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Abstract. In many real-life situations, massive quantities of signatures have to be is-
sued on cheap passive supports (e.g. paper-based) such as bank-notes, badges, ID cards,
driving licenses or passports (hereafter IDs); while large-scale ID replacements are costly
and prohibitive, one may reasonably assume that the updating of verification equipment
(e.g. off-line border checkpoints or mobile patrol units) is exceptionally acceptable.
In such a context, an attacker using coercive means (e.g. kidnapping) can force the
system authorities to reveal the infrastructure’s secret signature keys and start issuing
signatures that are indistinguishable from those issued by the authority.
The solution presented in this paper withstands such attacks up to a certain point: after
the theft, the authority restricts the verification criteria (by an exceptional verification
equipment update) in such a way that the genuine signatures issued before the attack
become easily distinguishable from the fresher signatures issued by the attacker.
Needless to say, we assume that at any point in time the verification algorithm is entirely
known to the attacker.
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1 Introduction

In settings where passive (paper-based) bank notes, passports or ID cards are
massively delivered to users, document security specialists (e.g. [22]) distinguish
between two different threats:

– duplication, which consists in copying information from a genuine document
into a new physical support (the copy). By analogy to the double-spending

problem met in e-cash schemes and software copyright protection, it seems
impossible to prevent duplication without relying on specific physical as-
sumptions, simply because symbols are inherently copyable. This difficulty
explains why duplication is mainly fought by optical means such as holo-
grams, iridescent printing (different colors being displayed at different angles
of observation), luminescent effects (the emission of radiation by an atom in
the course of a transition from a higher to a lower state of energy, which is
typically achieved by submitting the ID to ultraviolet excitation) or standard
document security features such as planchettes, fibers and thread.
In the last decade, chip-based IDs appeared (e.g. Venezuela’s driving license).
Again, these are based on the assumption that appropriately designed mi-
crochips can reasonably withstand malicious cloning attempts.

– forgery, which assumes that attackers have successfully passed the physical
barrier and are now able to reproduce documents using exactly the same
materials and production techniques used to create the original. Note that
although forgers may copy any existing ID, they can still fail in creating new
contents ex nihilo if the ID happens to rely on logical protections such as
MACs or signatures.

c© IFCA 2002.
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It seems very hard to quantify or compare the security of physical anti-
duplication technologies; partially because the effectiveness of such solutions
frequently relies on their secrecy, let alone the wide diversity of physical tech-
nologies mixed in one specific protection. By opposition, the protection of digital
assets against alteration is much better understood and can be easily used to
fight forgery.

As is obvious, if the authority’s signature or MAC keys are compromised (e.g.

by theft, cryptanalysis or coercion) forgery becomes possible, and the whole sys-
tem collapses. Theft can be easily prevented by physically protecting the produc-
tion facility or better more, by having data signed in protected remote locations
and by exchanging information and signatures through a properly protected
logical channel.

This is however not sufficient to resist coercion, a scenario in which the
attacker uses a threat (e.g. a kidnapping) to force the authorities to publish the
signature keys (e.g. in a newspaper [21]). The attacker can then check in vitro

the correctness of the revealed keys, stop coercing and start issuing fake IDs that
are indistinguishable from the genuine ones. The attack can also be motivated
by the sole intention to cause losses (global ID replacement).

Large scale ID replacement is, of course, a radical solution but it may both
entail prohibitive costs and require a transition period during which intruders
can still sneak through the borders. A second solution consists in performing
systematic on-line verifications to make sure that all controlled IDs are actually
listed somewhere, but this might be cumbersome in decentralized or poorly
networked infrastructures.

As mentioned in the abstract, the problem is, of course, not limited to IDs.
Bank notes, public-key directories and any other passive supports carrying sig-
natures or MACs are all equally concerned.

Several authors formalized similar concerns [9] and solutions based on pro-
active key updates [8] which, although very efficient in on-line contexts (e.g.

Internet), do not suit our passive (non-intelligent) IDs; others share the key
between n individuals amongst which a quorum of k is necessary to sign [10, 19].
This does not seem to solve the fundamental coercion problem either, since the
forger can force the authority to instruct k of the share-holders to reveal their
secrets, or coerce k share-holders directly.

2 The Idea and a Few Definitions

The proposed solution targets the attacker’s ability to ascertain the correctness
of the stolen keys; this is achieved by updating the verification algorithm V so as
to distinguish the fake (new) signatures from the genuine (old) ones. We denote
by {V1, . . . ,Vn} the successive updates of V in a system designed to withstand
at most n coercions.

In our system, the authority’s (genuine) signatures are designed to:

– remain forward compatible i.e. be valid for all the verification algorithms Vi

to come.



3

– remain computationally indistinguishable from the signatures generated by
the i-th attacker until the disclosure of Vi+1.

The technique is thus analogous to the strategy of national banks who imple-
ment several (secret) security features in their bank notes. As forgeries appear,
the banks examine the fakes and publicize some of the secret features to stop
the circulation of forgeries.

Our construction relies on the following definitions:

Definition 1 (Monotone Predicates). Let V1(x), . . . ,Vn(x) be n predicates.
The set {Vi(x)} is monotone if

∀i < n, Vi+1(x) ⇒ Vi(x)

Example 2. The set of predicates:

V1(x)
def
= x ∈ IR

V2(x)
def
= x ∈ IN

V3(x)
def
= x is prime

V4(x)
def
= x is a strong prime

is monotone since
V4(x) ⇒ V3(x) ⇒ V2(x) ⇒ V1(x).

Definition 3 (Signature Schemes). A signature scheme is a collection of
three sub-algorithms {G,S,V},

– a probabilistic key-generation algorithm G, which produces a pair of related
public and secret keys, on input a security parameter k: {v, s} = G(1k),
where v and s respectively denote the public and secret keys used by V and
S, the verification and the signature algorithms (see below).

– a possibly probabilistic signature algorithm S, which produces a signature,
given a secret key and a message: σ = S(s; m).

– a verification algorithm, which checks whether the given signature is correct
relatively to the message and the public key: V(v; m, σ) ∈ {true, false}. It
must satisfy

(σ = S(s; m)) ⇒ (V(v; m, σ) = true) .

Definition 4 (Monotone Signature Schemes). A monotone signature scheme
(MSS) is the following generalization of definition 3,

– a probabilistic key-generation algorithm G, which produces a list of public
and secret keys, on input two security parameters k and n:

{v1, . . . , vn, s1, . . . , sn} = G(1k, 1n),

where {vi} and {si} respectively denote the public and secret keys used by
the Vj and S.

– a possibly probabilistic signature algorithm S, which produces a signature,
given the list of the n secret keys and a message: σ = S(s1, . . . , sn; m).
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– a list of monotone verification algorithms Vj which check whether the given
signature is correct, relatively to the message and the list of public keys:

Vj(v1, . . . , vj; m, σ) ∈ {true, false}.

In other words, we require the three following properties.

1. completeness:

σ = S(s1, . . . , sn; m) ⇒ ∀j ≤ n, Vj(v1, . . . , vj; m, σ) = true.

2. soundness: for any adversary A which does not know sj+1, the probability,
over his internal random coins, to produce an accepted message-signature
pair {m, σ} is negligible

Pr[Vj+1(v1, . . . , vj+1; m, σ) = true (m, σ) = A] is negligible.

3. Indistinguishability : for any index j ≤ n, there exists a simulator Sj such
that the distributions of S(s1, . . . , sn; x) and Sj(s1, . . . , sj; x), for the internal
random coins of the algorithms, are indistinguishable by opponents who do
not possess {sj+1, . . . , sn}.

We now categorize the opponents that MSSs will withstand. In essence we
consider two types of attackers: immediate and delayed. Both are going to coerce
the signer, get some of his secrets, check their validity (as much as possible, i.e.

with respect to the currently enforced public-key {v1, . . . , vj}) and start forging.

Definition 5 (Immediate Attackers). Immediate attackers forge signatures
using the obtained secret keys {s1, . . . , sj}, but stop their activity as soon as the
new verification algorithm Vj+1(v1, . . . , vj+1; ·, ·) is published.

The next section will be devoted to the study of the long-term validity of
such forgeries, produced before Vj+1(v1, . . . , vj+1; ·, ·) is known.

Definition 6 (Delayed Attackers). Delayed attackers wait until a new veri-
fication algorithm Vj+1(v1, . . . , vj+1; ·, ·) is published and use both the obtained
secret keys {s1, · · · , sj} and the new verification rules to compute their forgeries.

The global picture is presented on figure 1.

3 Immediate Attacks and Symmetric Monotone

Signatures

As one may suspect, immediate attackers are the easiest to deal with. In theory,
the situation does not even call for the use of asymmetric primitives. It suffices to
add secret information to m or σ (e.g. using a subliminal channel as suggested
by [20]) but unless secret keys are shared with the verifiers, which is not the
case in our setting, the information rate is very low (narrow-band subliminal
channel).
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– key generation: the authority gets {v1, . . . , vn, s1, . . . , sn} = G(1k, 1n)
– keys: the authority keeps {s1, . . . , sn} secret

and publishes {v1, . . . , vj} for some j < n

– signature generation: the authority runs S(s1, . . . , sn; m) to sign m

– coercion
• start
• the authority reveals, to the attackers, the signature algorithm,

together with the secret keys {s1, · · · , sj}
• stop

– immediate attackers try to issue signatures using only {s1, · · · , sj} and Vj

– authority updates Vj to Vj+1 and informs the verifiers
– delayed attackers try to issue signatures using {s1, · · · , sj}, Vj and Vj+1

Fig. 1. Coercion Model

Better results are obtained by adding to σ some hidden randomness. In other
words, the actually signed message will be µ(m, r) where µ is a padding function
and r a randomly-looking (pseudo-random) bit string. The expression randomly-

looking translates the fact that r embeds information which is meaningful to who
knows how to interpret it :

let r =< r1 . . . rn >∈ {0, 1}n

and

{

ri = fki
({rλ}λ∈E′) for all i ∈ E ⊆ {1, . . . , n},

ri ∈R {0, 1} for all i 6∈ E,

where E and E ′ are two disjoint subsets of {1, . . . , n}; {fi} is a family of pseudo-
random functions returning one bit; and the values {ki}, for i ∈ E, are auxiliary
secret keys. More concretely, the set E ′ contains the indices of the bits used for
generating redundancy, and the set E contains the indices of the redundancy
bits.

The signer knows s as well as the complete collection of auxiliary secrets
{ki}. To issue an ID containing m, he generates a randomly looking r (which
satisfies the required secret redundancy) and a signature σ of µ(m, r). The ID
contains {m, r, σ}.

The verifier knows v and the values of some ki, for i ∈ F ⊆ E. Upon presen-
tation of the ID, he verifies the redundancy of r with respect to the ki values
that he knows. If this succeeds, he proceeds and verifies σ.

After coercion, the attacker obtains s and the ki for i ∈ G with, at least,
F ⊆ G (recall that the attacker verifies the validity of the produced signatures
before stopping coercion). As long as G 6= E, the verification algorithm can be
fixed and the system saved.

After revealing H (strictly bigger than G) and the ki, for i ∈ H, signatures
are considered valid if and only if all the ri for i ∈ H are correct. Given the
unpredictable nature of the {ri} for i ∈ H\G (and well-chosen functions {fi}),
the forged signatures are accepted with probability smaller then ε = 2−c where
c = #(H\G). If c is sufficiently large, ε is negligible and the forgeries are almost
certainly spotted.

Figure 2 describes this protocol that we call symmetric MSS, since it relies
on auxiliary secrets, eventually revealed to the verifiers. More formally, the ver-
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Initialization

{G,S,V}, signature scheme
{fk}, pseudo-random family of functions

Key generation

Generation of {s, v} with G
select two disjoint subsets E and E′ of {1, . . . , n}
∀i ∈ E, ki ∈R {0, 1}128

Public: v and E′, and some F ⊂ E

(which determines the degree of verification)
Private: s, E and the ki

Signature

∀i 6∈ E, ri ∈R {0, 1}
∀i ∈ E, ri = fki

({rλ}λ∈E′) ∈ {0, 1}
h = H(m‖r) and σ = S(s;h)

Verification of {m, r, σ} for F ⊆ E

make sure that for all i ∈ F , ri = fki
({rλ}λ∈E′)

compute h = H(m‖r) and check that V(v; h, σ) = true

Fig. 2. Symmetric Monotone Signature Scheme

ification algorithm VF checks the validity of the signature σ, but furthermore
checks the redundancy of all the bits indexed by F . We can state the following
theorem.

Theorem 7. Let {G,S,V} be a signature scheme transformed into a symmetric
MSS as suggested in figure 2.

– The signatures issued by the authority leak no information on the subset E;
– Assume that an attacker manages to obtain s, and then the ki for i ∈ G ⊇ F .

Let H ⊆ E be such that G is strictly included in H. Let us denote by c the
cardinality of H\G. The signatures issued by an attacker knowing G will be
accepted with respect to H with probability smaller than 2−c.

Proof. First assume that fk(.) = f(k, .), where f is, in the first part of the proof,
modeled by a random oracle which outputs one bit to each query:

– The ri are all random for i 6∈ E, by construction, as well as for i ∈ E
because of the randomness of f . Therefore, the signatures do not reveal any
information on E (other than the fact that F ⊆ E).

– By virtue of this indistinguishability property for E in {1, . . . , n}, the at-
tacker can not know if G is the entire set E. Assume that this is not the
case and G is strictly included in E. Define H as an intermediate subset,
G ⊂ H ⊆ E, and let c denote the cardinality of H\G. Since f is a random
oracle, without knowing the kj for j ∈ H\G, the attacker can not produce
the valid rj bits without a bias. Therefore the probability to produce a valid
forgery is smaller than 2−c.

Now, if by replacing f (secret random oracle [13]) by the family fk, the
attacker manages to produce valid signatures with probability larger than 2−c +
α, then the attacker can be used as distinguisher between the family of functions
{fk} and a perfectly random function with an advantage α, which contradicts
the assumption that {fk} is a family of pseudo-random functions. ut
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Given the symmetric nature of the auxiliary secrets (except the unique asym-
metric private key revealed immediately after an attack), it is clear that this pro-
cess can not withstand delayed attacks. Actually, the information owned by the
verifier after the update is sufficient for producing valid forgeries. We therefore
focus the coming section on asymmetric MSS that can thwart delayed attacks.

4 Delayed Attacks and Asymmetric Monotone
Signatures

4.1 Simple Concatenation

A trivial example of asymmetric MSS can be obtained by concatenating signa-
tures:

– Let {G,S,V} be a signature scheme and denote by ` the size of each signa-
ture;

– The concatenated signature of m over the set E ⊆ {1, . . . , n}, is the tuple:

S ′ ({si}i∈E; m) = σ = {σ1, . . . , σn}

where σi =

{

S(si; m) if i ∈ E, using the secret key si

ρi ∈R {0, 1}` if i 6∈ E

– Verification consists in evaluating the predicate:

V ′

F ({vi}i∈F ; m, σ) = ∧i∈FV(vi; m, σi),

where the set F ⊆ E determines the degree of verification.

However, for E not to be detectable, the two following distributions must be
indistinguishable, for any pair {s, m} of secret key and message:

δ0 = {ρ ∈R {0, 1}`}

δ1(s, m) = {S(s, m)}

This latter distribution is over the internal random coins used in the probabilistic
signature process. Thus, not all signature algorithms lead themselves to such a
construction. For instance, the concatenation of RSA [17] signatures does not
yield an asymmetric MSS, because of the deterministic nature of σ as a function
of m (unless one uses a probabilistic padding scheme such as pss [3] or pkcs#1

v 2.0, the distribution δ1(s, m) contains only one point, by opposition to the
uniform distribution δ0.)

On the other hand, if the distribution of signatures is indistinguishable from
the uniform distribution, a mix between random numbers and signatures of m
will resist coercion up to a certain point. We formalize this in the following
theorem.

Theorem 8. Let {G,S,V} be a signature scheme for which the distribution
δ1(s, m) is indistinguishable (for any pair {s, m}) from the uniform distribution.
Let {G ′,S ′,V ′} be the concatenated version of {G,S,V}.
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– The signatures produced by the authority do not reveal any information on
the subset E;

– Consider an attacker A who got hold of the si for i ∈ G ⊇ F . Let H ⊆ E
be such that G is strictly included in H, whose associated verification keys
have been published. If A can produce a forgery for {G ′,S ′,V ′} with respect
to H then he is able to produce a forgery for {G,S,V}.

A second disadvantage of RSA is the size of σ (recall that we actually talk
about n such signatures). A more compact alternative is Schnorr’s signature.
The next paragraph describes a concatenated signature based on this scheme.

4.2 Concatenation of Schnorr’s Signatures

We recall the description of the Schnorr’s scheme [18]:

– An authority generates a (k1 bit) prime p such that p − 1 has a large prime
factor q of k2 bits. The authority also generates an element g of

� ?
p of order

q and publishes a hash function H which outputs are in
�

q;
– G(p, q, g) returns x ∈R

� ?
q and y = gx mod p;

– S(x; m) = {e, s} where t ∈R

� ?
q, r = gt mod p, e = H(m, r) and s =

t − ex mod q;

– V(y; m, e, s) = (H(m, gsye mod p)
?
= e).

This scheme is provably secure in the random oracle model [16]. More pre-
cisely, it withstands existential forgeries even against adaptive chosen-message
attacks [7]. Moreover, δ1(x, m) = {S(x, m)} = {{e, s} ∈R

�
q ×

�
q} is indistin-

guishable from a uniform distribution, when y is unknown.

Remark 9. We insist on the format of the Schnorr’s signature. Indeed, sometimes
one outputs {r, s} as the signature, instead of {e, s}. We use this latter for two
reasons:

– Because of the shorter size of the resulting signature. Note that in elliptic
curve settings, this is irrelevant, since both representations are as short.

– For the randomly-looking property of the pair {e, s}. Indeed, to distinguish
a list of actual signatures {{ei, si}}, for a given pair of keys {x, y}, from a
list of truly random pairs, one has to find this common y, which can not be
found without the ri (hidden in the query asked to H). But with the ri, one
could easily compute ei = H(m, ri) and (ri/g

si)1/ei . This latter value would
be a constant: y.

By virtue of theorem 8, we can construct a concatenated variant that is as
secure as the initial scheme, that is, existentially unforgeable against adaptive
chosen-message attacks. Figure 3 describes such a variant.

The resulting MSS outputs 2nk2 bit signatures, and since usually k2
∼= 160,

this would amount to 320n bits in practice. Note that efficient batch algorithms
for generating and verifying multiple Schnorr’s signatures may considerably im-
prove the parties’ workloads [12, 1, 11].
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Initialization

p, q, g and H as in Schnorr’s scheme

Key generation

Select a subset E of {1, . . . , n}
∀i ∈ E, let xi ∈ � ?

q and yi = gxi mod p

Private: E and the xi for i ∈ E

Public: some F ⊂ E, and yi for i ∈ F

Signature

∀i ∈ E, σi = {ei, si} = S(xi; m)
∀i 6∈ E, σi = {ei, si} ∈R � q × � ?

q

let σ = {σ1, . . . , σn}

Verification of {m, σ} for F ⊆ E

∀i ∈ F , H(m,gsiyi
ei mod p)

?
= ei

Fig. 3. Concatenated Schnorr’s Signatures

4.3 Introducing Degrees of Freedom

Instead of concatenating signatures and random values, the asymmetric MSS
described in this section relies on hidden relations between the different parts
of the signature that give additional degrees of freedom to the signer. It’s main
advantage over concatenation is a substantial improvement in signature size
(50%).

The Okamoto-Schnorr Signature. The new scheme is based on the Okamoto’s
variant of Schnorr’s scheme [15]. The mechanism relies on the representation
problem [4], and is recalled in figure 4.

Initialization

p, q and H as in Schnorr’s scheme
g1, . . . , gn ∈ � ?

p of order q

Key generation

Private: x1, . . . , xn ∈ � ?
q

Public: y = g
x1
1 × . . . × gxn

n mod p

Signature

t1, . . . , tn ∈ � ?
q and r = g

t1
1 × . . . × gtn

n mod p

e = H(m, r) then for i = 1, . . . , n, si = ti − exi mod q

S(x1, . . . , xn; m) = (e, s1, . . . , sn)

Verification

H(m, g
s1
1 × . . . × gsn

n × ye mod p)
?
= e

Fig. 4. Okamoto–Schnorr Signatures

General outline. The main idea is to impose and keep secret relations between
the gi. For simplicity, suppose that n = 2. Instead of choosing g1 and g2 at
random, we choose g2 as before, but set g1 = ga

2 mod p and y = gx
2 mod p, where

a is a secret element of
� ?

q, and thus x = ax1 + x2 mod q (with the notations of
the figure 4). Then we keep the verification condition

H(m, gs1
1 gs2

2 ye)
?
= e (1)
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But now, we can choose s1 as we want (e.g. at random), as well as a random t,
compute r = gt

2 mod p, e = H(m, r) and then we want

gs2
2 = ry−eg−s1

1 = gt
2g

−ex
2 g−as1

2 = gt−ex−as1
2 mod p.

Therefore, s2 = t − ex − as1 mod q provides a valid signature. As the signer
can choose s1 arbitrarily (even after having chosen t), we say that he gets an
additional degree of freedom. This signature will still satisfy the verification
formula (1), and will be indistinguishable from a classical Okamoto-Schnorr
signature. Furthermore, instead of choosing s1 at random, we may choose it
to be randomly-looking. Explicitly, we may set s1 = fk(m‖r) where fk is a
pseudo-random function and k an auxiliary secret. When coerced, the signer
reveals x1 and x2, but keeps a and k secret. The attacker is thus capable of
forging signatures satisfying formula (1). Then, the signer publishes an additional

verification condition, namely s1
?
= fk(m‖r). From that moment, in order to

forge valid signatures, the attacker must compute a from ga
2 , or equivalently,

find a discrete logarithm in
� ?

p.
This idea can be generalized to any arbitrary n. We set an i in {2, · · · , n−1},

and for j = 1, · · · , i− 1, we impose gj = gai

i mod p, where the ai are kept secret,
and therefore y = gxi

i × . . .× gxn
n mod p for some tuple {xi, . . . , xn}. To produce

a signature, we proceed as follows: set r = gti
i · · · gtn

n mod p, for random tj. The
signer has i−1 degrees of freedom, that is, he can set, for all j < i, sj = fkj

(m‖r).
In addition, to be compatible with the verification condition

H(m, gs1
1 × . . . × gsn

n × ye mod p)
?
= e, (2)

we set si = ti − exi − a1s1 − · · · − ai−1si−1 mod q, and sk = tk − exk mod q
for k > i. Trivially, the verification formula (2) still works for this signature
generation:

gs1
1 × . . . × gsn

n × ye = ga1s1
i × . . . × g

ai−1si−1

i × gsi

i ×
k=n
∏

k=i+1

gsk

k × ye

= g
a1s1+...+ai−1si−1

i × g
ti−exi−a1s1−···−ai−1si−1

i ×
k=n
∏

k=i+1

gtk−exk

k × ye

= gti−exi

i ×
k=n
∏

k=i+1

gtk−exk

k × ye =

k=n
∏

k=i

gtk−exk

k ×
k=n
∏

k=i

gexk

k =

k=n
∏

k=i

gtk
k = r mod p.

But now, we can disclose some partial secrets ki and ai to an attacker, and
then add new verification conditions as shown in the case n = 2.

As a last generalization, we suppress the special role played by the first
i indices in the previous construction, and hide the indices of the generators
for which one knows some relations. That means that we can apply a secret
permutation P to the indices, imposing that gP (j) = g

aP (j)

P (i) for 1 ≤ j ≤ i−1. The

signature generation remains the same, except that the sets {1, · · · , i − 1}, {i}
and {i + 1, · · · , n} are replaced respectively by P 〈{1, · · · , i − 1}〉, {P (i)} and
P 〈{i + 1, · · · , n}〉.



11

Initialization

p, q and H as in Schnorr’s scheme.
fk(.) = H(k, .), a family of random functions

Key generation

Choose a permutation P of {1, 2, . . . , n}
Choose i < n, the degree of freedom
Set E = P ({1, · · · , i − 1})
Choose F ⊂ E

Choose xi, . . . , xn ∈R � ?
q

Choose aP (1), . . . , aP (i−1) ∈R � ?
q

Choose kP (1), . . . , kP (i−1) random keys
Choose gP (i), gP (i+1), . . . , gP (n) ∈R � ?

p of order q

Set gP (j) = g
aP(j)

P (i) mod p for j = 1, . . . , i − 1

Set y = g
xi

P (i)
× . . . × g

xn

P (n)
mod p

Private: P , {aj , kj}j∈E and xi, . . . , xn

Public: y, gj for j = 1, . . . , n,
F and kj for j ∈ F

Signature generation

Pick ti, . . . , tn ∈R � ?
q

Set r = g
ti

P (i) × . . . × g
tn

P (n) mod p

e = H(m, r)
Set, for j = 1, . . . , i − 1, sP (j) = fkP (j)

(m‖r)

Set sP (i) = ti − exi − aP (1)sP (1) − . . . − aP (i−1)sP (i−1) mod q

Set, for j = i + 1, . . . , n, sP (j) = tj − exj mod q

σ = (e, s1, . . . , sn)

Verification of (m, σ) for F ⊆ E

H(m,g
s1
1 × . . . × gsn

n × ye mod p)
?
= e.

∀j ∈ F, sj
?
= fkj

(m‖r)

Fig. 5. Okamoto–Schnorr Signatures with i − 1 Degrees of Freedom

Formal description of the scheme. The complete protocol is described in
figure 5. The validity of this new scheme comes from the fact the

gs1
1 × . . . × gsn

n × ye = g
sP (1)

P (1) × . . . × g
sP (n)

P (n) × ye mod p.

After the first coercion, the signer reveals x1, · · · , xn, for some randomly
chosen x1, . . . , xi−1 thanks to the aj’s. He also reveals a set G, which necessarily
satisfies F ⊆ G ⊆ E, and the values aj and kj for j ∈ G. The point is that
G strictly includes the indices possibly known from previous attacks (and thus
included in the current public key). If such a G, strictly included in E, exists,
the signer can withstand the attack. When the choice of such a G is impossible,
the system finally collapses. Note that for the first attack, it is possible to choose
F = ∅.

After the attack, the signer publishes an additional verification condition,

sκ
?
= fkκ

(m‖r),

where κ ∈ E\G. The forgery of valid signatures will require knowing aκ. For
an attacker, this implies determining aκ from gaκ

P (i), and the difficulty of this
problem is equivalent to the security of the initial scheme.
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Security. We can claim the following security result.

Theorem 10. Consider the Okamoto-Schnorr signature scheme with i − 1 de-
grees of freedom of figure 5, in the random oracle model.

– The signatures produced by the authority do not reveal any information on
the subset E;

– Consider an attacker A knowing a representation of y, k < i relations be-
tween the gj and k secret keys kj. If, after revealing one more ki, A can still
produce a signature accepted by the new verification algorithm, then A can
compute discrete logarithms.

Proof. We assume H to behave like a random oracle. For the first part of the
theorem, using classical simulation techniques ([6, 16]), we can prove that there
exists a simulator that does not know any secret value, but which is able to
generate signatures that are indistinguishable from the true signatures, thanks to
the random oracles simulation (for H but also the fk’s). This simulator proceeds
as follows: it chooses e, then the sj’s, and computes the correct value of r. Finally,
it sets H(m, r) = e, and when a kκ is revealed, it sets fkκ

(m‖r) = sκ.
Consequently, no information on E or the ai’s leaks from the signatures

produced by the scheme.
For the second part, assume that an attacker knows a representation of y in

the base gj. Assume also that he knows k values P (j), the associated aP (j), and
k + 1 elements kj. Let i0 be the index of the last verification condition disclosed
by the signer. Producing valid signatures is now equivalent to finding an α such
that gi0 = gα

P (i), and if A succeeds in doing so with a non-negligible probability,
then it can be used as an oracle to solve the discrete logarithm problem. ut

Efficiency. This technique offers several advantages compared to concatenation:

– Signature generation requires n − i + 1 exponentiations, this parameter de-
pends on the number of coercions that the system has to withstand.

– Verification requires the same number of exponentiations as the concate-
nated Schnorr variant.

– The size of a signature is (n + 1)160 bits, instead of 320n bits

Roughly speaking, most characteristics are improved by a factor of two, which
represents a significant improvement.

5 Conclusion

We proposed new signature mechanisms that tolerate, up to a certain point,
secret disclosure under constraint. More precisely, we introduced symmetric and
asymmetric monotone signatures to thwart different types of attacks. The asym-
metric monotone scheme offers the broadest protection for the signer. We gave
a practical example of such a scheme, based on the Okamoto-Schnorr signature.
The new scheme, called Okamoto-Schnorr with i degrees of freedom, is provably
secure against adaptive chosen-message attacks. We believe that the proposed
solution can be practically deployed at the scale of a country.
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11. D. M’räıhi, D. Naccache, S. Vaudenay, D. Raphaeli Can D. S. A. be improved ? Complexity trade-
offs with the digital signature standard, Advances in Cryptology eurocrypt’94, Springer-Verlag,
LNCS 950, pp. 77–85, 1995.
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