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Abstract. Since the appearance of public-key cryptography in Diffie-Hellman seminal
paper, many schemes have been proposed, but many have been broken. Indeed, for
many people, the simple fact that a cryptographic algorithm withstands cryptanalytic
attacks for several years is considered as a kind of validation. But some schemes took a
long time before being widely studied, and maybe thereafter being broken.
A much more convincing line of research has tried to provide “provable” security for
cryptographic protocols, in a complexity theory sense: if one can break the cryptographic
protocol, one can “efficiently” solve the underlying problem. Unfortunately, very few
practical schemes can be proven in this so-called “standard model” because such a
security level rarely meets with efficiency. Moreover, for a long time the security proofs
have only been performed in an asymptotic framework, which provides some confidence
in the scheme but for very huge parameters only, and thus for unpractical schemes.
A recent trend consists in providing very efficient reductions, with a practical meaning:
with usual parameters (such as 1024-bit RSA moduli) the computational cost of any
attack is actually 272, given the state of the art about classical problems (e.g. integer
factoring).
In this paper, we focus on practical schemes together with their “reductionist” security
proofs. We cover the two main goals that public-key cryptography is devoted to solve:
authentication with digital signatures and confidentiality with public-key encryption
schemes.

1 Introduction

1.1 Motivation

Since the beginning of public-key cryptography, with the seminal Diffie-Hellman
paper [14], many suitable algorithmic problems for cryptography have been
proposed (e.g. one-way —possibly trapdoor— functions). Then, many crypto-
graphic schemes have been designed, together with more or less heuristic proofs
of their security relative to the intractability of these problems. However, most
of those schemes have thereafter been broken.

The simple fact that a cryptographic algorithm withstands cryptanalytic at-
tacks for several years is often considered as a kind of validation procedure,
but some schemes take a long time before being broken. The Chor-Rivest cryp-
tosystem [10] illustrates this fact quite well. This scheme based on the knapsack
problem took more than 10 years to be totally broken [42] whereas before the
effective attack it was believed to be very hard since all the classical techniques
against the knapsack problems, such as LLL [26], had failed because of the high
density of the involved instances. Therefore, the lack of attacks at some time
should never be considered as a security validation of any proposal.

1.2 Provable Security and Practical Security

A completely different paradigm is provided by the concept of “provable” secu-
rity. A significant line of research has tried to provide proofs in the framework of
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complexity theory (a.k.a. “reductionist” security proofs [3]): the proofs provide
reductions from a well-studied problem to an attack against a cryptographic pro-
tocol. At the beginning, people just tried to define the security notions required
by actual cryptographic schemes, and then to design protocols which achieve
these notions. The techniques were directly derived from the complexity theory,
providing polynomial reductions. However, their aim was essentially theoretical,
and thus they were trying to minimize the required assumptions on the prim-
itives (one-way functions or permutations, possibly trapdoor, etc). Therefore,
they just needed to exhibit polynomial reductions from the basic assumption on
the primitive into an attack of the security notion, in an asymptotic way.

However, such a result has no practical impact on actual security of proposed
schemes. Indeed, even with a polynomial reduction, one may be able to break the
cryptographic protocol within few hours, whereas the reduction just leads to an
algorithm against the underlying problem which requires many years. Therefore,
those reductions only prove the security when very huge (and thus maybe un-
practical) parameters are used, under the assumption that no polynomial time
algorithm exists to solve the underlying problem.

For a few years, more efficient reductions have been expected, under the
denominations of either “exact security” [7] or “concrete security” [31], which
provide more practical security results. The perfect situation is reached when one
manages to prove that, from an attack, one can describe an algorithm against the
underlying problem, with almost the same success probability within almost the
same amount of time. We have then achieved “practical security”. Unfortunately,
in many cases, provable security is at the cost of an important loss in terms of
efficiency for the cryptographic protocol, or relies on a weaker computational
problem. Therefore, a classical way to give some convincing evidences about
the security of an efficient scheme relative to a strong computational problem
is to make some hypotheses on the adversary’s behavior: the attack is generic,
independent of the actual implementation of some objects:

– of the hash function, in the “random oracle model” [17, 5];
– of the group, in the “generic (group) model” [28, 39].

1.3 Organization of the Paper

In the next section, we describe more formally what a signature scheme and
an encryption scheme are. Moreover, we make precise the security notions one
wants the schemes to achieve. Such a formalism is the first step towards provable
security. In section 3, we present some classical assumptions on which the secu-
rity may rely. In sections 4 and 5, we describe several signature and encryption
schemes with their formal security results and some detailed security proofs.

2 A First Formalism

2.1 Digital Signature Schemes

Definitions. A signature scheme is defined by the three following algorithms:
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– The key generation algorithm K . On input 1k, the algorithm K produces a
pair (kp, ks) of matching public and private keys. Algorithm K is probabilis-
tic. The input k is called the security parameter.

– The signing algorithm Σ. Given a message m and a pair of matching public
and private keys (kp, ks), Σ produces a signature σ. The signing algorithm
might be probabilistic.

– The verification algorithm V . Given a signature σ, a message m and a public
key kp, V tests whether σ is a valid signature of m with respect to kp.

Forgeries and Attacks. In this subsection, we formalize some security notions
which capture the main practical situations. On the one hand, the goals of the
adversary may be various [24]:

– Disclosing the private key of the signer. It is the most serious attack. This
attack is termed total break.

– Constructing an efficient algorithm which is able to sign messages with good
probability of success. This is called universal forgery.

– Providing a new message-signature pair. This is called existential forgery.

On the other hand, various means can be made available to the adversary, helping
her into the forgery. We focus on two specific kinds of attacks against signature
schemes: the no-message attacks and the known-message attacks. In the first
scenario, the attacker only knows the public key of the signer. In the second
one, the attacker has access to a list of valid message-signature pairs. According
to the way this list was created, we usually distinguish many subclasses, but the
strongest is the adaptive chosen-message attack, where the attacker can ask the
signer to sign any message of her choice. She can therefore adapt her queries
according to previous answers.

When one designs a signature scheme, one wants to computationally rule out
existential forgeries even under adaptive chosen-message attacks. More formally,
one wants that the success probability of any adversary A with a reasonable
amount of time is small, where

Succ
cma(A) = Pr

[

(kp, ks)← K (1k), (m, σ)← AΣks (kp) : V (kp, m, σ) = 1
]

.

We remark that since the adversary is allowed to play an adaptive chosen-
message attack, the signing algorithm is made available, without any restriction,
hence the oracle notation AΣks . Of course, in its answer, there is the natural
restriction that the returned signature has not been obtained from the signing
oracle Σks

itself.

2.2 Public-Key Encryption

The aim of a public-key encryption scheme is to allow anybody who knows the
public key of Alice to send her a message that she will be the only one able to
recover, granted her private key.
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Definitions. A public-key encryption scheme is defined by the three following
algorithms:

– The key generation algorithm K . On input 1k, the algorithm K produces a
pair (kp, ks) of matching public and private keys. Algorithm K is probabilis-
tic.

– The encryption algorithm E . Given a message m and a public key kp, E
produces a ciphertext c of m. This algorithm may be probabilistic. In this
latter case, we can write E (kp, m; r) where r is the random tape.

– The decryption algorithm D . Given a ciphertext c and the private key ks, D
gives back the plaintext m. This algorithm is necessarily deterministic.

Security Notions. As for signature schemes, the goals of the adversary may be
various. The first common security notion that one would like for an encryption
scheme is one-wayness (OW): with just public data, an attacker cannot get back
the whole plaintext of a given ciphertext. More formally, this means that for
any adversary A, her success in inverting E without the private key should
be negligible over the message space M and the internal random coins of the
adversary and the encryption algorithm:

Succ
ow(A) = Pr

m
[(kp, ks)← K (1k) : A(kp,E (kp, m)) = m].

However, many applications require more, namely the semantic security (IND),
a.k.a. polynomial security/indistinguishability of encryptions [22]. This security
notion means computational impossibility to distinguish between two messages,
chosen by the adversary, one of which has been encrypted, with a probability
significantly better than one half: her advantage Adv

ind(A), formally defined as

2× Pr
b

[

(kp, ks)← K (1k), (m0, m1, s)← A1(kp),
c = E (kp, mb) : A2(m0, m1, s, c) = b

]

− 1,

where the adversary A is seen as a 2-stage attacker (A1,A2), should be negligi-
ble.

A later notion is non-malleability (NM) [15]. To break it, given a ciphertext,
the adversary tries to produce a new ciphertext such that the plaintexts are
meaningfully related. This notion is stronger than the above semantic security,
but it is equivalent to the latter in the most interesting scenario [4] (the CCA at-
tacks, see below). Therefore, we will just focus on one-wayness and semantic
security.

On the other hand, an attacker can play many kinds of attacks, according to
the available information: since we are considering asymmetric encryption, the
adversary can encrypt any plaintext of her choice, granted the public key, hence
the chosen-plaintext attack (CPA). She may furthermore have access to more in-
formation, modeled by partial or full access to some oracles: a plaintext-checking
oracle which, on input a pair (m, c), answers whether c encrypts the message
m. This attack has been named the Plaintext-Checking Attack (PCA) [32]; a
validity-checking oracle which, on input a ciphertext c, just answers whether it
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is a valid ciphertext or not (the so-called reaction attacks [21, 8]); or the de-
cryption oracle itself, which on any ciphertext, except the challenge ciphertext,
answers the corresponding plaintext (non-adaptive [27]/adaptive [36] chosen-
ciphertext attacks). This latter scenario which allows adaptively chosen cipher-
texts as queries to the decryption oracle is the strongest attack, and is named
the chosen-ciphertext attack (CCA).

A general study of these security notions and attacks was conducted in [4].
We refer the reader to this paper for more details.

3 The Basic Assumptions

3.1 Computational Assumptions

For asymmetric cryptography, no security can be unconditionally guaranteed.
Therefore, for any cryptographic protocol, security relies on a computational
assumption: the existence of one-way functions, or permutations, possibly trap-
door.

Integer Factoring. The most famous intractable problem is factorization of
integers: while it is easy to multiply two prime integers p and q to get the
product N = p · q, it is not simple to decompose N into its prime factors p and
q. Unfortunately, it just provides a one-way function, without any possibility to
invert the process. In 1978, Rivest, Shamir and Adleman [37] defined the so-
called RSA problem: Let N = pq be the product of two large primes of similar
sizes and e an integer relatively prime to ϕ(N). For a given y ∈

� ?
N , find x ∈

� ?
N

such that xe = y mod N . The RSA assumption then says that this problem
is intractable for any modulus N = pq, large enough (presumably as hard as
factoring the modulus): the success probability Succ

rsa(A) of any adversary A

within a reasonable running time is small.

Discrete Logarithm. Some other classical problems are related to the discrete
logarithm. The setting is quite general: one is given a finite cyclic group G of
prime order q (such as a subgroup of (

� ?
p,×) for q | p−1, or an elliptic curve, etc)

and a generator g (i.e. G = 〈g〉). In such a group, one considers the following
problems (using the additive notation):

– the Discrete Logarithm problem (DL): given y ∈ G, compute x ∈
�

q

such that y = x · g = g + . . . + g (x times), then one writes x = log
g
y.

– the Computational Diffie-Hellman problem (CDH): given two elements
in the group G, a = a · g and b = b · g, compute c = ab · g. Then one writes
c = DH(a,b).

– the Decisional Diffie-Hellman problem (DDH): given three elements in
the group G, a = a ·g, b = b ·g and c = c ·g, decide whether c = DH(a,b).

It is clear that they are sorted from the strongest problem to the weakest one.
Very recently, Okamoto and the author [33] defined a new variant of the Diffie-
Hellman problem, which we called the Gap Diffie-Hellman problem (GDH),
where one wants to solve the CDH problem with an access to a DDH oracle.
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3.2 Ideal Objects

As already remarked, one often has to make some assumptions about the adver-
sary’s behavior. Let us present two classical models.

The Generic Model. Generic algorithms [28, 39], as introduced by Nechaev
and Shoup, encompass group algorithms that do not exploit any special property
of the encodings of group elements other than the property that each group
element is encoded by a unique string. Remark that such algorithms are the only
known for well-chosen elliptic curves. However, it is a strong and non-realistic
restriction when one works in a subgroup of

� ?
p.

A generic algorithm A over a group G is a probabilistic algorithm that takes
as input an encoding list {σ(x1), · · · , σ(xk)}, where each xi is in G. An encoding
of a standard group G is an injective map from G into a set of bit-strings S.
While it executes, the algorithm may consult an oracle for further encodings.
Oracle calls consist of triples {i, j, ε}, where i and j are indices of the encoding
list and ε is ±. The oracle returns the string σ(xi ± xj), according to the value
of ε and this bit-string is appended to the list, unless it was already present.

An interesting result in this model is the complexity lower-bound for break-
ing the DL problem. Similar results have been proven for all the above Diffie–
Hellman problems [39, 1]. The consequence is that all these problems (DL,
CDH, DDH and GDH) require an expected time in the square root of the
order q to be solved by any generic algorithm.

Theorem 1. Let G be a standard cyclic group of prime order q. Let A be a
generic algorithm over G that makes at most n queries to the group-oracle. If
x ∈ G and an encoding σ are chosen at random, then the probability that A

returns x on input {σ(1), σ(x)} is less than 1/q + (n + 2)2/q.

Proof. The idea of the proof is to identify the probabilistic space consisting of σ
and x with the space Sn+2×G, where S is the set of bit-string encodings. Given
a tuple {z1, · · · , zn+2, x} in this space, z1 and z2 are used as σ(1) and σ(x),
the successive zi are used in sequence to answer the oracle queries, modeled
by formal linear relations of 1 and x, i.e., linear polynomials Pi = ai + biX.
This interpretation may yield inconsistencies as it does not take care of possible
collisions between oracle queries when evaluating the polynomials Pi in x, but
with probability less than (n + 2)2/q. Eventually, let us note that the output of
a computation corresponding to a good sequence {z1, · · · , zn+2, x} (which does
not make two polynomials to collude in x) does not depend on x. ut

The Random Oracle Model. The “random oracle model” was the first to be
introduced in the cryptographic community [17, 5]: the hash function is formal-
ized by an oracle which produces a truly random value for each new query. Of
course, if the same query is asked twice, identical answers are obtained.

This model has been strongly accepted by the community, and is considered
as a good one, in which proofs of security give a good taste of the actual security
level. Even if it does not provide a formal proof of security (as in the standard
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model, without any ideal assumption) it is argued that proofs in this model en-
sure security of the overall design of the scheme provided that the hash function
has no weakness.

More formally, this model can also be seen as a restriction on the adver-
sary’s capabilities. Indeed, it simply means that the attack is generic without
considering any particular instantiation of the hash functions.

4 Provably Secure Digital Signature Schemes

4.1 Basic Signature Schemes

The Plain-RSA Signature. Two years after the Diffie-Hellman paper [14],
Rivest, Shamir and Adleman [37] proposed the first signature scheme based on
the “trapdoor one-way permutation paradigm”, using the RSA function: the
key generation algorithm produces a large composite number N = pq, a public
key e, and a private key d such that e · d = 1 mod ϕ(N). The signature of a
message m, encoded as an element in

�
N , is its eth root, σ = m1/e = md mod N .

The verification algorithm simply checks whether m = σe mod N .
However, the RSA scheme is not secure by itself since it is subject to exis-

tential forgery: it is easy to create a valid message-signature pair, without any
help of the signer, first randomly choosing a certificate σ and getting the signed
message m from the public verification relation, m = σe mod N .

The El Gamal Signature Scheme. In 1985, El Gamal proposed the first dig-
ital signature scheme based on the DL problem [16], but with no formal security
analysis: the key generation algorithm produces a large prime p, as well as an ele-
ment g in

� ?
p of large order. It also creates a pair of keys, the private key x ∈

� ?
p−1

and the public key y = gx mod p. The signature of a message m is a pair (r, s),
where r = gk mod p, with a random k ∈

� ?
p−1, and s = (m− xr)/k mod p− 1.

This pair satisfies gm = yrrs mod p, which is checked by the verification algo-
rithm. Unfortunately, as above, existential forgeries are easy.

4.2 DL-Based Signatures

In 1986 a new paradigm for signature schemes was introduced. It is derived from
fair zero-knowledge identification protocols involving a prover and a verifier [23],
and uses hash functions in order to create a kind of virtual verifier. The first
application was derived from the Fiat–Shamir identification scheme [17]. This
paradigm has also been applied by Schnorr [38], and provided the most efficient
El Gamal-like scheme, with no easy existential forgery.

The security results for that paradigm have been considered as folklore for a
long time but without any formal validation. However, Stern and the author [35]
formally proved the above paradigm when H is assumed to behave like a random
oracle. The proof is based on the by now classical oracle replay technique [35].
However, for the Schnorr’s signature scheme, one can just formally prove that
if an adversary manages to perform an existential forgery under an adaptive
chosen-message attack within an expected time T , after qh queries to the random
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oracle and qs queries to the signing oracle, then the discrete logarithm problem
can be solved within an expected time less than 207qhT . Actually, this security
result is not practical, since qh may be huge.

This technique has been applied on several other variants of the El Gamal [16]
signature scheme, such as the Korean Standard KCDSA [25]. However, the
American Standard DSA [29] does not fit with any of these designs. Therefore,
this widely used scheme never got any formal security proof (even with a costly
reduction). Recently, Brown [9] considered this standard in the generic model,
which provides a practical result, under the assumption of generic adversaries.
However, this makes this result possibly suitable for ECDSA only [2].

Description of ECDSA. The key generation algorithm defines an elliptic curve,
and a point g of large prime order q. It also creates a pair of keys, the private key
x ∈

�
q and the public key y = x · g. The signature of a message m is a pair (r, s):

r = k · g, with a random k ∈
� ?

q, r = xr mod q, where xr is the x-coordinate of
r, e = H(m) and s = k−1(e + xr) mod q. This pair satisfies r = xr′ mod q where
r′ = es−1 · g + rs−1 · y, with e = H(m), which is checked by the verification
algorithm. It involves a hash function H which outputs h-bit long digests.

Theorem 2. Let G be a standard cyclic group of prime order q. Let S be a set
of bit-string encodings. Let A be a generic algorithm over G that makes at most
qs queries to the signing oracle and n queries to the group-oracle, with a running
time bounded by t.

If A can perform an existential forgery with probability greater than ε, for
random x and random encoding σ, on input {g = σ(1),y = σ(x)}, then one can
extract a collision for H with probability ε′ ≥ ε− (n + qs + 2)(n + 2)/q, within
almost the same time.

Proof. The proof uses the same technique as for the theorem 1. Let A be a
generic attacker able to forge some message M with a signature (r, s). We de-
scribe several games, which differ just a little bit between each other [40].

Game0: This is the game the generic adversary plays, with a random encoding
σ, and a random pair of keys. The adversary eventually outputs a message
M and a signature (r, s). We denote by S0 the event V (kp, M, (r, s)) = 1 (as
well as Si in any Gamei below.) By definition, we have Pr[S0] = ε.

Game1: In this game, we simulate the encoding and the group-oracle using a
random sequence {z1, · · · , zn+2, x}, modeling oracle queries by linear poly-
nomials Pi = ai + biX: | Pr[S1]− Pr[S0] | ≤ (n + 2)2/q.

Game2: We modify the random choice of the encoding oracle answers zi. For all
the queries σ(b`X + a`), one gets a random e` ∈R

�
q, as well as a random

z` ∈ S such that the x-coordinate of the corresponding point is equal to
b`a

−1
` e` mod q. For convenient compact encoding sets, this simulation can

be perfect: Pr[S2] = Pr[S1].
Game3: We modify the random choice of the e` when this latter is smaller than

2h, where h is the bit-length of H-output: one gets a random message M` and
computes e` = H(M`) mod q. Under the assumption of the uniformity of the
output of H, which is related to the collision-resistance, Pr[S3] = Pr[S2].
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Game4: In this game, we simulate the signing oracle, which can be perfectly
performed by defining some values of the encoding, unless they have already
been defined before: | Pr[S4]− Pr[S3] | ≤ nqs/q.

In this latter game, one can easily see that an existential forgery (M, (r, s)) leads
to a collision for H, between M and some M`, if the bit-size of q is larger than
h: r = σ(H(M)s−1 + xrs−1) = (rs−1) / (H(M)s−1)×H(M`) mod q. ut

Therefore, under the collision-resistance of H, implemented by SHA-1 [30], and
q > 2160, one gets a very tight security result against generic adversaries. How-
ever, this strong generic model is not as convincing as the random oracle model.
Studies on elliptic curves may reveal non-generic attacks.

4.3 RSA-Based Signatures

In 1996, Bellare and Rogaway [7] proposed some signature schemes, based on the
RSA assumption, provably secure in the random oracle model. The first scheme
is the by now classical hash-and-decrypt paradigm (a.k.a. the Full-Domain Hash
paradigm): instead of directly signing m using the RSA function, one first hashes
it using a full-domain hash function H : {0, 1}? →

�
N , and computes the

eth root, σ = H(m)d mod N . Everything else is straightforward. For this scheme,
named FDH-RSA, one can prove in the random oracle model [7, 11, 5]: for any
adversary, her probability for an existential forgery under a chosen-message at-
tack within a time t, after qh and qs queries to the hash function and the signing
oracle respectively, is upper-bounded by 3qsSucc

rsa(t+(qs + qh)Texp), where Texp

is the time for an exponentiation to the power e, modulo N . This is quite bad
because of the factor qs. This factor is better than the factor qh, as it was in
the original proof [7], and for the DL-based signature schemes, but it is still too
bad for practical security. Therefore, Bellare and Rogaway proposed a better
candidate, the Probabilistic Signature Scheme (PSS): the key generation is still
the same, but the signature process involves three hash functions

F : {0, 1}k2 → {0, 1}k0, G : {0, 1}k2 → {0, 1}k1 and H : {0, 1}? → {0, 1}k2,

where k = k0+k1+k2+1 is the bit-length of the modulus N . For each message m
to be signed, one chooses a random string r ∈ {0, 1}k1. One first computes
w = H(m, r), s = G(w)⊕ r and t = F (w). Then one concatenates y = 0‖w‖s‖t,
where a‖b denotes the concatenation of the bit strings a and b. Finally, one
computes the eth root, σ = yd mod N .

The verification algorithm first computes y = σe mod N , and parses it as
y = b‖w‖s‖t. Then, one can get r = s ⊕ G(w), and checks whether b = 0,
w = H(m, r) and t = F (w).

About RSA–PSS, Bellare and Rogaway proved the security in the random
oracle model.

Theorem 3. Let A be a CMA-adversary against RSA–PSS. Let us consider any
adversary A which produces an existential forgery within a time t, after qF , qG,
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qH and qs queries to the hash functions F , G and H and the signing oracle
respectively. Then her success probability is upper-bounded by

Succ
rsa(t+(qs+qH)k2 ·Texp(k))+

1

2k2
+(qs+qH)·

(

qs

2k1
+

qF + qG + qH + qs + 1

2k2

)

,

with Texp(k) the time for an exponentiation modulo a k-bit integer.

Proof. First, we assume the existence of an adversary A that produces an exis-
tential forgery with probability ε within time t, after qF , qG and qH queries to
the random oracles F , G and H and qs queries to the signing oracle. This is the
game of the real-world attack (denoted below Game0). In any Gamei, we denote
by Si the event V (kp, m, σ) = 1.

Game1: In this game, we replace the random oracles F and G by random answers
for any new query. This game is clearly identical to the previous one: Pr[S1] =
Pr[S0].

Game2: Then, we replace the random oracle H by the following simulation.
For any new query (m, r), one chooses a random u ∈

�
N and computes

z = ue mod N , until the most significant bit of z is 0, but at most k2 times
(otherwise one aborts). Thereafter, z is parsed into 0 ‖w ‖ s ‖ t, and one
defines F (w)← t, G(w)← s⊕ r and H(m, r)← w. Finally, one returns w.
Let us remark that the number of calls to H is upper-bounded by qs+qH . This
game may only differ from the previous one if during some H-simulations,

– z is still in the bad range, even after the k2 attempts;
– F (w) or G(w) have already been defined.

| Pr[S2]− Pr[S1] | ≤ (qH + qs)×

(

1

2k2
+

qF + qG + qH + qs

2k2

)

.

Game3: Now, we simply abort if the signing oracle makes a H(m, r)-query for
some (m, r) that has already been asked to H. Furthermore, for any new
query (m, r) directly asked by the adversary, one computes z = yue mod N ,
instead of z = ue mod N . The distribution of the z is exactly the same
as before. Thus the above abortion makes the only difference, which gives
| Pr[S3]− Pr[S2] | ≤ qs(qH + qs)/2k1.

Game4: In the last game, we replace the signing oracle by an easy simulation,
returning the value u involved in the answer H(m, r) = z = ue mod N . The
simulation is perfect, then Pr[S4] = Pr[S3].

The event S4 means that, at the end of Game4, the adversary outputs a valid
message/signature (m, σ). But in this game, it is only possible either by chance,
or by inverting RSA: Pr[S4] ≤ Succ

rsa(t′, k) + 2−k2, where t′ is the running time
of the adversary and the simulations: t′ ≤ t + (qs + qH)k2 · Texp(k). ut

The important point in this security result is the very tight link between success
probabilities, but also the almost linear time of the reduction. Thanks to this
exact and efficient security result, RSA–PSS has become the new PKCS #1 v2.0
standard for signature.
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Recently, Cramer and Shoup [13] proposed the first efficient signature scheme
with a security proof in the standard model, and thus no ideal assumption. How-
ever, the security relies on a stronger computational assumption, the intractabil-
ity of the so-called flexible RSA problem: Let N = pq be the product of two large
primes of similar sizes. For a given y ∈

� ?
N , find a prime exponent e and x ∈

� ?
N

such that xe = y mod N .
The key generation algorithm produces a large composite number N = pq,

where p and q are strong primes (p = 2p′+1 and q = 2q′+1, with p′ and q′ some
prime integers). It also generates two non-quadratic residues h, x ∈

� ?
N , and an

(`+1)-bit prime integer e′. For signing a message m, one chooses a random non-
quadratic residue y ∈

� ?
N and an (`+1)-bit prime integer e. Then one computes

x′ = (y′)e′

h−H(m) mod N , and solves the equation ye = xhH(x′) mod N for the
unknown y. The signature is the triple (e, y, y′), with e an odd (`+1)-bit integer,
which satisfies (y′)e′

= x′hH(m) mod N and ye = xhH(x′) mod N . The verification
algorithm simply checks the above properties for the triple.

Even if the security holds in the standard model, the reduction is quite
expensive (at least quadratic in the number qs of queries asked to the signing
oracle) and furthermore it is not tight, since once again, a factor qs appears
between the success probability for solving the flexible RSA problem and for
breaking the signature scheme. Therefore, this security does not mean anything
for practical parameters.

5 Provably Secure Public-Key Encryption Schemes

5.1 Basic Encryption Schemes

The Plain-RSA Encryption. The RSA primitive [37] can also be used for en-
cryption: the key generation algorithm produces a large composite number N =
pq, a public key e, and a private key d such that e · d = 1 mod ϕ(N). The encryp-
tion of a message m, encoded as an element in

�
N , is c = me mod N . This cipher-

text can be decrypted thanks to the knowledge of d, m = cd mod N . Clearly, this
encryption is OW-CPA, relative to the RSA problem. The determinism makes
a plaintext-checking oracle useless. Indeed, the encryption of a message m, un-
der a public key kp is always the same, and thus it is easy to check whether a
ciphertext c really encrypts m, by re-encrypting this latter. Therefore the RSA-
encryption scheme is OW-PCA relative to the RSA problem as well. Because
of this determinism, it cannot be semantically secure: given the encryption c
of either m0 or m1, the adversary simply computes c′ = me

0 mod N and checks
whether c′ = c or not to make the decision.

The El Gamal Encryption Scheme. In 1985, El Gamal [16] also designed
a DL-based public-key encryption scheme, inspired by the Diffie-Hellman key
exchange protocol [14]: given a cyclic group G of prime order q and a generator
g, the generation algorithm produces a random element x ∈

� ?
q as private key,

and a public key y = x · g. The encryption of a message m, encoded as an
element m in G, is a pair (c = a · g,d = a · y + m). This ciphertext can be easily
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decrypted thanks to the knowledge of x, since a · y = ax · g = x · c, and thus
m = d− x · c. This encryption scheme is well-known to be OW-CPA relative to
the CDH problem. It is also IND-CPA relative to the DDH problem [41]. About
OW-PCA, it relies on the new GDH problem [33]. However, it does not prevent
adaptive chosen-ciphertext attacks because of the homomorphic property.

As we have seen above, the expected security level is IND-CCA. We wonder
if we can achieve this strong security with practical encryption schemes.

5.2 The Optimal Asymmetric Encryption Padding

In 1994, Bellare and Rogaway proposed a generic conversion [6], in the random
oracle model, the “Optimal Asymmetric Encryption Padding” (OAEP), which
was claimed to apply to any family of trapdoor one-way permutations, such as
RSA. The key generation produces a one-way permutation f : {0, 1}k → {0, 1}k,
the public key. The private key is the inverse permutation g, which requires a
trapdoor to be actually computed. The scheme involves two hash functions

G : {0, 1}k0 → {0, 1}n+k1 and H : {0, 1}n+k1 → {0, 1}k0,

where k = k0 +k1 +n+1. For any message m ∈ {0, 1}n to be encrypted, instead
of computing f(m), as done with the above plain-RSA encryption, one first
modifies m. For that, one chooses a random string r ∈ {0, 1}k0; one computes
s = (m‖0k1)⊕G(r) and t = r ⊕H(s); finally, one computes c = f(s‖t).

The decryption algorithm first computes P = g(c), granted the private key,
the trapdoor to compute g, and parses it as P = s‖t. Then, one can get r =
t⊕H(s), and M = s⊕G(r), which is finally parsed into M = m‖0k1 , if the k1

least significant bits are all 0.

For a long time, the OAEP conversion has been widely believed to pro-
vide an IND-CCA encryption scheme from any trapdoor one-way permutation.
However, the sole proven result was the semantic security against non-adaptive
chosen-ciphertext attacks (a.k.a. lunchtime attacks [27]). Recently, Shoup [40]
showed that it was very unlikely that a stronger security result could be proven.
However, because of the wide belief of a strong security level, RSA–OAEP be-
came the new PKCS #1 v2.0 for encryption after an effective attack against the
PKCS #1 v1.5 [8].

Fortunately, Fujisaki, Okamoto, Stern and the author [20] provided a com-
plete security proof of IND-CCA-security for OAEP in general, but also for RSA–
OAEP in particular under the RSA assumption.

The proof is a bit intricate, so we refer the reader to [20] for more information.
However, our reduction is worse than the incomplete one originally proposed by
Bellare and Rogaway [6]: an attacker in time t with advantage ε against RSA–
OAEP can be used to break RSA with probability almost ε2, but within a time
bound t + q2

h×O(k3), where qh is the total number of queries asked to the hash
functions. Because of the quadratic term q2

h, this reduction is meaningful for
huge moduli only, more than 4096-bit long!
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5.3 A Rapid Enhanced-security Asymmetric Cryptosystem

Transform

Anyway, there is no hope to use OAEP with any DL-based primitive, even
with huge parameters, because of the “permutation” requirement which limits
the application of OAEP to RSA only. More general conversions have recently
been proposed, first by Fujisaki and Okamoto [18, 19], then by the author [34],
that apply to any OW-CPA scheme to make it into an IND-CCA one, still in the
random oracle model. But the last one proposed by Okamoto and the author [32]
is the most efficient: REACT (see figure 1). It applies to any encryption scheme
S = (K ,E ,D)

E : PK×M×R→ C D : SK×C→M,

where PK and SK are the sets of the public and private keys, M is the message
space, C is the ciphertext space and R is the random coin space. We also need
two hash functions G and H,

G : M→ {0, 1}`, H : M× {0, 1}` ×C× {0, 1}` → {0, 1}κ,

where κ is the security parameter, while ` denotes the size of the messages
to encrypt. About the converted scheme S′ = (K ′, E ′, D′), one can claim the

K ′: Key Generation → (kp, ks)

(kp, ks)← K (1k)

E ′: Encryption of m ∈M′ = {0, 1}` → (a, b, c)

R ∈M and r ∈ R are randomly chosen
a = E (kp, R; r) b = m⊕G(R) c = H(R,m, a, b)

D ′: Decryption of (a, b, c) → m

Given a ∈ C, b ∈ {0, 1}` and c ∈ {0, 1}κ

R = D(ks, a) m = b⊕G(R)
if c = H(R,m, a, b) and R ∈M → m is the plaintext

Fig. 1. Rapid Enhanced-security Asymmetric Cryptosystem Transform S′

following security result:

Theorem 4. Let A be a CCA-adversary against the semantic security of S′. If
A can get an advantage ε after qD, qG and qH queries to the decryption oracle
and to the random oracles G and H respectively, within a time t, then one can
invert E after less than qG + qH queries to the Plaintext-Checking Oracle with
probability greater than ε/2− qD/2κ, within a time t + (qG + qH)TPCA, where TPCA

denotes the time required by the PCA oracle to answer any query.

Proof. We consider a sequence of games in which the adversary A = (A1,A2) is
involved. In each game, we use a random bit β and we are given α = E (kp, ρ; w),
for random ρ, w. The adversary runs in two stages: given kp, A1 outputs a pair
of messages (m0, m1), one encrypts C ′ = (a′, b′, c′) = E ′(kp, mβ); on input C ′, A2

outputs a bit β ′. In both stages, the adversary has access to the random oracles
G and H, but also to the decryption oracle. In each game, we denote by Si the
event β ′ = β.
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Game0: This is the above real-world game: Pr[S0] = (1 + ε)/2.

Game1: In this game, we simulate the oracles G and H in a classical way, re-
turning new random values for any new query: Pr[S1] = Pr[S0].

Game2: Then, we replace the decryption oracle by the following simulation. For
each query (a, b, c), one looks at all the pairs (R, m) such that H(R, m, a, b)
has been asked. For any such R, one asks the Plaintext-Checking Oracle
whether a is a ciphertext of R. Then it computes K = G(R). If b = K ⊕m
then one outputs m as the plaintext of the triple (a, b, c). Otherwise, one
rejects the ciphertext. One may remark that the probability of a wrong
simulation is less than 1/2κ (if the adversary guessed the H-value), therefore
| Pr[S2]− Pr[S1] | ≤ qD/2κ.

Game3: Now, we modify the computation of C ′, given (m0, m1). Indeed, we
set a′ ← α, and b ∈R {0, 1}

`, c ∈R {0, 1}
κ. Without asking G(ρ) nor

H(ρ, mi, a
′, b′), the adversary cannot see the difference. In such a case we

simply stop the game. Anyway, ρ would be in the list of queries asked to
G or to H. It can be found after qG + qH queries to the Plaintext-Checking
Oracle: | Pr[S3]− Pr[S2] | ≤ Succ

ow(A′), where A′ is a PCA-adversary.

In this latter game, one can easily see that without having asked G(ρ) or
H(ρ, mi, a

′, b′) to get any information about the encrypted message m, the ad-
vantage of the adversary is 0. This concludes the proof. ut

Hybrid Cryptosystems. In this REACT conversion, one can improve efficiency,
replacing the one-time pad by any symmetric encryption scheme, using K =
G(R) as a session key. Moreover, the symmetric encryption scheme is just re-
quired to be semantically secure under passive attacks, a very weak requirement.
With RSA, but also any other deterministic primitive, the construction can be
further improved, with just c = H(R, m), or equivalently c = H(R, b).

5.4 Practical Security

As for PSS only, but which was very specific to RSA, the security proof of
REACT is both tight with a very efficient reduction in the widely admitted
random oracle model: the cost of the reduction is linear in the number of oracle
queries. Furthermore, the success probabilities are tightly related. Therefore,
this scheme is perfectly equivalent to the difficulty of the underlying problem,
without having to use larger parameters. For example, RSA–REACT with a
1024-bit modulus actually provides a provable security level in 272, whereas
1024-bit RSA–OAEP would provide a security level in 236 only!

We cannot deal with provably secure encryption schemes without referring to
the first efficient scheme proven in the standard model, proposed three years ago
by Cramer and Shoup [12]. Actually, this encryption scheme achieves IND-CCA,
with a both tight and very efficient reduction, but to the DDH problem. Fur-
thermore, the encryption and decryption processes are rather expensive (more
than twice as much as other constructions in the random oracle model.)
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6 Conclusion

In this paper, we reviewed several encryption and signature schemes with their
security proofs. The security results are various, and have to be carefully con-
sidered since some of them are meaningless for usual sizes. Fortunately, several
schemes have a practical significance. However, when one needs such a cryp-
tographic scheme, one first has to decide between (unrelated) assumptions: a
computational problem (e.g., RSA, CDH, GDH) in the random oracle model;
a decisional problem (e.g., DDH) in the standard model; or the generic model.
Second, the efficiency may also be a major criterion. Therefore security is still
a matter of subtle trade-offs, until one finds a very efficient and secure scheme,
relative to a strong problem in the standard model.
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