impor-
tant attributes. In the present paper, we model instances of players via oracles
available to the adversary through queries. The queries are available to use at
any time to allow model attacks involving multiple instances of players activated
concurrently and simultaneously by the adversary. In order to model two modes
of corruption, we consider the presence of two cryptographic devices which are
made available to the adversary through queries. Hardware devices are useful
to overcome software limitations however there has thus far been little formal
security analysis [12, 23].

The types of crypto-devices and our notion of forward-secrecy leads us to
modifications of existing protocols to obtain a protocol, we refer to it as AKE1+,
secure against strong corruptions. Due to the very limited computational power
of a smart card chip, smart card is used as an authentication token while a
secure coprocessor is used to carry out the key exchange operations. We show
that within our model the protocol AKE1+ is secure assuming the decisional
Diffie-Hellman problem and the existence of a pseudo-random function family.
Our security theorem does not need a random oracle assumption [4] and thus
holds in the standard model. A proof in the standard model provides better
security guarantees than one in an idealized model of computation [8, 7]. Fur-
thermore we exhibit a security reduction with a much tighter bound than [8],
namely we suppress the exponential factor in the size of the group. Therefore
the security result is meaningful even for large groups. However the protocols
are not practical for groups larger than 100 members.

The remainder of this paper is organized as follows. We first review the
related work and then introduce the building blocks which we use throughout

3

the paper. In Section 3, we present our formal model and specify through an
abstract interface the standard functionalities a protocol for authenticated group
Diffie-Hellman key exchange needs to implement. In Section 4, we describe the
protocol AKE1+ by splitting it down into functions. This helps us to implement
the abstract interface. Finally, in Section 5 we show that the protocol AKE1+ is
provably secure in the standard model.

Related Work. Several papers [1, 10, 19, 14, 27] have extended the 2-party
Diffie-Hellman key exchange [13] to the multi-party setting however a formal
analysis has only been proposed recently. In [8, 7], we defined a formal model
for the authenticated (dynamic) group Diffie-Hellman key exchange and proved
secure protocols within this model. We use in both papers an ideal hash func-
tion [4], without dealing with dynamic group changes in [7], or concurrent exe-
cutions of the protocol in [8].

However security can sometimes be compromised even when using a proven
secure protocol: the protocol is incorrectly implemented or the model is insuf-
ficient. Cryptographic protocols assume, and do not usually explicitly state,
that secrets are definitively and reliably erased (only the most recent secrets are
kept) [12, 18]. Only recently formal models have been refined to incorporate the
cryptographic action of erasing a secret, and thus protocols achieving forward-
secrecy in the strong-corruption sense have been proposed [3, 24].

Protocols for group Diffie-Hellman key exchange [7] achieve the property
of forward-secrecy in the strong-corruption sense assuming that “ephemeral”
private keys are erased upon completion of a protocol run. However protocols
for dynamic group Diffie-Hellman key exchange [8] do not, since they reuse the
“ephemeral” keys to update the session key. Fortunately, these “ephemeral” keys
can be embedded in some hardware cryptographic devices which are at least as
good as erasing a secret [22, 21, 28].

2 Basic Building Blocks

We first introduce the pseudo-random function family and the intractability
assumptions.

Message Authentication Code. A Message Authentication Code MAC=
(MAC.Sgn,MAC.Vf) consists of the following two algorithms (where the key
space is uniformly distributed) [2]:

– The authentication algorithm MAC.Sgn which, on a message m and a key
K as input, outputs a tag µ. We write µ ← MAC.Sgn(K, m). The pair
(m, µ) is called an authenticated message.

– The verification algorithm MAC.Vf which, on an authenticated message
(m, µ) and a key K as input, checks whether µ is a valid tag on m with
respect to K. We write True/False←MAC.Vf(K, m, µ).

A (t, q, L, ε)-MAC-forger is a probabilistic Turing machine F running in time
t that requests a MAC.Sgn-oracle up to q messages each of length at most

4

L, and outputs an authenticated message (m′, µ′), without having queried the
MAC.Sgn-oracle on message m′, with probability at least ε. We denote this
success probability as Succcma

mac(t, q, L), where CMA stands for (adaptive) Chosen-
Message Attack. The MAC scheme is (t, q, L, ε)-CMA-secure if there is no
(t, q, L, ε)-MAC-forger.

Group Decisional Diffie-Hellman Assumption (G-DDH). Let
�

=< g >
be a cyclic group of prime order q and n an integer. Let In be {1, . . . , n}, P(In)
be the set of all subsets of In and Γ be a subset of P(In) such that In /∈ Γ .

We define the Group Diffie-Hellman distribution relative to Γ as:

G-DHΓ =
{

(

J, g
�

j∈J xj
)

J∈Γ
| x1, . . . , xn ∈R � q

}

.

Given Γ , a (T, ε)-G-DDHΓ -distinguisher for
�

is a probabilistic Turing machine
∆ running in time T that given an element X from either G-DH$

Γ , where the
tuple of G-DHΓ is appended a random element gr, or G-DH?

Γ , where the tuple is
appended gx1...xn , outputs 0 or 1 such that:

∣

∣

∣
Pr [∆(X) = 1 |X ∈ G-DH$

Γ]− Pr [∆(X) = 1 |X ∈ G-DH?
Γ]

∣

∣

∣
≥ ε.

We denote this difference of probabilities by Adv
gddhΓ� (∆). The G-DDHΓ problem

is (T, ε)-intractable if there is no (T, ε)-G-DDHΓ -distinguisher for
�

.
If Γ = P(I)\{In}, we say that G-DHΓ is the Full Generalized Diffie-Hellman

distribution [6, 20, 26]. Note that if n = 2, we get the classical DDH problem, for
which we use the straightforward notation Advddh� (·).

Lemma 1. The DDH assumption implies the G-DDH assumption.

Proof. Steiner, Tsudik and Waidner proved it in [26]. ut

Multi Decisional Diffie-Hellman Assumption (M-DDH). We introduce
a new decisional assumption, based on the Diffie-Hellman assumption. Let us
define the Multi Diffie-Hellman M-DH and the Random Multi Diffie-Hellman

M-DH$ distributions of size n as:

M-DHn = {({gxi}1≤i≤n, {gxixj}1≤i<j≤n) | x1, . . . , xn ∈R � q}

M-DH$
n = {({gxi}1≤i≤n, {grj,k}1≤j<k≤n) | xi, rj,k ∈R � q, ∀i, 1 ≤ j < k ≤ n} .

A (T, ε)-M-DDHn-distinguisher for
�

is a probabilistic Turing machine ∆ running
in time T that given an element X of either M-DHn or M-DH$

n outputs 0 or 1
such that:

∣

∣

∣
Pr[∆(X) = 1 |X ∈ M-DHn]− Pr[∆(X) = 1 |X ∈ M-DH$

n]
∣

∣

∣
≥ ε.

We denote this difference of probabilities by Advmddhn� (∆). The M-DDHn problem
is (T, ε)-intractable if there is no (T, ε)-M-DDHn-distinguisher for

�
.

Lemma 2. For any group
�

and any integer n, the M-DDHn problem can be

reduced to the DDH problem and we have: Advmddhn� (T) ≤ n2Advddh� (T).

Proof. It follows from an easy hybrid argument [20]. ut

5

3 Model

In this section, we model instances of players via oracles available to the ad-
versary through queries. These oracle queries provide the adversary a capability
to initialize a multicast group via Setup-queries, add players to the multicast
group via Join-queries, and remove players from the multicast group via Re-

move-queries. By making these queries available to the adversary at any time
we provide him an ability to generate concurrent membership changes. We also
take into account hardware devices and model their interaction with the adver-
sary via queries.

Players. We fix a nonempty set U of N players that can participate in a group
Diffie-Hellman key exchange protocol P . A player Ui ∈ U can have many in-

stances called oracles involved in distinct concurrent executions of P . We denote
instance t of player Ui as Π t

i with t ∈ � . Also, when we mean a not fixed member
of U we use U without any index and denote an instance of U as Π t

U with t ∈ � .
For each concurrent execution of P , we consider a nonempty subset I of U

called the multicast group. And in I, the group controller GC(I) initiates the
addition of players to the multicast group or the removal of players from the
multicast group. The group controller is trusted to do only this.

In a multicast group I of size n, we denote by Ii, for i = 1, . . . , n, the index of
the player related to the i-th instance involved in this group. This i-th instance
is furthermore denoted by Π(I, i). Therefore, for any index i ∈ {1, . . . , n},
Π(I, i) = Π t

Ii
∈ I for some t.

Each player U holds a long-lived key LLU which is a pair of matching pub-
lic/private keys. LLU is specific to U not to one of its instances.

Abstract Interface. We define the basic structure of a group Diffie-Hellman
protocol. A group Diffie-Hellman scheme GDH consists of four algorithms:

– The key generation algorithm GDH.KeyGen(1`) is a probabilistic algo-
rithm which on input of a security parameter 1`, provides each player in U
with a long-lived key LLU . The structure of LLU depends on the particular
scheme.

The three other algorithms are interactive multi-party protocols between players
in U , which provide each principal in the new multicast group with a new session
key SK.

– The setup algorithm GDH.Setup(J), on input of a set of instances of play-
ers J , creates a new multicast group I, and sets it to J .

– The remove algorithm GDH.Remove(I,J) creates a new multicast group
I and sets it to I\J .

– The join algorithm GDH.Join(I,J) creates a new multicast group I, and
sets it to I ∪ J .

An execution of P consists of running the GDH.KeyGen algorithm once, and
then many concurrent executions of the three other algorithms. We will also use
the term operation to mean one of the algorithms: GDH.Setup, GDH.Remove

or GDH.Join.

6

Security Model. The security definitions for P take place in the following
game. In this game Gameake(A, P), the adversary A plays against the players
in order to defeat the security of P . The game is initialized by providing coin
tosses to GDH.KeyGen(·),A, any oracle Π t

U ; and GDH.KeyGen(1`) is run to
set up players’ LL-key. A bit b is as well flipped to be later used in the Test-query
(see below). The adversary A is then given access to the oracles and interacts
with them via the queries described below. We now explain the capabilities that
each kind of query captures:

Instance Oracle Queries. We define the oracle queries as the interactions between
A and the oracles only. These queries model the attacks an adversary could
mount through the network.

– Send(Π t
U , m): This query models A sending messages to instance oracles. A

gets back from his query the response which Π t
U would have generated in

processing message m according to P .
– Setup(J), Remove(I,J), Join(I,J): These queries model adversary A initi-

ating one of the operations GDH.Setup, GDH.Remove or GDH.Join.
Adversary A gets back the flow initiating the execution of the corresponding
operation.

– Reveal(Π t
U): This query models the attacks resulting in the loss of session

key computed by oracle Π t
U ; it is only available to A if oracle Π t

U has com-
puted its session key SKΠt

U
. A gets back SKΠt

U
which is otherwise hidden.

When considering the strong-corruption model (see Section 5), this query
also reveals the flows that have been exchanged between the oracle and the
secure coprocessor.

– Test(Π t
U): This query models the semantic security of the session key SKΠt

U
.

It is asked only once in the game, and is only available if oracle Π t
U is Fresh

(see below). If b = 0, a random `-bit string is returned; if b = 1, the session
key is returned. We use this query to define A’s advantage.

Secure Coprocessor Queries. The adversary A interacts with the secure copro-
cessors by making the following two queries.

– Sendc(Π
t
U , m): This query models A directly sending and receiving messages

to the secure coprocessor. A gets back from his query the response which
the secure coprocessor would have generated in processing message m. The
adversary could directly interact with the secure coprocessor in a variety of
ways: for instance, the adversary may have broken into a computer without
being detected (e.g., bogus softwares, trojan horses and viruses).

– Corruptc(Π
t
U): This query models A having access to the private memory of

the device. A gets back the internal data stored on the secure coprocessor.
This query can be seen as an attack whereinA gets physical access to a secure
coprocessor and bypasses the tamper detection mechanism [29]. This query
is only available to the adversary when considering the strong-corruption

model (see Section 5). The Corruptc-query also reveals the flows the secure
coprocessor and the smart card have exchanged.

7

Smart Card Queries. The adversary A interacts with the smart cards by making
the two following queries.

– Sends(U, m): This query models A sending messages to the smart card and
receiving messages from the smart card.

– Corrupts(U): This query models the attacks in which the adversary gets
access to the smart card and gets back the player’s LL-key. This query
models attacks like differential power analysis or other attacks by which the
adversary bypasses the tamper detection mechanisms of the smart card [29].

When A terminates, it outputs a bit b′. We say that A wins the AKE game (see
in Section 5) if b = b′. Since A can trivially win with probability 1/2, we define
A’s advantage by Advake

P (A) = 2× Pr[b = b′]− 1.

4 An Authenticated Group Diffie-Hellman Scheme

In this section, we describe the protocol AKE1+ by splitting it into functions
that help us to implement the GDH abstract interface. These functions specify
how certain cryptographic transformations have to be performed and abstract
out the details of the devices (software or hardware) that will carry out the
transformations. In the following we identify the multicast group to the set of
indices of players (instances of players) in it. We use a security parameter ` and,
to make the description easier see a player Ui not involved in the multicast group
as if his private exponent xi were equal to 1.

4.1 Overview

The protocol AKE1+ consists of the Setup1+, Remove1+ and Join1+ algorithms.
As illustrated in Figures 1, 2 and 3, in AKE1+ the players are arranged in a ring
and the instance with the highest-index in the multicast group I is the group
controller GC(I): GC(I) = Π(I, n) = Π t

In
for some t. This is also a protocol

wherein each instance saves the set of values it receives in the down-flow of
Setup1+, Remove1+ and Join1+1.

The session-key space SK associated with the protocol AKE1+ is {0, 1}`

equipped with a uniform distribution. The arithmetic is in a group
�

=< g > of
prime order q in which the DDH assumption holds. The key generation algorithm
GDH.KeyGen(1`) outputs ElGamal-like LL-keys LLi = (si, g

si).

4.2 Authentication Functions

The authentication mechanism supports the following functions:

– Auth Key Derive(i, j). This function derives a secret value Kij between
Ui and Uj. In our protocol, Kij = F1(g

sisj), where the map F1 is specified in
Section 4.4. (Kij is never exposed.)

1 In the subsequent removal of players from the multicast group any oracle Π could be selected as
the group controller GC and so will need these values to execute Remove1+.

8

– Auth Sig(i, j, m). This function invokes MAC.Sgn(Kij, m) to obtain tag
µ, which is returned.

– Auth Ver(i, j, m, µ). This function invokes MAC.Vf(Kij, m, µ) to check
if (m, µ) is correct w.r.t. key Kij. The boolean answer is returned.

The two latter functions should of course be called after initializing Kij via
Auth Key Derive(·).

4.3 Key-Exchange Functions

The key-exchange mechanism supports the following functions:

– Gdh Picks(i). This function generates a new private exponent xi
R
← � ?

q.
Recall that xi is never exposed.

– Gdh Picks
?(i). This function invokes Gdh Picks(i) to generate xi but do

not delete the previous private exponent x′i. x′i is only deleted when explicitly
asked for by the instance.

– Gdh Up(i, j, k, Fl, µ). First, if j > 0, the authenticity of tag µ on message
Fl is checked with Auth Ver(j, i, Fl, µ). Second, Fl is decoded as a set of
intermediate values (I, Y, Z) where I is the multicast group and

Y =
⋃

m6=i

{Z1/xm} with Z = gxt.

The values in Y are raised to the power of xi and then concatenated with Z
to obtain these intermediate values

Y ′ =
⋃

{Z ′
1/xm}, where Z ′ = Zxi = gxt.

Third, Fl′ = (I, Y ′, Z ′) is authenticated, by invoking Auth Sig(i, k, Fl′) to
obtain tag µ′. The flow (Fl′, µ′) is returned.

– Gdh Down(i, j, Fl, µ). First, the authenticity of (Fl, µ) is checked, by invok-
ing Auth Ver(j, i, Fl, µ). Then the flow Fl′ is computed as in Gdh Up, from
Fl = (I, Y, Z) but without the last element Z ′ (i.e. Fl′ = (I, Y ′)). Finally, the
flow Fl′ is appended tags µ1, . . . , µn by invoking Auth Sig(i, k, Fl′), where
k ranges in I. The tuple (Fl′, µ1, . . . , µn) is returned.

– Gdh Up Again(i, k, Fl = (I, Y ′)). From Y ′ and the previous random x′i,
one can recover the associated Z ′. In this tuple (Y ′, Z ′), one replaces the
occurrences of the old random x′i by the new one xi (by raising some elements
to the power xi/x

′
i) to obtain Fl′. The latter is authenticated by computing

via Auth Sig(i, k, Fl′) the tag µ. The flow (Fl′, µ′) is returned. From now
the old random x′i is no longer needed and, thus, can be erased.

– Gdh Down Again(i, Fl = (I, Y ′)). In Y ′, one replaces the occurrences of
the old random x′i by the new one xi, to obtain Fl′. This flow is appended
tags µ1, . . . , µn by invoking Auth Sig(i, k, Fl′), where k ranges in I. The
tuple (Fl′, µ1, . . . , µn) is returned. From now the old random x′i is no longer
needed and, thus, can be erased.

9

– Gdh Key(i, j, Fl, µ) produces the session key sk. First, the authenticity of
(Fl, µ) is checked with Auth Ver(j, i, Fl, µ). Second, the value α = g

�
j∈I xj

is computed from the private exponent xi, and the corresponding value in
Fl. Third, sk is defined to be F2(I‖Fl‖α), where the map F2(·) is defined
below.

4.4 Key Derivation Functions

The key derivation functions F1 and F2 are implemented via the so-called “entro-
py-smoothing” property. We use the left-over-hash lemma to obtain (almost)
uniformly distributed values over {0, 1}`.

Lemma 3 (Left-Over-Hash Lemma [17]). Let Ds : {0, 1}s be a probabilistic

space with entropy at least σ. Let e be an integer and ` = σ−2e. Let h : {0, 1}k×
{0, 1}s → {0, 1}` be a universal hash function. Let r ∈U {0, 1}

k, x ∈Ds
{0, 1}s

and y ∈U {0, 1}
`. Then the statistical distance δ is:

δ(hr(x)‖r, y‖r) ≤ 2−(e+1).

Any universal hash function can be used in the above lemma, provided that y is
uniformly distributed over {0, 1}`. However, in the security analysis, we need an
additional property from h. This property states that the distribution {hr(α)}α
is computationally undistinguishable from the uniform one, for any r. Indeed, we
need there is no “bad” parameter r, since such a parameter may be chosen by
the adversary.

The map F1(·) is implemented as follows through public certified random

strings. In a Public-Key Infrastructure (PKI), each player Ui is given N − 1
random strings {rij}j 6=i each of length k when registering his identity with a
Certification Authority (CA). Recall that N = |U|. The random string rij = rji

is used by Ui and Uj to derivate from input value x a symmetric-key Kij =
F1(x) = hrij

(x).

The map F2(·) is implemented as follows. First, Gdh Down(·) is enhanced
in such a way that it also generates a random value rα ∈ {0, 1}

k, which is
included in the subsequent broadcast. Then, player Ui derives from input value
x a session key sk = F2(x) = hrα

(x).

One may note that in both cases, the random values are used only once,
which gives almost uniformly and independently distributed values, according
to the lemma 3.

4.5 Scheme

We correctly deal with concurrent sessions running in an adversary-controlled
network by creating a new instance for each player in a multicast group. We in
effect create an instance of a player via the algorithm Setup1+ and then create
new instances of this player through the algorithms Join1+ and Remove1+.

10

Setup1+(I): This algorithm consists of two stages, up-flow and down-flow (see
Figure 1). On the up-flow oracle Π(I, i) invokes Gdh Picks(Ii) to generate
its private exponent xIi

and then invokes Gdh Up(Ii, Ii−1, Ii+1, Fli−1, µi−1,i) to
obtain both flow Fli and tag µi,i+1 (by convention, I0 = 0, Fl0 = I‖g and
µ0,i = ∅). Then, Π(I, i) forwards (Fli, µi,i+1) to the next oracle in the ring. The
down-flow takes place when GC(I) receives the last up-flow. Upon receiving this
flow, GC(I) invokes Gdh Picks(In) and Gdh Down(In, In−1, Fln−1, µn−1,n) to
compute both Fln and the tags µ1, . . . , µn. GC(I) broadcasts (Fln, µ1, . . . , µn).
Finally, each oracle Π(I, i) invokes Gdh Key(Ii, In, Fln, µi) and gets back the
session key SKΠ(I,i).

Remove1+(I, J): This algorithm consists of a down-flow only (see Figure 2).
The group controller GC(I) of the new set I = I\J invokes Gdh Picks

?(In)
to get a new private exponent and then Gdh Down Again(In, Fl′) where Fl′

is the saved previous broadcast. GC(I) obtains a new set of intermediate values
from which it deletes the elements related to the removed players (in the set
J) and updates the multicast group. This produces the new broadcast flow Fln.
Upon receiving the down-flow, Π(I, i) invokes Gdh Key(Ii, In, Fln, µi) and gets
back the session key SKΠ(I,i). Here, is the reason why an oracle must store its
private exponent and only erase its internal data when it leaves the group.

Join1+(I, J): This algorithm consists of two stages, up-flow and down-flow
(see Figure 3). On the up-flow the group controller GC(I) invokes Gdh Picks

?(In),
and then Gdh Up Again(In, j, Fl′) where Fl′, j are respectively the saved pre-
vious broadcast and the index of the first joining player. One updates I, and
forwards the result to the first joining player. From that point in the execution,
the protocol works as the algorithm Setup1+, where the group controller is the
highest index player in J .

4.6 Practical Considerations

When implementors choose a protocol, they take into account its security but
also its ease of integration. For a minimal disruption to a current security in-
frastructure, it is possible to modify AKE1+ so that it does not use public certi-

fied random strings. In this variant, the key derivation functions are both seen
as ideal functions (i.e. the output of F1(·) and F2(·) are uniformly distributed
over {0, 1}`) and are instantiated using specific functions derivated from cryp-
tographic hash functions like SHA-1 or MD5. The analogue of Theorem 4 in
the random oracle model can then easily be proven from the security proof of
AKE1+.

5 Analysis of Security

In this section, we assert that the protocol AKE1+ securely distributes a session
key. We refine the notion of forward-secrecy to take into account two modes
of corruption and use it to define two notions of security. We show that when

11

Smart

S 1 S 2 Cards S 3 S 4
holds s1 holds s2 holds s3 holds s4
l l l l

Secure

C 1 C 2 Coprocessors C 3 C 4
x1←gdh picks(1) x2←gdh picks(2) x3←gdh picks(3) x4←gdh picks(4)

l l l l
Players

U 1 U 2 U 3 U 4
gdh up(1, 0, 2, I‖g, ∅)

(Fl1,µ12)
−−−−−−−−−−→

gdh up(2, 1, 3, Fl1, µ12)
(Fl2,µ23)

−−−−−−−−−−→
gdh up(3, 2, 4, Fl2, µ23)

(Fl3,µ34)
−−−−−−−−−−→

gdh down(4, 3, Fl3, µ34)
U4 broadcasts (Fl4, µ41, µ42, µ43, µ44) ←−−−−−−−−−−

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
←−−

gdh key(1, Fl4, µ41) gdh key(2, Fl4, µ42) gdh key(3, Fl4, µ43) gdh key(4, Fl4, µ44)

Fig. 1. Algorithm Setup1+. A practical example with 4 players I = {U1, U2, U3, U4}.

Smart

S 1 S 2 Cards S 3 S 4
holds s1 holds s2 holds s3 holds s4
l l l l

Secure

C 1 C 2 Coprocessors C 3 C 4
holds x1 ∈ � ?

q holds x2 ∈ � ?
q holds x3 ∈ � ?

q holds x4 ∈ � ?
q

x′

3←gdh picks
?(3)

l l l l
Players

U 1 U 2 U 3 U 4
Previous set of values is Fl4 = {I, gx2x3x4 , gx1x3x4 , gx1x2x4 , gx1x2x3}

gdh down again(3, Fl4)

(Fl′3,µ31,µ33)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

New set of values is Fl′3 = {I\J , g
x′

3
24 , g

x1
24 }, where g24 = gx2x4

gdh key(1, Fl′3, µ31) gdh key(3, Fl′3, µ33)

Fig. 2. Algorithm Remove1+. A practical example with 4 players: I = {U1, U2, U3, U4} and J =
{U2, U4}. The new multicast group is I = {U1, U3} and GC = U3.

considering the weak-corruption mode the protocol AKE1+ is secure under stan-
dard assumptions. This proof can in turn be adapted to cope with the strong-
corruption mode.

5.1 Security Notions

Forward-Secrecy. The notion of forward-secrecy entails that the corruption
of a (static) LL-key used for authentication does not compromise the semantic
security of previously established session keys. However while a corruption may
have exposed the static key of a player it may have also exposed the player’s
internal data. That is either the LL-key or the ephemeral key (private exponent)
used for session key establishment is exposed, or both. This in turn leads us
to define two modes of corruption: the weak-corruption model and the strong-
corruption model.

In the weak-corruption model, a corruption only reveals the LL-key of player
U . That is, the adversary has the ability to make Corrupts queries. We then talk

12

Smart

S 1 S 2 Cards S 3 S 4
holds s1 holds s2 holds s3 holds s4
l l l l

Secure

C 1 C 2 Coprocessors C 3 C 4
holds x1 ∈ � ?

q holds x2 ∈ � ?
q holds x3 ∈ � ?

q

x′′

3←gdh picks
?(3) x′

4←gdh picks(4)

l l l l
Players

U 1 U 2 U 3 U 4

Previous set of values is Fl′3 = {I, g
x2x′

3x4 , gx1x2x4}
gdh up again(3, 4, Fl′3, µ′

33)

(Fl′′3 ,µ′′

34)
−−−−−−−−−−→

gdh down(4, 3, Fl′′3 , µ′′

34)
U4 broadcasts (Fl′4, µ′

41, µ43, µ44) ←−−−−−−−−−−
←−−

New set of values is Fl′4 = {I ∪ J , g
x′′

3 x′

4
24 , g

x1x′

4
24 , g

x1x′′

3
24 }, where g24 = gx2x4

gdh key(1, Fl′4, µ41) gdh key(3, Fl′4, µ43) gdh key(4, Fl′4, µ44)

Fig. 3. Algorithm Join1+. A practical example with 4 players: I = {U1, U3}, J = {U4} and GC = U3.
The new multicast group is I = {U1, U3, U4}.

about weak-forward secrecy and refer to it as wfs. In the strong-corruption model,
a corruption will reveal the LL-key of U and additionally all internal data that
his instances did not explicitly erase. That is, the adversary has the ability to
make Corrupts and Corruptc queries. We then talk about strong-forward secrecy

and refer to it as fs.

Freshness. As it turns out from the definition of forward-secrecy two flavors
of freshness show up. An oracle Π t

U is wfs-Fresh, in the current execution, (or
holds a wfs-Fresh SK) if the following conditions hold. First, no Corrupts query
has been made by the adversary since the beginning of the game. Second, in
the execution of the current operation, U has accepted and neither U nor his
partners has been asked for a Reveal-query.

An oracle Π t
U is fs-Fresh, in the current execution, (or holds a fs-Fresh SK)

if the following conditions hold. First, neither a Corrupts-query nor a Corruptc-
query has been made by the adversary since the beginning of the game. Second,
in the execution of the current operation, U has accepted and neither U nor his
partners have been asked for a Reveal-query.

AKE Security. In an execution of P , we say an adversary A wins if she asks a
single Test-query to a Fresh player U and correctly guesses the bit b used in the
game Gameake(A, P). We denote the AKE advantage as Advake

P (A). Protocol P
is an A-secure AKE if Advake

P (A) is negligible.
By notation Adv(t, . . .), we mean the maximum values of Adv(A), over all

adversaries A that expend at most the specified amount of resources (namely
time t).

5.2 Security Theorem

A theorem asserting the security of some protocol measures how much computa-
tion and interactions helps the adversary. One sees that AKE1+ is a secure AKE

13

protocol provided that the adversary does not solve the group decisional Diffie-
Hellman problem G-DDH, does not solve the multi-decisional Diffie-Hellman
problem M-DDH, or forges a Message Authentication Code MAC. These terms
can be made negligible by appropriate choice of parameters for the group

�
.

The other terms can also be made “negligible” by an appropriate instantiation
of the key derivation functions.

Theorem 4. Let A be an adversary against protocol P , running in time T ,

allowed to make at most Q queries to any instance oracle. The adversary is also

restricted to not ask Corruptc-queries. Let n be the number of players involved in

the operations which lead to the group on which A makes the Test-query. Then

we have:

Advake
P (A, qse)≤ 2nQ · Adv

gddhΓn� (T ′) + 2Advmddhn� (T)

+n(n− 1) · Succcma
mac(T) + n(n− 1) · δ1 + 2nQ · δ2

where δi denotes the distance between the output of Fi(·) and the uniform distri-

bution over {0, 1}`, T ′ ≤ T+QnTexp(k), where Texp(k) is the time of computation

required for an exponentiation modulo a k-bit number, and Γn corresponds to the

elements adversary A can possibly view:

Γn =
⋃

2≤j≤n−2

{{i | 1 ≤ i ≤ j, i 6= l} | 1 ≤ l ≤ j}

⋃

{{i | 1 ≤ i ≤ n, i 6= k, l} | 1 ≤ k, l ≤ n} .

Proof. The formal proof of the theorem is omitted due to lack of space and can
be found in the Appendix 4. We do, however, provide a sketch of the proof here.

Let the notation G0 refer to Gameake(A, P). Let b and b′ be defined as in
Section 3 and S0 be the event that b = b′. We incrementally define a sequence of
games starting at G0 and ending up at G5. We define in the execution of Gi−1

and Gi a certain “bad” event Ei and show that as long as Ei does not occur the
two games are identical [25]. The difficulty is in choosing the “bad” event. We
then show that the advantage of A in breaking the AKE security of P can be
bounded by the probability that the “bad” events happen. We now define the
games G1,G2,G3,G4,G5. Let Si be the event b = b′ in game Gi.

Game G1 is the same as game G0 except we abort if a MAC forgery occurs
before any Corrupt-query. We define the MAC forgery event by Forge. We then
show: |Pr[S0]− Pr[S1]| ≤ Pr[Forge].

Game G2 is the same as game G1 except that we add the following rule: we
choose at random an index i0 in [1, n] and an integer c0 in [1, Q]. If the Test-
query does not occur at the c0-th operation, or if the very last broadcast flow
before the Test-query is not operated by player i0, the simulator outputs “Fail”
and sets b′ randomly. Let E2 be the event that these guesses are not correct. We
show: Pr[S2] = Pr[E2]/2 + Pr[S1](1− Pr[E2]), .

14

Game G3 is the same as game G2 except that we modify the way the queries
made by A are answered; the simulator’s input is D, a G-DH?

Γn
element, with

gx1...xn. During the attack, based on the two values i0 and c0, the simulator
injects terms from the instance such that the Test-ed key is derived from the G-

DH-secret value relative to that instance. The simulator appears in Appendix A.
We then show that: Pr[S2] = Pr[S3].

Game G4 is the same as game G3 except that the simulator is given as input an
element D from G-DH$

Γn
, with gr. And in case b = 1, the value random value gr is

used to answer the Test-query. The, the difference between G3 and G4 is upper-
bounded by the computational distance between the two distributions G-DH?

Γn

and G-DH$
Γn

: |Pr[S3]− Pr[S4] | ≤ Adv
gddhΓn� (T ′), where T ′ takes into account the

running time of the adversary, and the random self-reducibility operations, and
thus T ′ ≤ T + QnTexp(k).

Game G5 is the same as G4, except that the Test-query is answered with
a completely random value, independent of b. It is then straightforward that
Pr[S5] = 1/2. Let δ2 be the distance between the output of F2(·) and the uniform
distribution, we have: |Pr[S5]− Pr[S4] | ≤ δ2.

The theorem then follows from the above equations. They indeed lead to

Pr[S0] ≤ Pr[Forge] + Pr[S1] ≤ Pr[Forge] + nQ
(

Adv
gddhΓn� (T ′) + δ2

)

+
1

2
.

ut

Remark. When considering strong-corruptions we have to answer to all the
Corruptc-queries made by the adversary along the games but we can only do
so if we know the private exponents involved in the games. To reach this aim,
we can no longer benefit from the self-random reducibility property of G-DDH
and have to “guess” the moment at which the adversary will ask the Test-query.
Unfortunately, reductions carried out in such a way add an exponential factor
in the size of the multicast group [7, 8].

6 Conclusion

This paper represents the third tier in the treatment of the group Diffie-Hellman
key exchange using public/private keys. The first tier was provided for a sce-
nario wherein the group membership is static [7] and the second, by extension
of the latter to support membership changes [8]. This paper adds important
attributes (strong-corruption, concurrent executions of the protocol, tighter re-
duction, standard model) to the group Diffie-Hellman key exchange.

Acknowledgements

The authors thank Deborah Agarwal and Jean-Jacques Quisquater for many
insightful discussions and comments on an early draft of this paper. The authors
also thank the anonymous referees for their useful comments.

15

References

1. G. Ateniese, M. Steiner, and G. Tsudik. Authenticated group key agreement and friends. In
ACM CCS ’98, pp. 17–26. 1998.

2. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. In
Proc. of Crypto ’96, LNCS 1109, pp. 1–15. Springer, 1996.

3. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictionary
attacks. In Proc. of Eurocrypt ’00, LNCS 1807, pp. 139–155. Springer, 2000.

4. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. In ACM CCS ’93, pp. 62–73. 1993.

5. K. P. Birman. A review experience with reliable multicast. Software – Practice and Experience,
29(9):741–774, 1999.

6. D. Boneh. The decision Diffie-Hellman problem. In Proc. of ANTS III, LNCS 1423, pp. 48–63.
Springer, 1998.

7. E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably authenticated group
Diffie-Hellman key exchange. In ACM CCS ’01, pp. 255–264. 2001.

8. E. Bresson, O. Chevassut, and D. Pointcheval. Provably authenticated group Diffie-Hellman key
exchange – the dynamic case. In Proc. of Asiacrypt ’01, LNCS 2248, pp. 290–309. Springer, 2001.

9. E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic group Diffie-Hellman key exchange under
standard assumptions. In Proc. of Eurocrypt ’02, LNCS. Springer, 2002. Full version of this paper
available at http://www.di.ens.fr/∼pointche.

10. M. Burmester and Y. G. Desmedt. A secure and efficient conference key distribution system. In
Proc. of Eurocrypt ’94, LNCS 950, pp. 275–286. Springer, 1995.

11. G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: A compre-
hensive study. ACM Computing Surveys, 33(4):1–43, 2001.

12. G. Di Crescenzo, N. Ferguson, R. Impagliazzo, and M. Jakobsson. How to forget a secret. In
Proc. of STACS ’99, LNCS 1563, pp. 500–509. Springer, 1999.

13. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information

Theory, IT-22(6):644–654, 1976.
14. W. Diffie, D. Steer, L. Strawczynski, and M. Wiener. A secure audio teleconference system. In

Proc. of Crypto ’88, LNCS 403, pp. 520–528. Springer, 1988.
15. W. Diffie, P. van Oorschot, and W. Wiener. Authentication and authenticated key exchange. In

Designs, Codes and Cryptography, vol. 2(2), pp. 107–125, 1992.
16. C. G. Gunter. An identity-based key exchange protocol. In Proc. of Eurocrypt ’89, LNCS 434,

pp. 29–37. Springer, 1989.
17. J. Hstad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator from any one-way

function. SIAM Journal of Computing, 28(4):1364–1396, 1999.
18. M. Joye and J.-J. Quisquater. On the importance of securing your bins: The garbage-man-in-

the-middle attack. In ACM CCS’97, pp. 135–141. 1997.
19. M. Just and S. Vaudenay. Authenticated multi-party key agreement. In Proc. of Asiacrypt ’96,

LNCS 1163, pp. 36–49. Springer, 1996.
20. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions.

In FOCS ’97, pp. 458–467. IEEE, 1997.
21. NIST. FIPS 140-1: Security Requirements for Cryptographic Modules. U. S. National Institute

of Standards and Technology, 1994.
22. E. R. Palmer, S. W. Smith, and S. Weingart. Using a high-performance, programmable secure

coprocessor. In Financial Crypto ’98, LNCS 1465, pp. 73–89. Springer, 1998.
23. A. Rubin and V. Shoup. Session-key disribution using smart cards. In Proc. of Eurocrypt ’96,

LNCS 1070, pp. 321–331. Springer, 1996.
24. V. Shoup. On formal models for secure key exchange. Technical Report RZ 3120, IBM Zrich

Research Lab, 1999.
25. V. Shoup. OAEP reconsidered. In J. Kilian, editor, Proc. of Cryto’ 01, volume 2139 of LNCS,

pages 239–259. Springer-Verlag, 2001.
26. M. Steiner, G. Tsudik, and M. Waidner. Diffie-Hellman key distribution extended to group

communication. In ACM CCS ’96, pp. 31–37. 1996.
27. W. G. Tzeng. A practical and secure fault-tolerant conference-key agreement protocol. In Proc.

of PKC ’00, LNCS 1751, pp. 1–13. Springer, 2000.
28. K. Vedder and F. Weikmann. Smart cards requirements, properties, and applications. In State

of the Art in Applied Cryptography, LNCS 1528. Springer, 1997.
29. S. H. Weingart. Physical security devices for computer subsystems: A survey of attacks and

defenses. In Proc. of CHES ’00, LNCS 1965, pp. 302–317. Springer, 2000.

16

A Proof of theorem 4

Proof. Let A be an adversary that can get an advantage ε in breaking the AKE
security of protocol P within time t, assuming n players have been involved in
the protocol. By player involved in a group, we mean a player who has joined
the group at least once since its setup.

In the following we define a sequence of games G0, . . .G5 and also several
events. We denote the event b = b′ in the game Gi by Si and also define a “bad”
event Ei. We will then show that as long as Ei does not occur then the two games
Gi−1 and Gi are identical.

The queries made by A are answered by a simulator ∆. ∆ maintains for each
concurrent execution of P two variables T and L0. In L0 it keeps the set of
the first n players which have been involved in the group so far. In T it keeps
the order of arrival of the players in L0: i.e. to know which elements of the
GDH-trigon have to be used for each player in Game G3 (see Figure 4). These
variables are reset whenever a Setup1+ occurs.

Game G0. This game G0 is the real attack Gameake(A, P). We set At the
beginning of this game we set the bit b at random.

Game G1. The game G1 is identical to G0 except that we abort if a MAC

forgery occurs before any Corrupt-query. We define such an event by Forge. Using
a well-know lemma we get:

|Pr[S0]− Pr[S1]| ≤ Pr[Forge]. (1)

Lemma 5. Let δ1 be the distance between the output of the map F1 and the

uniform distribution. Then, we have:

Pr[Forge] ≤ Advmddhn� (T) +
n(n− 1)

2
Succcma

mac(T) +
n(n− 1)

2
δ1. (2)

Proof. The proof of this lemma appears in appendix B.

Game G2. Game G2 is the same as game G1 except that we add the following
rule: we choose at random two values i0 in [1, n] and c0 in [1, Q]. c0 is a guess
for the number of operations that will occur before A asks the Test-query and
i0 is a guess for the player who will send the very last broadcast flow before
the Test-query. If the c0-th operation is Join1+ or Setup1+, then i0 is the last
joining player’s index, otherwise i0 is the group controller’s index (hoped to
be max(L0)). If the Test-query does not occur at the c0-th operation, or if the
very last broadcast flow before the Test-query is not operated by player i0, the
simulator outputs “Fail” and sets b′ randomly. Let E2 be the event that these
guesses are not correct. Then we have:

Pr[S2] = Pr[S2 ∧ E2] + Pr[S2 ∧ ¬E2] = Pr[S2 |E2] Pr[E2] + Pr[S2 | ¬E2] Pr[¬E2]

=
1

2
Pr[E2] + Pr[S1] (1− Pr[E2]) , (3)

where Pr[E2] = 1− 1/nQ. Note that we use the fact that E2 and S1 are indepen-
dent.

17

Game G3. Game G3 is the same as game G2 except that we slightly modify
the way the queries made by A are answered. ∆ receives as input an instance
D of size n from G-DH?

Γn
, with its solution gx1...xn :

Γn =
⋃

2≤j≤n−2

{{i | 1 ≤ i ≤ j, i 6= l} | 1 ≤ l ≤ j}

⋃

{{i | 1 ≤ i ≤ n, i 6= k, l} | 1 ≤ k, l ≤ n} .

This in turn leads to an instance D = (S1, . . . , Sn−2, Sn−1, Sn) ∪ {gx
1 . . . xn}

wherein: Sj, for 2 ≤ j ≤ n − 2 and j = n, is the set of all the j − 1-tuples
one can build from {1, . . . , j}; but Sn−1 is the set of all n − 2 tuples one can
build from {1, . . . , n} (see Figure 4).

j = 1 {}
j = 2 {1} {2}
j = 3 (= n − 1) {1, 2} {1, 3} {2, 3} {1, 4} {2, 4} {3, 4}
j = 4 (= n) {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

� ��� � � ��� �

basic trigon extension

Fig. 4. Extended Trigon for Γ4

Based on the two values i0 and c0, the simulator injects in the game many
random instances, generated by (multiplicative) random self-reduction, from
G-DH?

Γn
such that the Test-ed key is the G-DH secret value gx1...xn relative to

D. That is all the elements of Sn will be embedded into the protocol at c0 when
the adversary A asks the Test-query.

∆ cannot embed all the elements of Sn at c0 since the players are not all
added to the group at c0. The strategy of ∆ is as follows: embed the successive
elements of instance D in the protocol flows in the order wherein the players join
the group, until n− 1 players have been involved and except for player i0; just
before the Test-query, embed the last elements of instance D via the broadcast
operated (hopefully) by i0; and after the Test-query, returns to line Sn−1 with
session keys in Sn.

This strategy allows ∆ to deal with situations where n players are involved
in the group before c0, and are added and removed repeatedly. If, in effect, ∆
embeds all the elements of Sn into the protocol execution the first time the size
of L0 is n, ∆ is not able to compute the session key value sk needed to answer to
the Reveal-query. Before c0, ∆ uses truly random values instead of instance D for
player Ui0 or if there are already n−1 players involved in the group. Note that ∆
embeds elements of Si when a new player Ui (except Ui0) is added to the group
I for the first time and ∆ does not remove it when Ui leaves. This way, after
the joining operation of the j-th player from L0, Ui0 excepted, the broadcast
flow involves a random self-reduction of the j-th line in the basic trigon (see
figure 4), the up-flows involve elements in the j − 1-th line, and the session key
one element from the j+1-th line. Thus, before operation c0, ∆ is able to answer

18

the Join and Remove-queries and knows all the session keys needed to answer the
Reveal-queries. To correctly deal with self-reducibility, ∆ make use of variable T
to reconstruct well-formatted (blinded) flows from D.

When the c0-th operation occurs, the last broadcast flow is operated by Ui0

who embeds line Sn of the trigon. If follows that the corresponding session key
(which is the Test-ed key) is the G-CDHΓn

value gx1...xn relative to D, blinded by
self-reducibility. ∆ then answers the Test-query as in the real protocol, according
to the value of bit b.

However, ∆ also needs to be able to answer to all queries after c0 and more
specifically the Reveal-queries (if the adversary A does not output the bit b′ right
away after asking the Test-query and keeps playing the game for more rounds).
To this aim, ∆ has to un-embed the element Sn from the protocol (in order to
reduce the number of exponents taken from the instance D) and it does it in the
operation that occurs at c0 + 1. However depending on which player performs
that later operation, ∆ may not be able to do it without going “out” of the basic
trigon (but anyway with only n− 1 exponents involved). This is the reason why
the line Sn−1 has to contain all the possible (n−2)-tuples: extension of the basic
trigon illustrated on Figure 4. For the operations that will occur after c0 + 1,
∆ uses (random) blinding exponents for all the players including those in L0,
keeping all the xi but one in the flows2. Therefore, the future session keys will
be derivated from the n-th line, but the broadcasts may involve any element in
the extended n− 1-th line.

The simulation is therefore undistinguishable from the game G2:

Pr[S2] = Pr[S3]. (4)

Game G4. Game G4 is the same as game G3 except that the simulator is given
as input an instance D from G-DH$

Γn
, with gr as “candidate” solution. And in

case b = 1, the value gr is used to answer the Test-query. Then, the difference
between G3 and G4 is upperbounded by the computational distance between
the two distributions G-DH?

Γn
and G-DH$

Γn
, with gx1...xn and gr respectively:

|Pr[S3]− Pr[S4]| ≤ Adv
gddhΓn� (T ′). (5)

The running time of simulator in games G2 and G3 is essentially the same as in
the previous game, except that each query may implies computation of up to n
exponentiation needed for self-reducibility: T ′ ≤ T + nQTexp(k), where Texp(k)
is the time needed to perform an exponentiation modulo a k-bit number.

Game G5. Game G5 is the same as G4, except that the Test-query is answered
with a completely random value, independently of b. It is then straightforward
that Pr[S5] = 1/2. Let δ2 be the distance between the output of F2(.) and the
uniform distribution, we have:

|Pr[S5]− Pr[S4]| ≤ δ2. (6)

2 Another solution would have been to guess which player performs the operation at c0 + 1. With
this second guess j0, the extension of the trigon would have contained all the n−2 tuples but those
containing both i0 and j0.

19

Putting all together Equations (1), (2), (3), (4), (5), (6), we get

Pr[S0] = Pr[S0 ∧ Forge] + Pr[S0 ∧ ¬Forge]

≤ Pr[Forge] + Pr[S1] = Pr[Forge] + nQ

(

Pr[S2]−
1

2
(1− 1/nQ)

)

≤ Pr[Forge] + nQ

(

Pr[S2]−
1

2

)

+
1

2

≤ Pr[Forge] + nQ

(

Pr[S5] + Adv
gddhΓn� (T) + δ2 −

1

2

)

+
1

2

≤ Pr[Forge] + nQ
(

Adv
gddhΓn� (T) + δ2

)

+
1

2
.

The theorem then follows from lemma 5. ut

B Proof of lemma 5

Proof. Our goal here is to upper bound the probability of the “bad” event Forge.
Forge is the event the adversary A outputs during the attack a MAC forgery
before corrupting a player. To reach this aim we evaluate the probability of
Forge in a sequence of games G′0, . . . ,G

′
4. We formally refer to Forge′i as the

event Forge in game G′i.

Game G
�

0
: The game G′0 is defined as being the real attack against our protocol:

G′0 = G0.

Game G
�

1
. The game G′1 is identical to G′0, except that each MAC key Kij is

computed as F1(g
rij), where rij is a random, instead of F1(g

xixj). It follows that
the difference between the two games is upper-bounded by the computational
distance Advmddhn� (T):

|Pr[Forge′0]− Pr[Forge′1]| ≤ Advmddhn� (T).

Game G
�

2
. Game G′2 is identical to G′1 except that instead of chosen each

MAC key Kij as the output of key derivation map F1 we choose them at random
according to the uniform distribution. Thus, the difference between the two
games is upperbounded by a function in the distance δ1 of the output of F1 from
the uniform distribution.

More precisely, we use a classical “hybrid distribution” technique and define
an (ordered) sequences of auxiliary games G′2

ij
(1 ≤ i < j ≤ n). Given 1 ≤

i < j ≤ n, game G′2
ij

is identical to G′1 except that all MAC keys Kkl for
(k < i) or (k = i, l ≤ j) are replaced by a uniformly chosen random key. Then

G′2
11

= G′1 whereas G′2
n−1,n

= G′2. There are n(n − 1)/2 such games and the
only difference between two “consecutive” auxiliary games is upperbounded by
δ1. It then follows that:

|Pr[Forge′1]− Pr[Forge′2]| ≤
n(n− 1)

2
δ1.

20

In case the map F1 were a random oracle we would have had the distance δ1

equal to 0. If the map F1 is based on a universal hash function and left-over
hash lemma (see lemma 3), we have δ1 ≤ 2−(e+1). Recall that the latter hash
functions use as input of a random value and this value is either certified or sent
as part of the protocol flows.

Game G
�

3
. The game G′3 is identical to G′2, except that the simulator chooses

at random two indices a and b, a < b, in [1, n] and aborts if no MAC forgery
w.r.t. Kab occurs before a Corrupt-query. The probability of correctly guessing a
and b is 2

n(n−1)
. It follows that:

Pr[Forge′3] =
2

n(n− 1)
Pr[Forge′2].

Game G
�

4
. The game G′4 is identical to G′3, except that the simulator is given

access to a MAC.Sgn-oracle and will use it to authenticate the flows between
players a and b. All other MAC keys are known, uniformly distributed values.
If the MAC scheme uses uniformly distributed keys, the two games are identical
and Pr[Forge′4] = Pr[Forge′3]. By construction the probability of Forge′4 is exactly
the probability of breaking the security of the MAC scheme:

Pr[Forge′4] = Succcma
mac(T).

Finally, we easily get:

Pr[Forge] = Pr[Forge′0] ≤ Advmddhn� (T) +
n(n− 1)

2
δ1 +

n(n− 1)

2
Succcma

mac(T).

ut

21

Setup(J) Initialize new variables T and L0 to ∅
Increment c
Initialize new multicast group I ′ ← J
u← min(J)
• c < c0 : Update L0 up to cardinality n− 1 with J , except i0

u 6= i0 ⇒ simulate the answer using RSR according to T

u = i0 ⇒ do as in P using ru
R
←

�
?
q to generate the flow

• c = c0 : #(L0) 6= n⇒ output “Fail”
#(J) = n⇒ L0 ← J then simulate the

answer using RSR according to T

• c > c0 : do as in P using ru
R
←

� ?
q to generate the flow

Join(I,J) Increment c
u← max(I)
Initialize a new multicast group I ′ ← I ∪ J
Update L0 up to cardinality n− 1 with J , except i0
• c < c0 : u ∈ L0 ⇒ simulate the answer using RSR according to T

u /∈ L0 ⇒ do as in P using ru
R
←

� ?
q to generate the flow

• c = c0 : L0 ← L0 ∪ {i0}
(max(J) 6= i0) ∨ (I′ � L0) ∨ (#(L0) 6= n)⇒ output “Fail”
simulate the answer using RSR according to T

• c = c0 + 1 : L0 ← L0\{u}
• c > c0 : u ∈ L0 ⇒simulate the answer using RSR according to T

u /∈ L0 ⇒do as in P using ru
R
←

� ?
q to generate the flow

Remove(I,J) Increment c
Initialize a new multicast group I ′ ← I\J
u← max(I′)
• c < c0 : u ∈ L0 simulate the answer using RSR according to T

u /∈ L0 ⇒ do as in P using ru
R
←

� ?
q to generate the flow

• c = c0 : L0 ← L0 ∪ {i0}
(u 6= i0) ∨ (I � L0) ∨ (#(L0) 6= n)⇒ output “Fail”
simulate the answer using RSR according to T

• c = c0 + 1 : L0 ← L0\{u}
• c > c0 : u ∈ L0 ⇒simulate the answer using RSR according to T

u /∈ L0 ⇒do as in P using ru
R
←

�
?
q to generate the flow

Send(Πt
i , m) • c 6= c0 : i ∈ L0 ⇒ simulate the answer using RSR according to T

i /∈ L0 ⇒do as in P using ru
R
←

� ?
q to generate the flow

• c = c0 : simulate the answer using RSR according to T

Reveal(Πt
i) If Ui has accepted Then

If c = c0 Then output “Fail”
Else return skΠt

i
.

Corrupt(Ui) return LLUi
.

Test (Ui) If Ui has accepted Then

If c = c0 Then return F2(grρ), where ρ is an adequate blinding exponent.
Else output “Fail”.

Fig. 5. Game G4. The multicast group is I. The Test-query is “guessed” to be made: after c0 operations, the
multicast group is L0, and the last joining player is Ui0 . In the variable T , ∆ store which exponents of instance
D have been injected in the game so far. RSR holds for random self-reducibility.

