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Abstract. This paper introduces a novel class of computational problems, the gap

problems, which can be considered as a dual to the class of the decision problems. We
show the relationship among inverting problems, decision problems and gap problems.
These problems find a nice and rich practical instantiation with the Diffie-Hellman
problems.
Then, we see how the gap problems find natural applications in cryptography, namely
for proving the security of very efficient schemes, but also for solving a more than
10-year old open security problem: the Chaum’s undeniable signature.

1 Introduction

1.1 Motivation

It is very important to prove the security of a cryptographic scheme under a
reasonable computational assumption. A typical reasonable computational as-
sumption is the intractability of an inverting problem such as factoring a compos-
ite number, inverting the RSA function [33], computing the discrete logarithm
problem, and computing the Diffie-Hellman problem [12]. Here, an inverting
problem is, given a problem, x, and relation f , to find its solution, y, such that
f(x, y) = 1.

Another type of reasonable computational assumptions is the intractability
of a decision problem such as the decision Diffie-Hellman problem. Such a deci-
sion problem is especially useful to prove the semantical security of a public-key
encryption (e.g., El Gamal and Cramer-Shoup encryption schemes [13, 11]). Al-
though we have several types of decision problems, a typical decision problem
is, given (x, y) and f , to decide whether the pair (x, y) satisfies f(x, y) = 1 or
not. Another typical example of decision problems is, given x and f , to decide
a hard core bit, H(y), of x with f(x, y) = 1.

After having studied some open problems about the security of several primi-
tive cryptographic schemes in which we have not found any flaw, we have realized
that the existing computational assumptions (or primitive problems) are not suf-
ficient to prove the security of these schemes. For example, Chaum’s undeniable
signature scheme [9, 7] based on the discrete logarithm is the most typical scheme
to realize an undeniable signature scheme and is often used for cryptographic
protocols (e.g., Brands’ restrictive blind signatures [6, 5]), however, we cannot
prove the security of Chaum’s undeniable signature scheme under any existing
computational assumption. That is, we have realized that a new family of com-
putational assumptions (or problems) are necessary to prove several important
cryptographic schemes.
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1.2 Achievement

To prove the security of these primitive cryptographic schemes, this paper intro-
duces a new family of problems we called the gap problems. Intuitively speaking,
a gap problem is to solve an inverting problem with the help of the oracle of a
related decision problem. For example, a gap problem of f is, given problem x
and relation f , to find y satisfying f(x, y) = 1, with the help of the oracle of,
given question (x′, y′), answering whether f(x′, y′) = 1 or not.

Indeed, in some situations, an adversary has to break a specific computational
problem to make fail the security, while having a natural access to an oracle
which answers a yes/no query, and therefore leaking one bit. For example, in
an undeniable signature, an adversary tries to forge a signature (i.e., solve an
inverting problem) with being allowed to ask a signer (i.e., oracle) of whether a
pair of signature s and message m is valid or not.

We show that the class of gap problems is dual to the class of decision prob-
lems. We then prove Chaum’s undeniable scheme is secure under the assumption
of the related gap problem. Here note that it has been open for more than 10
years to prove the security of Chaum’s undeniable scheme.

1.3 Outline of the Paper

This paper has the following organization. First, we formally define this new
family of gap-problems, in a general setting and for the particular situation of
the random self-reducible problems. Then, we present some interesting examples,
derived from the classical problems used in cryptography. Finally, we prove that
the security of some very old protocols (undeniable signatures and designated
confirmer signatures) is equivalent to some gap problems, while it has been an
open problem for a long time.

2 Gap Problems

This section is devoted to the presentation of this new class of problems which
can be seen as the dual to the decisional problems. Some theoretical results are
proposed together with some practical examples.

2.1 Definitions

Let f : {0, 1}∗ × {0, 1}∗ → {0, 1} be any relation. The inverting problem of f is
the classical computational version, while we introduce a generalization of the
decision problem, by the R-decision problem of f , for any relation

R : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → {0, 1},

– the inverting problem of f is, given x, to compute any y such as f(x, y) = 1
if it exists, or to answer Fail.

– the R-decision problem of f is, given (x, y), to decide whether R(f, x, y) = 1
or not. Here y may be the null string, ⊥.
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Let us see some examples for the relation, R1, R2, R3, R4:

– R1(f, x, y) = 1 iff f(x, y) = 1, which formalizes the classical version of
decision problems (cf. the Decision Diffie-Hellman problem [4, 26]).

– R2(f, x,⊥) = 1 iff there exists any z such that f(x, z) = 1, which simply
answers whether the inverting problem has a solution or not.

– R3(f, x,⊥) = 1 iff z is even, when z such that f(x, z) = 1 is uniquely defined.
This latter example models the least-significant bit of the pre-image, which
is used in many hard-core bit problems [1, 14].

– R4(f, x,⊥) = 1 iff all the z such that f(x, z) = 1 are even.

It is often the case that the inverting problem is strictly stronger than the R-
decision problem, namely for all the classical examples we have for cryptographic
purpose. However, it is not always the case, and the R-decision problem can even
be strictly stronger than the inverting one (the latter R4-relation above gives the
taste of such an example). In this section, we define the R-gap problem which
deals with the gap of difficulty between these problems.

Definition 1 (Gap Problem). The R-gap problem of f is to solve the in-
verting problem of f with the help of the oracle of the R-decision problem of
f .

2.2 Winning Probabilities

For a computational problem (the inverting or the gap problem), the winning
probability is the probability of finding the correct solution on input an instance
I and a random tape r. While for a decision problem, the winning probability
expresses the advantage the algorithm has in guessing the output bit of the
relation R above flipping a coin, on input an instance I and a random tape r.

Computational Problems. For an algorithm A against a computational prob-
lem P , we define winning probabilities as follows:

for any instance I ∈ P, WinP
A(I) = Prr[A(I; r) wins],

in general, WinP
A = PrI,r[A(I; r) wins].

Decision Problems. For an algorithm A against a decision problem P , we de-
fine winning probabilities as follows, which consider the advantage an adversary
gains above flipping a coin:

for any instance I ∈ P, WinP
A(I) = 2 × Prr[A(I; r) wins] − 1,

in general, WinP
A = 2 × PrI,r[A(I; r) wins] − 1.

2.3 Tractability

Let us now define some specific notions of tractability which will be of great
interest in the following:
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– a problem P is tractable if there exists a probabilistic polynomial time Turing
machine A which can win with non-negligible probability, over the instances
and the internal coins of A.

∃A, WinP
A is non-negligible.

– a problem P is strongly tractable if there exists a probabilistic polynomial
time Turing machine A which can win, for any instance I, with overwhelming
probability, over the internal coins of A.

∃A, ∀I ∈ P, WinP
A(I) is overwhelming.

Therefore, we have the negation:

– a problem P is intractable if it is not tractable
– a problem P is weakly intractable if it is not strongly tractable.

Finally, to compare the difficulty of problems, we use the notion of polynomial
time reductions:

– a problem P is reducible to problem P ′ if there exists a probabilistic poly-
nomial time oracle Turing machine AP ′

(with an oracle of the problem P ′)
that wins P with non-negligible probability.

– a problem P is strongly reducible to problem P ′ if there exists a probabilistic
polynomial time oracle Turing machine AP ′

(with an oracle of the problem
P ′) that wins any instance I of P with overwhelming probability.

We can easily obtain the following proposition,

Proposition 2. Let f and R be any relations.

– If the R-gap problem of f is tractable (resp. strongly tractable), the inverting
problem of f is reducible (resp. strongly reducible) to the R-decision problem
of f .

– If the R-decision problem of f is strongly tractable, the inverting problem of
f is reducible to the R-gap problem of f .

Proof. The first claim directly comes from the definition of the gap problem
and the definitions of tractability and reducibility. Let us consider the second
claim, with a probabilistic polynomial time Turing machine B that solves the
R-decision problem of f , with overwhelming probability. Let us also assume
that we have a probabilistic polynomial time oracle Turing machine AD that
solves the inverting problem of f with the help of a R-decision oracle D. Since
B solves any instance of the R-decision problem with overwhelming probability,
it perfectly simulates the D oracle, after polynomially many queries, with non-
negligible probability. For this non-negligible fraction of cases, the machine A
can invert f . But one has to remark that after polynomially many calls to B,
the success probability cannot be proven more than non-negligible, hence the
classical reducibility, and not the strong one. ut

This proposition implies a duality between the gap and the decision problems.
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2.4 The Random Self-Reducible Problems

Definition 3 (Random Self-Reducibility). A problem P : P 7→ S, where P
defines the set of the instances and S the set of the possible solutions (S = {0, 1}
for a decision problem) is said random self-reducible (see figure 1) if there exist
two probabilistic polynomial time Turing machines A : P 7→ P and B : S 7→ S,
with random tape ω ∈ Ω, such that

– for any I ∈ P , A(I; ω) is uniformly distributed in P while ω is randomly
drawn from Ω,

– for any s′ ∈ S, B(s′; ω) is uniformly distributed in S while ω is randomly
drawn from Ω.

– for any instance I ∈ P and any random tape ω ∈ Ω, if I ′ = A(I; ω) and s′

is a solution to I ′, then s = B(s′; ω) is a solution to I.

For such problems, the weak intractability is equivalent to the classical in-
tractability.

Proposition 4. Let P be any random self-reducible problem:

– this problem P is strongly tractable if and only if it is tractable;
– this problem P is intractable if and only if it is weakly intractable.

Proof. It is clear that both claims are equivalent, and furthermore in each, one
of the directions is trivial, since any strongly tractable problem is a fortiori
tractable. For the remaining direction, one can simply use Shoup’s construc-
tion [35] to obtain the result. ut

Corollary 5. Let f and R be any relations. Let us assume that both the invert-
ing problem of f and the R-decision problem of f are random self-reducible.

– If the R-gap problem of f is tractable, the inverting problem of f is reducible
to the R-decision problem of f .

– If the R-decision problem of f is tractable, the inverting problem of f is
reducible to the R-gap problem of f .

Proof. To complete the proof, one just has to remark that if the inverting prob-
lem is random self-reducible, then the gap problem is so too. ut

Remark 6. Almost all the classical problems used in cryptography are random
self-reducible: RSA [33] for fixed modulus n and exponent e, the discrete loga-
rithm and the Diffie-Hellman problems [12] for a fixed basis of prime order, or
even over the bases if the underlying group is a cyclic group of prime order, etc.

For any ω ∈ Ω,

I ∈ P
A(I;ω)

−−−−−−−−−−−−−−−−−→ I
′ ∈ P

s ∈ S
B(s′;ω)

←−−−−−−−−−−−−−−−−− s
′ ∈ S

Fig. 1. Random Self-Reducible Problems
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3 Examples of Gap Problems

Let us review some of these classical problems, with their gap variations. Let us
begin with the most famous problem used in cryptography, the RSA problem.

3.1 The RSA Problems

Let us consider n = pq and e relatively prime with ϕ(n), the totient function of
n. We have the classical Inverting RSA problem: given y, find the e-th root of
y modulo n. This corresponds to the relation

f(y, x)
def
=

(

y
?
= xe mod n

)

,

which is a polynomially computable function. Therefore, the default decision
problem, R(f, y, x) = 1 iff f(y, x) = 1, is trivial.

A more interesting relation is the least-significant bit of the e-th root of y:

Definition 7 (The lsb-D-RSA(n, e) Problem). Given y, decide whether the
least-significant bit of the e-th root of y, x = y1/e mod n, is 0 or 1:

R(f, y)
def
= lsb(x such that f(y, x) = 1) = lsb(y1/e mod n).

Then, one can define the related gap problem, the lsb-G-RSA(n, e) problem. And
therefore, with the results about hard-core bits of RSA [1, 14], we know that the
lsb-D-RSA is equivalent to the RSA problem, therefore the lsb-G-RSA problem
is tractable (and even strongly tractable because of the random self-reducibility
of the inverting problem).

3.2 The Diffie-Hellman Problems

The most famous family of problems is definitely the Diffie-Hellman problems [12].
Indeed, it already provides multiple variations (decision and computational ver-
sions) as well as interesting environments. Then let us consider any group G of
prime order q. We define three problems as follows:

– The Inverting Diffie-Hellman Problem (C-DH) (a.k.a. the Computational
Diffie-Hellman problem): given a triple of G elements (g, ga, gb), find the
element C = gab.

– The Decision Diffie-Hellman Problem (D-DH): given a quadruple of G ele-
ments (g, ga, gb, gc), decide whether c = ab mod q or not.

– The Gap–Diffie-Hellman Problem (G-DH): given a triple (g, ga, gb), find the
element C = gab with the help of a Decision Diffie-Hellman Oracle (which
answers whether a given quadruple is a Diffie-Hellman quadruple or not).

Note that the decision problem is the default one, when the relation f is
defined by

f((g, A, B), C)
def
=

(

logg C
?
= logg A × logg B mod q

)

,
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which is a priori not a polynomially computable function.
There also exist many possible variations of those problems where the first

component, and possibly the second one are fixed:

?-DHg(·) = ?-DH(g, ·) and ?-DHg,h(·) = ?-DH(g, h, ·).

About the inverting problem, it is believed intractable in many groups (prime
subgroups of the multiplicative groups

� ?
n or

� ?
p [18, 23], prime subgroups of some

elliptic curves [20], or of some Jacobians of hyper-elliptic curves [21, 22]). The de-
cision problem is also believed so in many cases. For example, in generic groups,
where only generic algorithms [28] can be used, because of a non-manageable
numeration, the discrete logarithm, the inverting Diffie-Hellman and the deci-
sion Diffie-Hellman problems have been proven to require the same amount of
computation [35]. However, no polynomial time reduction has ever been pro-
posed, excepted in groups with a smooth order [24–26]. Therefore, in all these
groups used in cryptography, intractability of the gap problem is a reasonable
assumption.

However, because of some dual properties in Abelian varieties, the decision
Diffie-Hellman problem is easy over the Jacobians of some (hyper)-elliptic curves:
namely, in [16], it has been stated the following result

Proposition 8. Let m be an integer relatively prime to q, and let µm( � q ) be
the group of roots of unity in � q whose order divides m. We furthermore assume
that the Jacobian J( � q ) contains a point of order m. Then there is a surjective
pairing

φm : Jm( � q ) × J( � q )/mJ( � q ) → µm( � q )

which is furthermore computable in O(log q) (where Jm( � q ) is the group of m-
torsion points).

This pairing, the so-called Tate-pairing, can be used to relate the discrete log-
arithm in the group Jm( � q ) to the discrete logarithm in � ?

q , if q − 1 is divisible
by m. A particular application [15] is over an elliptic curve, with a trace of the
Frobenius endomorphism congruent to 2 modulo m. Indeed, for example, with
an elliptic curve J( � q ) = E of trace t = 2 and m = #E = q + 1 − t = q − 1, we
have Jm( � q ) = J( � q )/mJ( � q ) = E and µm( � q ) = � ?

q . Then,

φ : E × E → � ?
q .

Let us consider a Diffie-Hellman quadruple, P , A = a·P , B = b·P and C = c·P ,

φ(A, B) = φ(a · P, b · P ) = φ(P, P )ab = φ(P, ab · P ) = φ(P, C).

And the latter equality only holds with the correct candidate C.

3.3 The Rabin Problems

Let us consider n = pq. We define three problems as follows:
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– The Inverting Rabin Problem (a.k.a. the Factoring Problem): given y, find
x = y1/2 mod n if x exists. This corresponds to the relation

f(y, x)
def
=

(

x2 ?
= y mod n

)

.

– The Decision Rabin Problem (a.k.a the Quadratic Residuosity Problem):
given y, decide whether x exists or not.

– The Gap–Rabin Problem: given a pair y, find x = y1/2 mod n if x exists,
with the help of a Decision Rabin Oracle.

Note that these decision and gap problems correspond to the R relation

R(f, y)
def
= (∃x such that f(y, x) = 1) .

Since no polynomial time reduction is known from the Factorization to the
Quadratic-Residuosity problem, the Gap–Rabin assumption seems as reasonable
as the Quadratic-Residuosity assumption.

It is worth remarking that like in the RSA case, the lsb-G-Rabin problem
would be tractable because of hard-core bit result about the least-significant
bit [1, 14].

4 Application to Cryptography

This notion of gap-problem is eventually not new because it is involved in many
practical situations. This section deals with undeniable signatures and desig-
nated confirmer signatures. More precisely we show that the security of some
old and efficient such schemes is equivalent to a gap-problem, whereas it was
just known weaker than the computational version.

4.1 Signatures

An important tool in cryptography is the authentication of messages. It is pro-
vided using digital signatures [17]. The basic property of a signature scheme,
from the verifier point of view, is the easy verification of the relation between
a message and the signature, whereas it should be intractable for anybody, ex-
cepted the legitimate signer, to produce a valid signature for a new message: the
relation f(m, σ), with input a message m and a signature σ, must be computable,
while providing an intractable inverting problem. Therefore, an intractable gap-
problem is required, with an easy decision problem.

4.2 Undeniable Signatures

In undeniable signatures [9, 7], contrarily to plain signatures, the verification
process must be intractable without the help of the signer (or a confirmer [8]).
And therefore, the confirmer (which can be the signer himself) can be seen as a
decision oracle.

Let us study the first example of undeniable signatures [9, 7] whose security
proof has been an open problem for more than 10 years. We will prove that the
full-domain hash [3] variant of this scheme is secure under the Gap-DH problem,
in the random oracle model [2].
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Definition. First, we just define informally an undeniable signature scheme. For
more details, the reader is referred to the original papers [9, 7]. An undeniable
signature scheme consists of 3 algorithms/protocols:

– key generation algorithm, which on input a security parameter produces a
pair of secret/public keys (sk, pk) for the signer.

– signature protocol. It is a, possibly interactive, protocol in which, on input
a message m and a signer secret key sks, the verifier gets a certificate s on
m for which he is convinced of the validity, without being able to transfer
this conviction to anybody.

– confirmation/disavowal protocol. It is a, possibly interactive, protocol in
which, on input a message m and an alleged certificate s, the signer convinces
the verifier whether the certificate s is actually related to m and pk or not,
using his secret key sk (in a non-transferable way).

The security notions are similar to the plain signature setting [17]. One wants
to prevent existential forgeries under chosen-message attacks. Then, an existen-
tial forgery is a certificate that the signer cannot repudiate whereas he did not
produce it. But in such a context, the verification protocol can be called many
times, on any message-certificate pair chosen by the adversary. We have to take
care about this kind of oracle access, hence the gap-problems.

Description. The first proposal was a very nice and efficient protocol. It con-
sists of a non-interactive signature process and an interactive confirmation pro-
tocol.

– Setting: g is a generator of a group G of prime order q. The secret key of the
signer is a random element x ∈

�
q while his public key is y = gx.

– Signature of m: in order to sign a message m, the signer computes and
returns s = mx.

– Confirmation/Disavowal of (m, s): an interactive proof is used to convince
the verifier whether

logg y = logm s mod q.

In the first paper [9], this proof was not zero-knowledge, but it has been
quickly improved in [7].

But we further slightly modify this scheme to prevent existential forgeries,
namely by ruling out the basic multiplicative attacks: one uses the classical
full-domain hash technique [3, 10]. If this hash function is furthermore assumed
to behave like a random oracle [2], this scheme can be proven secure. Moreover,
to make the analysis easier, we replace the zero-knowledge interactive proof by
a non-interactive but non-transferable proof. There are well-known techniques
using trapdoor commitments [19] which are perfectly simulatable in the random
oracle model [31].

Therefore, we analyze the following variant.

– Setting: g is a generator of a group G of prime order q. The secret key of
the signer is a random element x ∈

�
q while his public key is y = gx. We
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furthermore need a hash function H which outputs random elements in the
whole group G.

– Signature of m: in order to sign a message m, the signer computes h = H(m)
and returns s = hx.

– Confirmation/Disavowal of (m, s): the signer uses non-transferable NIZK
proofs of either the equality or inequality between

logg y and logh s mod q, where h = H(m).

Thus, the confirmation proof answers positively to the D-DH(g, y, h, s) prob-
lem whereas the disavowal proof answers negatively.

Security Analysis. Before providing such an analysis, one can state the fol-
lowing theorem:

Theorem 9. An existential forgery under adaptively chosen-message attacks is
equivalent to the Gap Diffie-Hellman problem.

Proof. For this equivalence, one can easily see that if one can break the C-DHg,y

problem, possibly with access to a D-DHg,y oracle (which means that the two first
components are fixed to g and y), then one can forge a signature in a universal
way: first, a D-DHg,y oracle is simulated (with overwhelming probability) by
the confirmation/disavowal protocols. Then, for any message m, one computes
h = H(m) as well as C-DHg,y(m). Therefore, the security of this undeniable
signature scheme is weaker than the G-DHg,y problem.

In the opposite way, one can use the same techniques as in [3, 10] for the
security of the full-domain hash signature. Let us consider an adversary that is
able to produce an existential forgery with probability ε within time t after qh

queries to the signing oracle, where g is the basis of G and y the public key of
the signer. Then, we will use it to break the G-DHg,y problem. Given α ∈ G,
one tries to extract β = C-DHg,y(α) = C-DH(g, y, α). For that, we simulate any
interaction with the adversary in an indistinguishable setting from a real attack:

– confirmation/disavowal queries are perfectly simulated by simulating the
appropriate proof, correctly chosen thanks to the D-DHg,y oracle.

– any hash query m is answered in a probabilistic way. More precisely, one
chooses a random exponent r ∈

�
q and then, with probability p, H(m) is

answered by αr, otherwise it is answered by gr.
– any signing query m (assumed to has already been asked to H) is answered

as follows: if H(m) has been defined as gr, then s = yr is a valid signature
for m since s = yr = gxr = H(m)x, for x satisfying y = gx. Otherwise, the
simulation aborts.

Finally, the adversary outputs a forgery s for a new message m (also assumed
to have already been asked to H). If H(m) has been defined as αr then s =
H(m)x = αrx. Consequently, s1/r = C-DH(g, y, α) = C-DHg,y(α).

The success probability is exactly the same as for the full-domain hash tech-
nique [10]

ε′ = ε(1 − p)qhp ≥ exp(−1) ×
ε

qh
, while simply choosing p =

1

qh + 1
.
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ut

4.3 Designated Confirmer Signatures

In 1994, Chaum [8] proposed a new kind of undeniable signatures where the
signer is not required to confirm the signature, but a designated confirmer,
who owns a secret. Furthermore, he proposed a candidate. The same year,
Okamoto [29] proved that the existence of such schemes is equivalent to the
existence of public-key encryption schemes. He furthermore gave an example,
based on the Diffie-Hellman problem [12] (on which relies the security of the
El Gamal encryption scheme [13]).

Let us first give a quick definition of this new cryptographic object together
with the security notions. Then we study the Okamoto’s example, using the
Schnorr signature [34], in the random oracle model.

Definition. As for undeniable signatures, we just give an informal definition of
designated confirmer signatures. For more details, the reader is referred to [8].
A designated confirmer signature scheme consists of 3 algorithms/protocols:

– key generation algorithm, which on input a security parameter produces
two pairs of secret/public keys, the pair (sks, pks) for the signer and the pair
(skc, pkc) for the confirmer.

– signature protocol. It is a, possibly interactive, protocol in which, on input
a message m, a signer secret key sks and a confirmer public key pkc, the
verifier gets a certificate s on m for which he is convinced of the validity,
without being able to transfer this conviction.

– confirmation/disavowal protocol. It is a, possibly interactive, protocol in
which, on input a message m and an alleged certificate s, the confirmer
convinces the verifier whether the certificate s is actually related to m and
pks or not, using his secret key skc (in a non-transferable way).

The security notions are the same as for undeniable signatures, excepted that
the confirmer may be a privileged adversary: an existential forgery is a certificate
that the confirmer cannot repudiate, whereas the signer never produced it. Once
again, the confirmation protocol can be called many times, on any message-
certificate pair chosen by the adversary. However this kind of oracle is of no help
for the confirmer, in forging a certificate.

Description. Let us describe the original Okamoto’s example [29], using the
Schnorr signature [34]. Because of a flaw remarked by Michels and Stadler [27],
one cannot prove the security of this scheme against attacks performed by the
confirmer. Then we focus on standard adversaries.

– Setting: g is a generator of a group G of prime order q. The secret key of
the signer is a random element x ∈

�
q while his public key is y = gx. We

furthermore need a hash function H which outputs elements in G (still full-
domain hash). The confirmer also owns a secret key a ∈

�
q associated to

the public key b = ga.
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– Signature of m: in order to sign a message m, the signer chooses random
r, w ∈

�
q, computes

d = gr, t = gw, e = br · H(m, t) and s = w − ex mod q

and returns (d, e, s). The signer can furthermore prove the validity of this sig-
nature by proving, in a non-interactive and non-transferable zero-knowledge
way, the equality between

logg d and logb z mod q, where z = e/H(m, gsye).

– Confirmation/Disavowal of (m, (d, e, s)): the verifier and the confirmer, both
compute z = e/H(m, gsye) and the confirmer uses non-interactive and non-
transferable zero-knowledge proofs of either the equality or inequality be-
tween

logg b and logd z modulo q.

Thus, the confirmation proof by the signer answers positively to D-DH(g, d, b, z),
and the confirmation proof by the confirmer answers positively to D-DH(g, b, d, z)
whereas the disavowal proof answers negatively.

Therefore, one can get the answer of D-DH(g, b, d, z), which is indeed equiva-
lent to D-DH(b, g, z, d), for any (d, z) of his choice, which looks like to a D-DHb,g

oracle.

Security Analysis. Once again, one can state the following theorem:

Theorem 10. An existential forgery under adaptively chosen-message attacks,
for a standard adversary (not the confirmer), is equivalent to the Gap Diffie-
Hellman problem.

Proof. First, if one can break the C-DHb,g problem, possibly with access to a
D-DHb,g oracle, then one can forge a signature in a universal way: indeed, a
D-DHb,g oracle is simulated, as already seen, by the confirmation/disavowal pro-
tocols. Then, for any message m, one chooses random s and e, computes t = gsye

and z = e/H(m, t). Then one gets d = C-DH(b, g, z) = C-DHb,g(z) which com-
pletes a valid signature (d, e, s). Therefore, the security of this designated con-
firmer signature scheme is weaker than the G-DHb,g problem.

In the opposite way, one can use a replay technique [32]. Let us consider an
adversary that is able to produce an existential forgery with probability ε within
time t after qs queries to the signing oracle and qh queries to the random oracle
H, where g is the basis of G and b the public key of the confirmer.

Remark 11. We furthermore need to assume that the bit-length k of the notation
of G-elements is not too large comparatively to q: q/2k must be non-negligible.

Then, we will use it to break the G-DHb,g problem. Given α ∈ G, one tries to
extract β = C-DHb,g(α) = C-DH(b, g, α). For that, we simulate any interaction
with the adversary in an indistinguishable setting from a real attack:
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– for setting up the system, we furthermore choose a random x ∈
�

q and
define y = gx to be the public key of the signer.

– confirmation/disavowal queries are perfectly simulated by simulating the
appropriate proof, correctly chosen thanks to the D-DHb,g oracle.

– any new hash query is answered by a random element in G.
– any signing query m is perfectly simulated thanks to the secret key x of the

signer.

Finally, the adversary outputs a forgery (d, e, s) for a new message m. One
computes t = gsye, stores h = H(m, t) (which has been defined) and replays the
adversary with the same random tape, a new random oracle H ′ which outputs
the same answers than H did until the query (m, t) appears. But this latter query
is that time answered by e/αu for a randomly chosen u. With non-negligible
probability, the adversary outputs a new forgery (d′, e′, s′) based on the same
query (m, t) to the random oracle H. Since t = gsye = gs′ye′

– either s′ = s mod q and e′ = e mod q
– or the adversary can be used to break the discrete logarithm problem (in-

deed, the signing answers could be simulated without the secret key x,
thanks to the random oracle which makes the non-interaction proof sim-
ulatable [32]).

Therefore, one may assume that s′ = s mod q and e′ = e mod q. Since the
answer to (m, t) given by the new random oracle H ′ is totally independent of
e, we furthermore have e′ = e in the group G, with probability q/2k, which has
been assumed non-negligible. Thus,

z′ = e′/H ′(m, gs′ye′) = e/H ′(m, t) = αu.

Consequently,

d′ = C-DH(b, g, z′), and thus, β = d′1/u
= C-DH(b, g, α).

ut

5 Conclusion

This paper introduced a novel class of computational problems, the gap problems,
which is considered to be dual to the class of the decision problems. We have
shown how the gap problems find natural applications in cryptography, namely
for proving the security of some primitive schemes like Chaum’s undeniable
signatures and designated confirmer signatures.

But there are still other clear applications. For example, they appear while
considering a new kind of attacks, the plaintext-checking attacks, against public-
key encryption scheme. And they help us to provide REACT, a Rapid Enhanced-
security Asymmetric Cryptosystem Transform [30], which makes into a chosen-
ciphertext secure cryptosystem any weakly secure scheme.

Other applications will certainly appear. Anyway, it is worth noting that
it had been open for more than 10 years to prove the security of Chaum’s
undeniable signatures.



14

References

1. W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr. RSA and Rabin Functions: Certain Parts
are as Hard as the Whole. SIAM Journal on Computing, 17:194–209, 1988.

2. M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for Designing Efficient
Protocols. In Proc. of the 1st CCS, pages 62–73. ACM Press, New York, 1993.

3. M. Bellare and P. Rogaway. The Exact Security of Digital Signatures – How to Sign with RSA
and Rabin. In Eurocrypt ’96, LNCS 1070, pages 399–416. Springer-Verlag, Berlin, 1996.

4. S. A. Brands. An Efficient Off-Line Electronic Cash System Based on the Representation Problem.
Technical Report CS-R9323, CWI, Amsterdam, 1993.

5. S. A. Brands. Off-Line Electronic Cash Based on Secret-Key Certificates. In LATIN ’95, LNCS
911, pages 131–166. Springer-Verlag, Berlin, 1995.

6. S. A. Brands. Secret-Key Certificates. Technical Report CS-R9510, CWI, Amsterdam, 1995.

7. D. Chaum. Zero-Knowledge Undeniable Signatures. In Eurocrypt ’90, LNCS 473, pages 458–464.
Springer-Verlag, Berlin, 1991.

8. D. Chaum. Designated Confirmer Signatures. In Eurocrypt ’94, LNCS 950, pages 86–91. Springer-
Verlag, Berlin, 1995.

9. D. Chaum and H. van Antwerpen. Undeniable Signatures. In Crypto ’89, LNCS 435, pages
212–216. Springer-Verlag, Berlin, 1990.

10. J.-S. Coron. On the Exact Security of Full-Domain-Hash. In Crypto ’2000, LNCS 1880, pages
229–235. Springer-Verlag, Berlin, 2000.

11. R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure against Adaptive
Chosen Ciphertext Attack. In Crypto ’98, LNCS 1462, pages 13–25. Springer-Verlag, Berlin, 1998.

12. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Informa-

tion Theory, IT–22(6):644–654, November 1976.
13. T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.

IEEE Transactions on Information Theory, IT–31(4):469–472, July 1985.
14. R. Fischlin and C. P. Schnorr. Stronger Security Proofs for RSA and Rabin bits. Journal of

Cryptology, 13(2):221–244, 2000.
15. G. Frey, M. Müller, and H. G. Rück. The Tate-Pairing and the Discrete Logarithm Applied to

Elliptic Curve Cryptosystems. IEEE Transactions on Information Theory, 45:1717–1719, 1999.
16. G. Frey and H. G. Rück. A Remark Concerning m-Divisibility and the Discrete Logarithm in

the Divisor Class Group of Curves. Mathematics of Computation, 62:865–874, 1994.
17. S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against Adaptative

Chosen-Message Attacks. SIAM Journal of Computing, 17(2):281–308, April 1988.
18. D. M. Gordon. Discrete Logarithms in GF(p) Using the Number Field Sieve. SIAM Journal of

Discrete Mathematics, 6(1):124–138, February 1993.
19. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated Verifier Proofs and Their Applications.

In Eurocrypt ’96, LNCS 1070, pages 143–154. Springer-Verlag, Berlin, 1996.
20. N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation, 48(177):203–209, Jan-

uary 1987.
21. N. Koblitz. A Family of Jacobians Suitable for Discrete Log Cryptosystems. In Crypto ’88, LNCS

403, pages 94–99. Springer-Verlag, Berlin, 1989.

22. N. Koblitz. Hyperelliptic Cryptosystems. Journal of Cryptology, 1:139–150, 1989.

23. A. Lenstra and H. Lenstra. The Development of the Number Field Sieve, volume 1554 of Lecture

Notes in Mathematics. Springer-Verlag, 1993.

24. U. M. Maurer and S. Wolf. Diffie Hellman Oracles. In Crypto ’96, LNCS 1109, pages 268–282.
Springer-Verlag, Berlin, 1996.

25. U. M. Maurer and S. Wolf. Diffie-Hellman, Decision Diffie-Hellman, and Discrete Logarithms. In
Proceedings of ISIT ’98, page 327. IEEE Information Theory Society, 1998.

26. U. M. Maurer and S. Wolf. The Diffie-Hellman Protocol. Designs, Codes, and Cryptography,
19:147–171, 2000.

27. M. Michels and M. Stadler. Generic Constructions for Secure and Efficient Confirmer Signature
Schemes. In Eurocrypt ’98, LNCS 1403, pages 406–421. Springer-Verlag, Berlin, 1998.

28. V. I. Nechaev. Complexity of a Determinate Algorithm for the Discrete Logarithm. Mathematical

Notes, 55(2):165–172, 1994.

29. T. Okamoto. Designated Confirmer Signatures and Public Key Encryption are Equivalent. In
Crypto ’94, LNCS 839, pages 61–74. Springer-Verlag, Berlin, 1994.

30. T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric Cryptosystem
Transform. In RSA ’2001, LNCS. Springer-Verlag, Berlin, 2001.



15

31. D. Pointcheval. Self-Scrambling Anonymizers. In Financial Cryptography ’2000, LNCS. Springer-
Verlag, Berlin, 2000.

32. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind Signatures.
Journal of Cryptology, 13(3):361–396, 2000.

33. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public
Key Cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.

34. C. P. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology, 4(3):161–
174, 1991.

35. V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In Eurocrypt ’97, LNCS
1233, pages 256–266. Springer-Verlag, Berlin, 1997.


