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Abstract. The aim of electronic voting schemes is to provide a set of protocols that
allow voters to cast ballots while a group of authorities collect the votes and output the
final tally. In this paper we describe a practical multi-candidate election scheme that
guarantees privacy of voters, public verifiability, and robustness against a coalition of
malicious authorities. Furthermore, we address the problem of receipt-freeness and inco-
ercibility of voters. Our new scheme is based on the Paillier cryptosystem and on some
related zero-knowledge proof techniques. The voting schemes are very practical and can
be efficiently implemented in a real system. Keywords: Homomorphic cryptosystems,
High-Residuosity Assumption, Practical Voting scheme, threshold cryptography

1 Introduction

1.1 Motivation

An electronic voting scheme is a set of protocols which allow voters to cast
ballots while a group of authorities collect the votes and output the final tally.
We present a practical multi-candidate election system that is scalable, reliable,
and can tolerate any number of participants and candidates.

In most of the previous work, the “yes/no” paradigm in which voters can
only cast a boolean vote has been used for technical reasons. But this model is
not practical since usually one should consider at least the null vote in addition.
Moreover, in a practical system, the tally should be computed at different levels
in order to give local, regional and national results. Consequently, the election
scheme we propose is practically oriented for large groups of voters and multiple
candidates with the possibility of partial tally computation. Moreover, previous
works have not described the whole election system from the booth to the com-
putation of the tally in intermediary levels such as local, regional and national
results. The separation between levels can appear to be a non-cryptographic
feature. However, in a practical point of view, this can be used to reduce the
storage cost in each local authority and to reduce the computational cost by
distributing all the calculations for checking the proofs. Therefore, it is of great
importance to address the scalability problem if we want to deploy this system.
Moreover the scenario is adapted to numerous practical situations where local
results represent also valuable information.

1.2 Related Work

Election schemes [1, 2, 31, 9, 10, 33] were first described by Benaloh [1]. All these
voting schemes primarily discuss only “yes/no” vote. Two election models have
been proposed so far.
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In Benaloh schemes, a voter shares his vote between n authorities so that
(t + 1)-out-of-them can recover it. Next, each authority computes its encrypted
share of the tally and finally at least t + 1 authorities should collaborate to
actually compute the tally.

Cramer et al. [10] use another model in which all voters send their encrypted
votes to a single combiner. Using the homomorphic property of the cryptosystem,
this entity computes the encrypted tally in a publicly verifiable way. Then, the
combiner forwards it to the authorities and (t + 1)-out-of-them should recover
the tally by running a threshold cryptosystem. This model is optimal for the
communications between voters and authorities. Hence, as we use it, we need a
threshold cryptosystem.

In this paper, we address election schemes where multiple candidates can
be managed. Multi-candidate election schemes have been first investigated by
Cramer et al. in [9] and further studied in [10]. In this last scheme, the computa-

tion of the tally grows exponentially with the number of candidates : Ω((
√

`)
p−1

)
where ` is the number of voters and p the number of candidates.

The cryptosystem of Paillier [27] provides an efficient decryption algorithm
as well as the largest bandwidth among all cryptosystems using a trapdoor to
compute the discrete logarithm. Both of these arguments are the main compo-
nents to design multi-candidate election schemes and finally a threshold version
of this cryptosystem appeared in [15] and was rediscovered independently but
later in [11].

In this last paper, the authors have a new and original point of view on
Paillier scheme and provide another threshold version. They apply this sharing
scheme to a multi-candidate voting scheme as we made but with a different
cryptographic proof. The complexity of the proof is logarithmic in the number
of candidates whereas the complexity of ours is linear. On the other hand, [11]
uses complex zero-knowledge proofs of multiplication, and that can potentially
make the complexities of the two schemes comparable for a small number of
candidates.

Furthermore, their paper is quite different from our paper since we try to
build a global system and not only cryptographic primitives. We have a vision
of the whole security features of the voting system. Moreover, our solution takes
into account anonymity and receipt-freeness properties.

1.3 Achievements

Our voting system is efficient and flexible to also take into account the different
hierarchy levels. The new voting scheme guarantees the following requirements:
privacy of voters, public verifiability, robustness and receipt-freeness. The pri-
vacy of users ensures that a vote will be kept secret from any coalition of t
authorities where t is a system parameter. The public verifiability ensures that
any party including outside observers can convince herself that the election is
fair and that the published tally is correctly computed from the ballots that were
correctly cast. Next, the robustness of the scheme ensures that the system can
tolerate faulty authorities who try to cheat during the computation of the tally.
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Finally, the receipt-freeness property ensures that the voter cannot construct a
receipt proving the content of his vote in order to avoid coercibility and “vote
buying”.

1.4 Outline of the paper

In section 2, we present the organization of the election system. Then, we recall
the basic cryptographic tools as Paillier cryptosystem, a threshold decryption
algorithm for this scheme, and some zero-knowledge proofs related to a variant
of the discrete logarithm problem. In section 4, our complete voting scheme and
system is described. Finally, we discuss some related issues such as the practical
complexity of the scheme, the anonymity of users and a receipt-free version.

2 Election Organization

2.1 Architecture

In this section we present a large group-oriented system that can be used for
nation-wide elections. In this case, some organizational constraints have to be
carefully taken into account.

For example, the following system presents “direct” elections in a real life
scenario :

1. The local center deals with certification of the users and verifies that voters
can vote only once. The local authorities also verify correctness of the votes.
This task can also be checked by anybody else.

2. The local centers send local results to a regional center that collects all local
tallies, verifies that local centers sent correct information and computes the
regional results.

3. All regional centers send regional results to the national center which com-
putes the final result and checks whether regional centers have correctly
performed their tasks.

2.2 Candidates

In the simplest case, the election aims at choosing one winner out of several
candidates. The candidates are potentially physical people, “yes/no” decision,
or any arbitrary set of propositions among which a choice has to be made. They
are further designated by the numbers {1, 2, . . . , p}. They may include a “null”
element.

2.3 Players

The architecture involves several entities at different levels.

Voter A voter is a registered person who is allowed to express one vote for one
candidate. Each ballot has the same weight in the final result.

Local authority In a local area, ballots are collected by a local authority whose
goal is to compute the local result and forward it at a regional level.
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Regional authority A regional authority receives local results and computes
the regional result which is forwarded to the national authority.

National authority At the top level, the national authority collects regional
results, and publishes for each candidate the total number of vote.

Trusted Time Stamp This player guarantees that a player has voted before
a certain time.

2.4 Communication Model

The communication model we use is a public broadcast channel with memory
and can be implemented with a bulletin board [1]. All communication with the
bulletin board are public and can be universally monitored. No party can erase
any information but each voter can enter his part of the board.

To control the connection between voters and the bulletin board, an access
control must be used.

2.5 Security Requirements

Election schemes require the following properties :

Privacy The privacy of users ensures that a vote will be kept secret from any
t-coalition of authorities.

Public verifiability It ensures that any party including observers can convince
herself that the election is fair and that the published tally is correctly
computed from the ballots that were correctly cast.

Robustness The robustness of the scheme ensures that the system can tolerate
some faulty authorities who try to cheat during the computation of the tally.

Anonymity The votes cast by voters should be hidden.
Receipt-Freeness The receipt-freeness property ensures that a voter must not

be able to construct a receipt proving the content of his vote.

2.6 Other Attacks in Voting System

Our voting system takes into account two different attacks that appear when we
want to build a complete system.

Intermediary Authorities Attack This attack involves intermediary author-
ities who try to falsify the final result of the national authority.

Rushing Attack At the closure time of the voting system, the local authorities
reveal their local tally. The system can be protected to withstand a rushing
attack of users who try to falsify the tally if they wait the result of the local
authority to vote.

3 Cryptographic Tools

3.1 Paillier Cryptosystem

Various cryptosystems based on randomized encryption schemes E(M) which
encrypt a message M by raising a basis g to the power M and suitably ran-
domizing this result have been proposed so far [17, 1, 22, 26, 27]. Their security
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is based on the intractability of various “residuosity” problems. As an impor-
tant consequence of this encryption technique, those schemes have homomorphic
properties.

Homomorphic Properties They can be informally stated as follows:

E(M1 + M2) = E(M1)× E(M2) and E(k ×M) = E(M)k

These “algebraic properties” enable to compute with encrypted values with-
out knowing the content of ciphertexts. They are useful when the anonymity
of users is required. For example, we can compute the tally without decrypting
each vote and therefore can guarantee the privacy of users.

In electronic voting schemes, a variant of the ElGamal encryption scheme
[10] has been widely used. Instead of encrypting m with (gk mod p, myk mod p),
we compute (gk mod p, gmyk mod p). Unfortunately, such a scheme cannot be
considered as a trapdoor discrete logarithm scheme because no trapdoor exists
to determine m given gm mod p. Anyway, in “0/1” voting schemes, the cryp-
tosystem only manages small numbers because the number of voters is limited
and each voter votes “0” or “1”. Consequently, the tally cannot be very large
and an exhaustive search allows to give the result.

However, in multi-candidate election schemes the tally can become larger
because the encoding of many candidates cannot be reduced and if we want
to continue to compute the different results, we have to use an encoding size
in O(p × |`|), where p is the number of candidates and |`| is the size of the
number of users. For example, a national election may involve 10 candidates
and hundred millions voters needs the ability to encrypt 266-bits messages. In
such applications, the modified ElGamal scheme can no longer be used since ex-
haustive search, or more efficient methods like index calculus algorithm, cannot
efficiently recover the tally. A solution is to use a trapdoor discrete logarithm
scheme with large bandwidth such as Naccache-Stern [22], Okamoto-Uchiyama
[26], or Paillier [27].

Description of Paillier scheme Paillier has presented three closely related
such cryptosystems in [27]. We only recall the first one.

– Key Generation. Let N be an RSA modulus N = pq, where p and q are
prime integers. Let g be an integer of order a multiple of N modulo N 2. The
public key is PK = (N, g) and the secret key is SK = λ(N) where λ(N) is
defined as λ(N) = lcm ((p− 1)(q − 1)).

– Encryption. To encrypt a message M ∈ �
N, randomly choose x in

� ∗
N and

compute the ciphertext c = gMxN mod N2.

– Decryption. To decrypt c, compute M = L(cλ(N) mod N2)/L(gλ(N) mod
N2) mod N where the L-function takes in input elements from the set SN =
{u < N2|u = 1 mod N} and computes L(u) = u−1

N
. See in appendix 9.1 for

further details.
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3.2 Threshold Version of Paillier Cryptosystem

In order to prevent authorities to learn the votes and to protect the privacy of
users, we can use a threshold version of Paillier cryptosystem. Therefore, instead
of merely decrypt the encrypted tally, each authority uses n servers to share its
secret key so that at least t authorities are required to decrypt a vote.

Threshold decryption model The decryption process includes the following
players : a combiner, a set of n servers Pi, and users. We consider the following
scenario :

– In an initialization phase, the servers use a distributed key generation al-
gorithm to create the public key PK and secret shares SKi of the private
key SK. To remove the trusted dealer, see [12, 14]. Next the servers publish
verification keys VK, VKi.

– To encrypt a message, any user can run the encryption algorithm using the
public key PK.

– To decrypt a ciphertext c, the combiner forwards c to the servers. Using
their secret keys SKi and their verification keys VK, VKi, each server runs
the decryption algorithm and outputs a partial decryption ci with a proof
of validity of the partial decryption proof i. Finally, the combiner uses the
combining algorithm to recover the cleartext if enough partial decryptions
are valid.

This scheme is presented in appendix 9.2.

3.3 Zero-Knowledge Proofs

Given encryptions of Paillier, we review various zero-knowledge proofs that the
secret message satisfies some properties. We simply state what can be guaranteed
by affixing the proof of the encryption. Details are provided in appendix 9.3.

Proof of knowledge of an encrypted message. When creating the encryp-
tion of a message it is possible to prove that one actually knows the encrypted
message.

Let N be a k-bit RSA modulus. Given c = gmrN mod N2, the prover P
convinces the verifier V that he knows m similar to Okamoto [25] and Guillou-
Quisquater [18].

We note a÷ b the quotient in the division of a by b.

1. P chooses at random x ∈ �
N and s ∈ � ∗

N . He computes u = gxsN mod N2

and commits to u.

2. V chooses a challenge e ∈ [0, A[ and sends e to P .

3. P computes v = x−em mod N , w = sr−eg(x−em)÷N mod N and sends them
to V .

4. V checks that gvcewN = u mod N2.
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Proof that an encrypted message lies in a given set of messages. When
encrypting a message, it is possible to append a proof that the message lies
in a public set S = {m1, . . . , mp} of p messages without revealing any further
information.

Proof of equality of plaintexts. When encrypting a message, it is possible
to append a proof that two encrypted message are equal.

4 The voting scheme

In this section, we describe the complete protocol of our scheme, using the
cryptographic tools presented in section 3. Especially, we wish to emphasis the
user’s vote generation and the communication between the three hierarchical
levels, the national one, the regional one, and the local one.

pk 2 pk 3pk1Regional Level

pk1,1 pk1,2 pk1,3 pk2,1 pk2,2 pk2,3 pk3,1 pk3,3pk3,2

Local Level

National Level pk

Fig. 1. Organization of the authorities.

4.1 Setup

We consider a 1-out-of-p election where one candidate is chosen among p oth-
ers. In the initialization process, each authority, at any level generates its public
key and certifies it with an independent certification authority. We use the fol-
lowing hierarchical notation: pk for the national authority, pki for the regional
authorities and pki,j for the local authorities.

After the preliminary phase, each authority publishes on its own bulletin
board the correct public keys: for example, the ith regional authority the keys
pk, pki, and the jth local authority of the ith regional authority the keys pk, pki, pki,j.

We denote by ` the number of voters and we set M an integer larger than
`. For example, we can choose M = 2dlog2 `e, the power of 2 immediately larger
than `.

4.2 The Voting Phase

Consider a voter from a local area with public keys pk, pki, pki,j who wishes to
vote for the mth candidate. He issues a ballot in the following way:
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1. He downloads from the bulletin board the 3 public keys pk, pki, pki,j of his
zone.

2. Using each public key, he encrypts the integer Mm with Paillier scheme and
generates the ciphertexts Cn, Cr and C` encrypted respectively with the
national, regional and local public key.

3. He generates three proofs to convince any verifier that each ciphertext en-
crypts a valid vote, i.e. an integer Mm with m ∈ {1, . . . , p}. This is done
using the proof that a message lies in a given set.

4. He generates one proof to convince any verifier that the three ciphertexts
encrypt the same vote. This is done using proofs of equality of plaintexts.
Notice that such a proof is sound because the previous ones guarantees that
the size of the encrypted message is bounded.

4.3 Computation of the result

In this subsection we present the computation of the tally. First, we describe
the bulletin board of the local authorities which can be accessed by all users for
example through the web site of the local authority Ai,j.

Name C` Cr Cn

User 1 g
vi,j,1

i,j g
vi,j,1

i gvi,j,1

User 2 g
vi,j,2

i,j g
vi,j,2

i gvi,j,2

User k g
vi,j,k

i,j g
vi,j,k

i gvi,j,k

User ` g
vi,j,`

i,j g
vi,j,`

i gvi,j,`

Sum of Ai,j � k
vi,j,k � k

g
vi,j,k

i � k
gvi,j,k

Fig. 2. Bulletin Board of the local authority.

Figure 2 shows such a bulletin board where the kth user can read and write
in his own row but can only read the other rows.

The voters write their name together with their certificates, the three votes
and the proofs. Next, they sign all the data in the previous columns of their row
and the vote is signed by a time stamp server.

When the voting system is closed, the local authorities have to verify all
the proofs and signatures of users and of the time stamp server. Then, the local
authorities Ai,j compute the product of the correct votes in columns 2 to 4. Next,
they act as the combiner in the threshold decryption Paillier cryptosystem for
the first product which corresponds to their public key. The decryption can be
monitored by outsiders since the decryption process is publicly verifiable.

The local tallies are published in the bulletin board of the regional authori-
ties Ai in column 1 and in column 2 and 3 they write the product of the elements
in their own bulletin board. The different authorities Ai,j which depend on the
authority Ai have the same rights as users in the previous bulletin board. The
column C` is replaced by the decrypted tally. The regional authorities Ai com-
pute the sum in the first column, the products of column 2 and 3, and decrypt
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Local Authorities Vj,k � j,k
Cr � j,k

Cn

Local Auth 1 � k vi,1,k � k g
vi,1,k

i � k gvi,1,k

Local Auth 2 � k
vi,2,k � k

g
vi,2,k

i � k
gvi,2,k

Local Auth j � k vi,j,k � k g
vi,j,k

i � k gvi,j,k

Local Auth ` � k
vi,`,k � k

g
vi,`,k

i � k
gvi,`,k

Sum of Ai � j,k
vi,j,k

� j,k
g

vi,j,k

i

⇓ decrypts

� j,k
vi,j,k

� j,k
gvi,j,k

Fig. 3. Bulletin Board of the regional authority.

the final product in column 2 with the threshold process as the local authorities.
At the end, they verify that the tallies computed by the two methods matches.
They write on the bulletin board of the national authority their sum in column 1.
In column 2, they write the product of their local authorities.

Regional Authorities Vi,j,k � i,j,k Cn

Regional Auth 1 � j,k
v1,j,k � j,k

gv1,j,k

Regional Auth 2 � j,k
v2,j,k � j,k

gv2,j,k

Regional Auth i � j,k
vi,j,k � j,k

gvi,j,k

Regional Auth ` � j,k v`,j,k � j,k gv`,j,k

Sum of A � i,j,k
vi,j,k � i,j,k

gvi,j,k

⇓ decrypts

� i,j,k vi,j,k

Fig. 4. Bulletin Board of the national authority.

The national authority can compute the product of the elements in column
2 of its bulletin board. Then, it decrypts this product and verifies whether this
result is equal to the sum of the elements in column 1.

4.4 Frauds in the computation

The hierarchical subdivisions provide an efficient way of distributing public ver-
ifications of the results. Each voter is enable to check whether his vote has been
taken into account in the local tally. Then, he recursively performs similar veri-
fications which convinced him that the next level domain correctly included the
local tally. Finally, he is guaranteed that his vote is part of the national result.
Assuming that the number of hierarchical divisions is d (3 in our discussion)
and the total number of voters is ` then the computation load is O(d1/`) which
is easily performed on a single PC.

Additionally, if any error is detected by a given authority the faulty sub-
results may be discarded from the tally until further recomputation.
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5 Enhancements of the scheme

5.1 Time Stamp server

The voting system closes at a precise time T . Hence, the votes of users who have
not voted before T will not be taken into account for the computation of the
tally. Therefore, the users who have correctly voted before T and whose votes
have been refused because of time reasons, must prove that their vote is valid.
Consequently, a time stamping system is used to ensure that votes have been
performed before T .

5.2 Anonymity

In actual paper-based vote processes, the list of active voters is known, at least
by the authority. But it is basically due to the need to control that nobody votes
twice.

However, there is no practical reason for having such a list of the active
participants and in most situation only the total number of them is required.
Moreover, because of the digital format, some large scale analysis can be per-
formed, over many voting processes.

As a consequence, it may be essential to protect anonymity of (non)-voters,
while being able to avoid double-voting. As usual, blind signatures [6] are a
convenient tool for providing such an anonymity, while preventing double-usage
of a certificate.

Let us consider a blind signature scheme that prevents “one-more forg-
eries” [29]. One can either use the Okamoto-Schnorr [25, 32] version which is
based on the difficulty of computing discrete logarithms, or the Okamoto-Guillou-
Quisquater [25, 18] version which is based on the difficulty of computing e-th
roots modulo a composite number. One may remark that the latter does not
add any computational assumption since the RSA problem is stronger than the
Higher-Residue problem.

After having proven his identity, each user creates a new pair of matching
secret and public keys. Then, with the help of the authority(ies), he gets a
certificate on it, using a blind signature process. Of course, the authority have
to accept to interact at most once with a user. Thereafter, each voter possesses
just one certified public key, which may be used as a pseudonym.

Since we also want to prevent the collusion between a user and the au-
thorities, we have to use a distributed blind signature which requires all the
authorities together to help the user to get a valid pseudonym. Therefore, if
some authorities would like to help a user to get many pseudonyms to sign more
than once, it would be impossible.

An example of such a distributed certification of pseudonyms is given in
appendix 9.4.

5.3 Receipt-Free and Incoercible Properties

The concept of “receipt-freeness” was first presented by Benaloh and Tuin-
stra [2]. Their solution uses a voting booth that physically guarantees two-way
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secret communication between the authorities and each voter. Next, another
receipt-free voting protocol based on a mix-net channel has been proposed by
Sako and Kilian [31] where only a one-way secret communication from the au-
thorities to the voters is assumed.

Another class of solutions uses deniable encryption [4, 5] such that the voters
can lie later how the ciphertext is encrypted and this technique ensures inco-
ercible voters.

We first define both notions of receipt-freeness and incoercibility. Then, we
describe our proposal based on the existence of a secret communication channel
between each user and an independant party, called randomizer.

Definitions

Receipt-Freeness ensures that the voter cannot provide any receipt proving
the content of his vote, even if he wants to.

Incoercibility ensures that a voter cannot be coerced to release his vote.

While the receipt-free property is aimed to prevent users to sell their votes,
the incoercible property prevents a coercer to force the voter to reveal his vote.
We only focus on receipt-freeness in this article because it is a stronger require-
ment if we assume that there is no communication between the coercer and the
voter during the protocol.

Physical Assumptions To provide receipt-freeness we can use a physical as-
sumption like a tamper-resistant device (such as smartcards) so that the random
data used during the voting phase cannot be read by anybody. Therefore, thanks
to the semantic security of Paillier’s cryptosystem we are sure that anybody can-
not learn anything about the vote, even with the help of the voter. However, this
assumption may be too strong in some cases, then we will alternatively assume
a secret communication channel between any user and a randomizer.

Previous Work The assumption of secret communication channel has also
been used in the recent paper of Hirt and Sako [19]. But the communication
load of their mix-net to provide receipt-freeness if very high.

Indeed, in their technique, they assume, as we do, that the encryption scheme E
is homomorphic but also allows random re-encryption, which we denote by “

R←”.

– each possible vote is first encrypted with a fixed random (say 0)

L0 = {E0,1 = E(1; 0), E0,2 = E(2; 0), . . . , E0,p = E(p; 0)}.

– each authority permutes and re-encrypts all the votes, with a random per-
mutation, but also new random values so that the voter cannot prove the
content of an encryption

Li = {Ei,1
R← Ei−1,πi(1), Ei,2

R← Ei−1,πi(2), . . . ,

Ei,p
R← Ei−1,πi(p)}
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– each authority privately communicates the permutation πi to the user, so
that the user can follow the vote he wants to cast

– each authority privately proves that this permutation has really been used,
in a zero-knowledge way (without revealing the new random): for each j, Ei,j

and Ei−1,πi(j) encrypt the same message
– each authority publicly proves in zero-knowledge that there exists such a

permutation: for each j, Ei−1,j has been re-encrypted in Li

– finally, the user who is the only one able to follow his vote, points it in the
final list.

The main drawback is that, on the public bulletin board, the public proofs must
appear. In that technique, each authority proves that each message has been
re-encrypted in the new list, which makes a very huge amount of data to store.

Independent Randomizers Our proposal is in the same vein as the “self-
scrambling anonymizers” [28]. Users ask an external entity to randomize their
votes, without modifying the contents. But the voter requires more than just a
new encryption of his vote:

– he wants a proof that this new ciphertext encrypts the same vote as his orig-
inal one. However, that proof must not be transferable, otherwise it would
provide a receipt, since he can prove the content of the original encryption.
But this proof must also be zero-knowledge in order to leak no information
about the new random value used in the encrypted vote. Therefore, either
they use an interactive zero-knowledge proof, which is non-transferable, as
any zero-knowledge proof, thanks to the simulatability of the transcript. Or
they use a non-interactive designated-verifier proof [21].

– he needs a proof that the new encrypted vote is valid. However, without the
additional random value introduced by the randomizer, he can no longer
provide such a proof by himself. Therefore, he has to interact with the ran-
domizer to get it. However, we want that any part of the transcript of this
interaction cannot be used as a receipt by a user. Thus we will use the
divertible property [23, 3, 20, 7, 8] of the previous interactive proof that an
encrypted message lies in a given set. With such a divertible proof, the tran-
script seen by the user is independent of the resulting proof: the resulting
proof (signature) does not contain any subliminal channel that would enable
the user to hide/choose something to make a receipt.

– since three levels (and possibly more) are involved in our mechanism, the
randomizer has to randomize the three votes, and the user needs a proof that
the three resulting votes encrypt the same message. A divertible version of
the proof of equality of plaintexts can also be used. See 9.5 for technical
details.

6 Practical Complexity

Let us consider the practical complexity of the voting phase described is section
4. A vote consists of three ciphertexts Cn, Cr and C` and of some proofs of
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correctness. Some well known optimizations can be applied. For example, the
commitments can be replaced by their hash values as described in [16].

Let us note |H| the size of the hashed commitments, |A| the size of the
challenges and |N | the size of the modulus used in the Paillier cryptosystem.
The size of a vote is exactly

4|H|+ 4|A|+ (11 + 9p)|N |

where p is the number of candidates. Consequently, the communication com-
plexity of the scheme is linear in the size of Paillier modulus, in the number
of candidates and in the number of voters. Furthermore, the computation com-
plexity is also Θ(p× |N |) modular multiplication for both vote generation and
verification.

In practical application, we may choose |H| = 80, |A| = 80 and |N | = 1024.
For a 10 candidates election scheme, the size of a vote is about 12.5 KBytes
long.

For the complexity of the system, the use of several levels can be used the
reduce the computational cost and memory cost. We can see that these costs
are logarithmic in the number of levels.

7 Conclusion

In this paper we have described a practical multi-candidates election system
which guarantees voting scheme requirements and is scalable so that any number
of voters and candidates could be used. Moreover, the system can be adapted
to real life scenario with different levels of authorities.

All cryptographic proofs have been optimized to provide an efficient voting
scheme.
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9 Appendix

9.1 Paillier cryptosystem

Correctness of the cryptosystem The integers cλ(N) mod N2 and gλ(N) mod
N2 are equal to 1 when they are raised to the power N so they are N th roots
of unity. Furthermore, such roots are of the form (1 + N)β = 1 + βN mod
N2. Consequently, the L-function allows to compute such values β mod N and

L((gM)
λ(N)

mod N2) = M × L(gλ(N) mod N2) mod N .

Security of the cryptosystem Let us denote HR[N ] the problem of deciding
N th residuosity, i.e. distinguishing N th residues from non-N th residues. The high
residuosity assumption is the generalization of the quadratic residuosity used in
the Goldwasser-Micali cryptosystem [17]. In this last cryptosystem, given g a
non-quadratic residue modulo N , c is the encryption of m ∈ {0, 1} iff c/gm mod
N is a quadratic residue which can be decided if we know the factorization of
N . In Paillier cryptosystem, given g a non N th-residue modulo N 2, c is the
encryption of m ∈ �

N iff c/gm mod N2 is a N th-residue.
The semantic security of Paillier scheme with modulus N is equivalent to

HR[N ] (see [27] for more details). In the following, we refer to the so-called De-
cisional Composite Residuosity Assumption (DCRA) which assumes that HR[N ]
is intractable.

9.2 Threshold Version of Paillier Cryptosystem

Description This threshold version appeared in [15] along with a security anal-
ysis. We call ∆ = n! where n is the number of servers among which the decryp-
tion key is distributed using a Shamir Secret Sharing scheme [34]. This threshold
version is closed to the Threshold RSA Signature described by Shoup in [35].
Although the following description uses safe prime RSA moduli (n = pq, where
p and q are safe primes), we show in [14] how to make the robustness proof
without such modulus and how to generate in a distributive manner the special
RSA moduli that we need.

Key generation algorithm Choose an integer N , product of two safe primes
p and q, such that p = 2p′ + 1 and q = 2q′ + 1 and gcd(N, ϕ(N)) = 1. Set
m = p′q′.
Let β be an element randomly chosen in

� ∗
N and then randomly choose

(a, b) ∈ � ∗
N ×

� ∗
N and set g = (1 + N)a × bN mod N2.

The secret key SK = β×m is shared with the Shamir scheme: let a0 = βm,
randomly choose t values ai in {0, . . . , N×m−1} and set f(X) =

∑t
i=0 aiX

i.
The share si of the ith server Pi is f(i) mod Nm.
The public key PK consists of g, N and the value θ = L(gmβ) = amβ mod N .
Let VK = v be a square that generates the cyclic group of squares in

� ∗
N2.

The verification keys VKi are obtained with the formula v∆si mod N2.
Encryption algorithm To encrypt a message M , randomly pick x ∈ � ∗

N and
compute c = gMxN mod N2.
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Share decryption algorithm The ith player Pi computes the decryption share
ci = c2∆si mod N2 using his secret share si. He makes a proof of correct de-
cryption which assures that c4∆ mod N2 and v∆ mod N2 have been raised
to the same power si in order to obtain c2

i and vi. This proof is a non-
interactive statistically zero-knowledge proof of equality of discrete loga-
rithms in a cyclic group of unknown order mN .

Combining algorithm If less than t decryption shares have valid proofs of cor-
rectness the algorithm fails. Otherwise, let S be a set of t+1 valid shares and

compute the plaintext M = L
(

∏

j∈S c
2µS

0,j

j mod N2
)

× 1
4∆2θ

mod N where

µS
0,j = ∆×

∏

j′∈S\{j}
j′

j′−j
∈ �

The ∆ factor is used in order to obtain integers and to avoid the computation
of inverses modulo the secret value m. Therefore, the Lagrange interpolation

formula implies : ∆f(i) =
∑

j∈S µS
i,jf(j) mod mN and c4∆2mβ =

∏

j∈S c
2µS

0,j

j =

c4∆ � j∈S µS
0,jsj mod N2

9.3 Zero-knowledge Proofs

For convenience, we present only the interactive version of the protocols. Using
the Fiat-Shamir paradigm [13], the verifier may be replaced by a hash function to
form a non-interactive proof. In the random oracle model, security is guaranteed,
provided the interactive scheme is zero-knowledge against a honest verifier [30,
24]. In the following, k is a security parameter. Later on we consider that all
parameters are functions of k. In order to simplify the notations, we do not write
the dependencies on k but when we say that an expression f is negligible, this
means that f depends on k and that, for any polynomial P in k and for large
enough k, f(k) < 1/P (k).

Proof of knowledge of an encrypted message. Let N be a k-bit RSA
modulus. Given c = gmrN mod N2, the prover P convinces the verifier V that
he knows m similar to Okamoto and Guillou-Quisquater [25].

1. P chooses at random x ∈ �
N and s ∈ � ∗

N . He computes u = gxsN mod N2

and commits to u.
2. V chooses a challenge e ∈ [0, A[ and sends e to P .
3. P computes v = x−em mod N , w = sr−eg(x−em)÷N mod N and sends them

to V .
4. V checks that gvcewN = u mod N2.

Theorem 1. For any parameters A and t such that 1/At is negligible, it holds
that t iterations of the protocol is a zero-knowledge proof of knowledge of m
(against a honest verifier).

Proof.
Completeness. Assume P knows m. Following the protocol it holds that gvcewN

= gx−emgmerNesNr−eNgN((x−em)÷N) = gxsN = u mod N2. The term (x−em)÷N
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in w corresponds to the quotient of the reduction modulo N in v. Therefore P
is accepted with probability 1.

Soundness. Assume that a cheating prover P ∗ is accepted with non-negligible
probability. By a straightforward argument, P ∗ passes the protocol for at least
two different paths and their split can be computed in time linearly bounded
by the inverse of P ∗’s advantage. It follows that using P ∗ as an oracle, one may
compute in polynomial time (e1, v1, w1) and (e2, v2, w2) such that gv1ce1wN

1 =
u = gv2ce2wN

2 mod N2 using an algorithm similar to [32]. Considering the partial
logarithms (the discrete logarithm modulo N), it results that v1 + me1 = v2 +
me2 mod N and so m = (v2−v1)/(e1−e2) mod N which achieves the extraction
of m from P ∗.

Simulation. Since we assumed a honest verifier, the challenge is independent
from the commitment. Therefore the simulator chooses e at random in [0, A[
and picks v ∈ �

N and w ∈ � ∗
N until gcd(w, N) = 1. Then he computes u to

satisfy the verification equation. The simulation runs in linear time with respect
to the number t of rounds.

Proof that an encrypted message lies in a given set of messages. Let
N be a k-bit RSA modulus, S = {m1, . . . , mp} a public set of p messages, and
c = gmirN mod N2 an encryption of mi where i is secret. In the protocol the
prover P convinces the verifier V that c encrypts a message in S.

1. P picks at random ρ in
� ∗

N . He randomly picks p − 1 values {ej}j 6=i in
�

N

and p − 1 values {vj}j 6=i in
� ∗

N . Then, he computes ui = ρN mod N2 and
{uj = vN

j (gmj/c)ej mod N2}j 6=i. Finally, he sends {uj}j∈{1,...,p} to V .
2. V chooses a random challenge e in [0, A[ and sends it to P .
3. P computes ei = e−

∑

j 6=i ej mod N and

vi = ρreig(e− � j 6=i ej)÷N mod N and sends {vj, ej}j∈{1,...,p} to V .
V checks that e =

∑

j ej mod N and that

vN
j = uj(c/g

mj)ej mod N2 for each j ∈ {1, . . . , p}.

Theorem 2. For any non-zero parameters A and t such that 1/At is negligible
it holds that t iterations of the above protocol is a perfect zero-knowledge proof
(against a honest verifier) that the decryption of c is a member of S.

Proof.
Completeness. In the protocol, P has to commit to u1, . . . , up as if he were
proving in parallel that each c/gmj is a N th-residue. To this end, he uses the
malleability of the challenge that enables him to choose in advance p− 1 values
ej and computes the corresponding fake commitments uj = vN

j (gmj/c)ej mod N2

where the vj are the final answers picked at random in
� ∗

N.

Soundness. Assume that the decryption of c is not a member of S and that a
cheating prover P ∗ successfully completes an iteration of the protocol. From
the final verifying equation and the expression of c it results that for each
j ∈ {1, . . . , p}, vN

j = uj(c/g
mj)ej mod N2. Taking the partial logarithms, it fol-

lows that 0 = log uj + (m−mj)ej and since m 6= mj mod N , ej = log uj/(mj −
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m) mod N for each j ∈ {1, . . . , p}. Finally, from the last verifying equation
e =

∑

j ej mod N , it follows that e =
∑

j log uj/(mj −m) mod N which holds
with probability at most 1/A. If the protocol is iterated t times, then standard
arguments show that the probability that P ∗ passes the protocol cannot signif-
icantly exceed 1/At which is a negligible function of k.

Simulation. The simulator randomly chooses {ej}j∈{1,...,p} in
�

N . Note that the
sum e =

∑

j ej mod N perfectly simulates the challenge given by a honest ver-
ifier. Next the simulator picks at random {vj}j∈{1,...,p} in

� ∗
N and computes

{uj = vN
j /cej mod N2}j∈{1,...,p}. The sequence

{uj, e, vj}j∈{1,...,p} is a perfect simulation of one round of the protocol. The whole
simulation runs in time linear to the number t of rounds.

In [11], the authors have improved this result. Whereas our proof is linear
with respect to the number of candidates, the proof of Damgaard and Juric is
logarithmic.

Proof of equality of plaintexts. N1, . . . , Np are p k-bit RSA moduli. Given

p encryptions cj = gm
j r

Nj

j mod N2
j , under the assumption that the decryptions

of the cj lie in an interval [0, 2`[, the prover P convinces the verifier V that the
cj’s encrypt the same message m.

1. P picks at random ρ ∈ [0, 2k[ and sj ∈
� ∗

Nj
for each j in {1, . . . , p}. Then he

computes uj = gρ
j s

Nj

j mod N2
j and commits to the uj.

2. V chooses at random a challenge e in [0, A[ and sends it to P .
3. P computes z = ρ + me and vj = sjr

e
j mod Nj and sends z and the vj for

each j ∈ {1, . . . , p}.
V checks that z ∈ [0, 2k[ and that gz

j v
Nj

j = ujc
e
j mod N2

j for each j ∈
{1, . . . , p}.

Theorem 3. For any non-zero parameters A, t and ` such that 1/At and 2`−kA
are negligible, it holds that t iterations of the previous protocol is a statistical
zero-knowledge proof of membership (against a honest verifier) that elements
{c1, ..., cp} encrypt the same `-bit message.

Proof.
Completeness. For any j ∈ {1, ..., p}, it holds that gz

j v
Nj

j = gρ+xe
j s

Nj

j r
eNj

j =
ujc

e
j mod N2

j , with probability 1. Furthermore, since z = ρ + me, the inequality
z < 2k holds with probability at least 1 − 2`A/2k. Thus, a honest prover P
successfully completes t iterations of the protocol with probability (1−2`−kA)t ≈
1− 2`−kAt. From the assumptions, this probability is overwhelming.

Soundness. Assume there exists i1 and i2 in {1, . . . , p} such that ci1 encrypts m1

and ci2 encrypts m2 with m1 6= m2. Then, from the equalities verified by V
{

gz
i1v

Ni1
i1

= ui1g
m1e
i1

r
eNi1
i1

modN2
i1

gz
i2
v

Ni2
i2

= ui2g
m2e
i2

r
eNi2
i2

modN2
i2

Taking the partial logarithms it follows
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{

z = loggi1
ui1 + em1 modNi1

z = loggi2
ui2 + em2 modNi2

Since 0 ≤ z < 2k, 0 ≤ emi < A×2` (� 2k) we get−2k < −A×2` < z−emi < 2k,
there exists ε1 and ε2 in {0, 1} such that the following equalities hold in the
integers:

{

z = loggi1
ui1 + em1 − ε1N1

z = loggi2
ui2 + em2 − ε2N2

Therefore, if m1 6= m2, e = (log ui1 − log ui2 − ε1Ni1 + ε2Ni2)/(m2 −m1), which
occurs with probability at most 4/A. After t rounds this probability decreases
to (4/A)t

Simulation. Following the previous proof, the same simulation works. However,
since the simulator uniformly picks z in [0, 2k[ and not in [me, 2k + me[, only a
statistical indistinguishability can be achieved.

9.4 Distributed Certification of Pseudonyms

Let us assume that Z ∈ � ∗
N is the signature public key of the authority together

with a large enough public exponent e, while the distributed secret key are pairs
(xi, yi), with xi ∈

� ∗
N and yi ∈ [0, e[ such that Z =

∏

xi
eayi mod N . To get

a certificate on his pseudonym V , the user interacts with the authorities after
having proven his identity:

1. each authority chooses random ui ∈
� ∗

N and vi ∈ [0, e[, and computes the
commitment wi = ue

ia
vi mod N , that he sends to the user.

2. the user chooses random “blinding factors” β ∈ � ∗
N and α, γ ∈ [0, e[, and

computes w = (
∏

wi)a
αβeZγ mod N

3. the user computes the challenge ε = H(w, V ), c = ε + γ mod e and broad-
casts it to the authorities

4. each authority computes ri = vi + cyi mod e, si = (vi + cyi) ÷ e as well as
ti = uix

c
ia

si mod N . They send (ri, ti) to the user.
5. the user computes r =

∑

ri+α mod e, s = (
∑

ri+α)÷e, s′ = (c−ε)÷ mod e
and t =

∏

tiβasZ−s′ mod N

By construction,

aritei = ari+esiue
ix

ce
i = avi+cyiue

ix
ce
i = aviue

i (a
yixe

i )
c

= wiZ
c
i mod N.

arte = ar+esZ−es′(
∏

tei )β
e = a � ri+αZ−es′(

∏

tei )β
e

= (
∏

aritei )a
αβeZ−es′ = Zc−es′(

∏

wi)a
αβe

= Zc−es′−γw = Zc−c+εw = Zεw mod N.

with ε = H(w, V ), where V is the pseudonym of the user. Thanks to the witness-
indistinguishability of the Okamoto-Guillou-Quisquater, that blind signature
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prevents the one-more forgery: no user can get two pseudonyms to vote twice,
unless some authorities co-operate. But because of the distribution of the secret
key, all the authorities must co-operate to produce any certificate, in particular
for a fraudulent one.

Complexity Instead of first proving his identity, the user can simply sign the
challenge c that he sends to the authority. Furthermore, instead of involving
all the authorities to produce the pseudonym, one can use a threshold (blind)
signature scheme [35]. Therefore, t + 1 authorities would be enough.

9.5 Receipt-Free property with independent randomizers

Let us briefly describe the first stage, in which the randomizer proves the equiv-
alence between both encrypted values. The user has used r to encrypt his
vote in c = gmirN mod N2, that he sends to the randomizer. Then, the ran-
domizer introduces a new random s to transform the encrypted vote c into
c′ = csN = gmi(rs)N mod N2.

1. the randomizer chooses at random x ∈ �
N and computes u = xN mod N2

that he sends to the user.
2. the user chooses a challenge e ∈ [0, A[ that he sends to the randomizer.
3. this latter computes v = xs−e mod N2 and sends it to the user.
4. finally, the user can check whether vN(c′/c)e = u mod N2.

Thanks to the zero-knowledge property of this proof, with a fixed-size pa-
rameter A, it is non-transferable. But to reduce the number of interactions, one
can use a designated-verifier non-interactive proof [21].

The second stage just consists of a divertible variant of the previous proof
that an encrypted message lies in a given set. We therefore use the same nota-
tions, where the randomizer can be seen as the verifier from the user point of
view, but he finally outputs a non-interactive proof that nobody can link with
the original one.

1. the randomizer receives the list of {uj}j∈{1,...,p} sent by the user. Then he
chooses the blinding factors:
– a random β ∈ �

N

– as well as p values {βj}j∈{1,...,p} in
�

N such that
∑

βj = β mod N
– and p values {αj}j∈{1,...,p} in

� ∗
N.

Thereafter, he computes

u′
j = ujα

N
j (c/gmj)βj mod N2.

He finally gets e′ = H(u′
1, . . . , u

′
p) and sends e = e′ + β mod N to the user.

2. the user sends a list {vj, ej}j∈{1,...,p} to the randomizer that satisfies

e =
∑

j

ej mod N and vN
j = uj(c/g

mj)ej mod N2

for each j ∈ {1, . . . , p}.
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3. the randomizer computes e′j = ej − βj mod N and

v′
j = vjαjs

e′j mod N2. Finally, he sends the list
{v′

j, e
′
j}j∈{1,...,p} to the user.

One can check that

e′ = e− β =
∑

j

ej −
∑

j

βj =
∑

j

(ej − βj)

=
∑

j

e′j mod N,

v′
j
N

= vN
j αN

j sNe′j = uj(c/g
mj)ejαN

j sNe′j

= uj(cs
N/gmj)e′j(c/gmj)βjαN

j

= u′
j(cs

N/gmj)e′j = u′
j(c

′/gmj)e′j mod N2

for each j ∈ {1, . . . , p}, where e′ = H(u′
1, . . . , u

′
p). Therefore, the list {u′

j, v
′
j, e

′
j}j∈{1,...,p}

is a non-interactive proof of the validity of the encrypted vote c′.


