
Proceedings of Financial Cryptography ’2001
(19–22 february 2001, Grand Cayman Island, British West Indies)
P. Syverson Ed., Springer-Verlag, LNCS 2339, pages 178–195.

Mutual Authentication

for Low-Power Mobile Devices

Markus Jakobsson1 and David Pointcheval2

1 Information Sciences Research Center, Bell Labs, Murray Hill, New Jersey 07974,
http://www.bell-labs.com/user/markusj

2 Dépt d’Informatique, École Normale Supérieure, 75230 Paris Cedex 05, France,
http://www.di.ens.fr/users/pointche

Abstract. We propose methods for mutual authentication and key exchange. Our
methods are well suited for applications with strict power consumption restrictions,
such as wireless medical implants and contactless smart cards. We prove the security
of our schemes based on the discrete log gap problem.

Keywords: Low power, medical informatics, mutual authentication, gap problem.

1 Introduction

Computers can be separated into wired and wireless devices, where no partic-
ular power restrictions are typically placed on the former, and the restrictions
on wireless devices (typically cellular phones) relate mostly to the battery form
factors. The use of wireless devices for medical applications – such as insulin
meters and pacemakers – create a new category in terms of power restrictions,
in which the power limitations are taken to their extreme. While traditional
design of such devices have not relied on communication with nearby devices,
there are great benefits associated with allowing this. Examples of such benefits
include more accurate control of medical conditions, allowing doctors to con-
stantly monitor health conditions; possibilities to detect inconsistent operation
before it becomes a threat to the patient; and general collection of statistics for
the improvement of the product.

At the same time, these are applications where errors and inconsistencies,
whether due to interference or malice, may be fatal. In order to avoid security
vulnerabilities, authentication methods and key exchange methods become cru-
cial components in such systems. Authentication has traditionally been of an
asymmetric nature, namely, an untrusted entity identifying itself to a trusted
entity. With a trend towards decentralization, there is a greater need for sym-
metric or mutual authentication. The need for mutual authentication becomes
particularly obvious in situations where users carry small wireless devices that
monitor and control the operation of other wireless devices residing in the user’s
body.

A situation with similar restrictions involves contact-free smart cards, whose
advantages over standard smart cards range from the convenience they offer to
their increased security – where the latter is due to the increased defense against
power and timing attacks. Due to the absence of a local power source for such
devices, electricity to perform computation is obtained by induction over a field
moving in relation to the card. Only minute amounts of computation can be

c© IFCA 2002.

2

performed under such premises, severely restricting the choice of schemes that
can be employed.

We propose two closely related schemes that allow for mutual authentication
and key exchange, and which lower the computational requirements (and there-
fore the power consumption) by means of careful protocol design. One common
technique we employ is that of precomputation, which allows for both the shift-
ing of computation to another entity, and for a lower “peak performance” (and
therefore a lower average power consumption). For applications in which devices
are unable to perform such precomputation, and where the memory resources
are limited, we show how trusted auxiliary devices can perform the computation
and wirelessly upload this to the devices in question (after a successful mutual
authentication, of course.) Our solutions have applications within a large set
of seemingly unrelated fields, such as payment schemes, access control schemes,
medical surveillance, and cellular billing schemes.

Outline: We begin by reviewing related work (section 2), followed by a discus-
sion of our model (section 3). We then present two related schemes (section 4),
both of which perform mutual authentication and key exchange. Not counting
the amount of precomputation, we have that in the first scheme, the computa-
tional load for the client amounts to one modular multiplication and addition,
while in the second scheme, we even avoid the modular reduction. Following
this, we model the protocol and possible attacks on it (section 5), to prepare for
the analysis of our solutions. We end by a careful security analysis of the two
schemes, with further improvements (section 6 resp. section 7). We prove the
schemes secure based on the gap Diffie–Hellman problem (which requires the
standard Diffie–Hellman assumption.)

2 Related Work

2.1 Key Exchange and Mutual Authentication

Our paper hails back to the work on Diffie–Hellman key exchange [8], and the
use of a shared key for purposes of authentication. While many methods can be
employed in this later step – symmetric as well as asymmetric – we focus on
asymmetric methods based on Schnorr signatures [17]. The reason is purely one
of efficiency: Taking this approach, we can shift almost all the computational
work to a preprocessing stage. One could use other methods for this second part,
though, such as those proposed by Bellare and Rogaway [5].

Another direction for key exchange is that of Needham and Schroeder [11],
later evolving into Kerberos (see [12] for a description.) There, a mutually trusted
third party is involved in the key exchange. Under such a trust model, an al-
ternative to our protocols is to use a trusted third party for key exchange or
precomputation. In the latter case, one could use a simple table based method,
in which the TTP distributes pairwise matching lists to the participants. One
part of an entry could correspond to a request, the second to a response, and
a third to the key to be used. However, and as noted, such a solution requires
the TTP to be mutually trusted by the parties involved, and not only trusted by

3

its client. Another important difference is that such a solution is not necessarily
easy to distribute. The (unilaterally) trusted third party in our solution – if
used at all – may perform all the exponentiation using quorum action, and send
the portions of the result to the device, which then computes the corresponding
database entry.

Coming back to the former type of model, we have that a key exchange
scheme (without TTP) involves two participants, a client and a server, who want
to share a secret session key in order to achieve confidentiality. They therefore
communicate on a public channel and eventually compute a value that they both
know but which nobody else knows. Many security models have been defined to
cover this kind of schemes. Of these, the following two models have received the
most consideration:

– The first model was proposed by Bellare and Rogaway [4, 5], and refined
in [2] (furthermore considering dictionary attacks). Here, the adversary can
interact with all the participants, with an aim to learn some information
about one session key. Therefore, one tries to prove the indistinguishability
of the session key (from a random key) for the adversary.

– The second model was proposed by Bellare, Canetti and Krawczyk [1], and
is based on the multi-party simulatability technique. This means that one
first defines an idealized version of a key exchange scheme. Then, to prove
that the real-world scheme is secure, one shows that any adversary in the
real world has to behave like an adversary in the ideal world.

Shoup [19] recently showed that the two models (with some refinements) are
equivalent in preventing active adversaries to break forward secrecy: An adver-
sary who can see all the public communication and has access to all the session
keys but one, cannot obtain any information about that last session key, even if
he later learns the long-term secrets of the parties.

When parties have established a common secret session key, most of the key
exchange protocols, such as the Diffie–Hellman [8] key exchange scheme using
public keys, implicitly ensure that any party is really partnered (sharing the
session key) with the party he wanted, or with nobody. Indeed, if an adversary
uses the public key of Alice, Bob will run the key exchange process, and at the
end he thinks that the actual session key is shared with Alice. However, the
adversary cannot extract the session key from the communication. Therefore,
nobody but Alice can be partnered with Bob as a result of this process.

Thus, apart from performing the key agreement, one usually wants to verify
the actual partner. This latter property for a key exchange scheme is called
mutual authentication. However, as presented in [2], an implicitly authenticated
key exchange protocol can be easily transformed into a scheme that provides
mutual authentication, merely by adding one more flow, with a key confirmation
step.

2.2 The Gap Problems

Very recently, Okamoto and Pointcheval [14] introduced a new class of problems
to deal with the security of very efficient schemes. Informally, it considers the gap

4

between a decision problem and its computational counterpart. More precisely,
a gap-problem is a computational problem to solve given access to a decision
oracle. Let us see what it means for the Diffie–Hellman family of problems, where
all the elements belong in a group G of prime order q:

– The Computational Diffie–Hellman Problem (a.k.a. C-DH): given a triple
(g, ga, gb), find the element C = gab.

– The Decision Diffie–Hellman Problem (a.k.a. D-DH): given a quadruple
(g, ga, gb, gc), decide whether c = ab mod q or not.

– The Gap Diffie–Hellman Problem (a.k.a. G-DH): given a triple (g, ga, gb),
find the element C = gab with the help of a Decision Diffie–Hellman Oracle
(which answers whether a given quadruple is a Diffie–Hellman quadruple or
not).

Using the notation from the complexity theory, one could define the Gap Diffie–
Hellman problem as the Computational Diffie–Hellman Problem with access to
a Decision Diffie–Hellman oracle: G-DH = C-DHD-DH. Thereafter, some relations
between these problems become clear: first, if the C-DH problem is easy, so is
G-DH; secondly, if the G-DH problem is easy, then C-DH = D-DH, which is
very unlikely. This latter remark justifies the current assumption that the Gap
Diffie–Hellman problem is hard to solve. The assumption of its hardness seems
very similar to the Decision Diffie–Hellman assumption. Thus, the class of the
gap-problems can be considered a dual to the class of the decision-problems.

This class of problems is already believed to be yield to many secure and
efficient schemes. Indeed, it helped to prove the security of an undeniable signa-
ture scheme, the very old and well-known scheme proposed by Chaum [7, 6, 14],
for which no security proof was previously known. It is also the basis of very
efficient chosen-ciphertext secure cryptosystems [13].

3 Model

We have two primary types of participants, the client and the server. Although
we strive to limiting the computational burden for both of these participants,
it is the client that we assume have the strictest limitations. It is the purpose
of our protocols to allow a client and a server to perform mutual authentication
and to establish a shared key.

Our schemes can be used with a standard public key infrastructure. The
use of certificates is straightforward; however, we must assume that these are
verified beforehand to reduce the computational complexity. This only has to
be assumed for the clients, given that the servers are assumed to have sufficient
computational power to verify certificates. We note that this fits well into a
model where many clients know of a few servers, but the servers do not know
about any clients.

Furthermore, we may have trusted devices, who perform computation on
behalf of clients and servers. A trusted device interacts with either a client or
a server, but not both, as is only trusted by the entity it interacts with. The

5

amount of trust that a device has to place in such a trusted device can be reduced
by means of standard methods for distribution.

We assume that the entire communication network is managed by the adver-
sary, who may schedule interactions arbitrarily, and who may inject and drop
messages arbitrarily. We assume that all participants, and any adversary, can be
modeled by poly-time Turing Machines.

Informally, we want our protocols to satisfy the following requirements.

– From a computational point of view, as said above, the on-line workload of
the client must be minimal. Namely, we avoid the use of modular exponen-
tiation, and avoid or reduce modular additions and multiplications.

– From the security point of view, we want to prevent active adversaries to
learn any information about a session key. Forward-secrecy is also an im-
portant issue. However, under the above computational restriction, it seems
impossible to achieve a forward-secrecy from both sides. We can assume a
strong physical security level for the server, while the client may be a weak
device. Therefore, the corruption of this device, and thus the leakage of the
long-term secret key of the client, should not make public all the previous se-
cret communication. Thus, the most important aspect is that all the session
keys remain secret after the leakage of a client long-term key.

We will define the corresponding security requirements in more detail in the
analysis section.

4 Solutions

We introduce two closely related protocols for mutual authentication and key
exchange. While the protocols differ only on a few points in terms of their
description, the security analysis differs substantially between the two. Still,
the protocols are shown secure based on the same assumption: the intractability
of the gap Diffie–Hellman problem.

Both protocols are based on the Diffie–Hellman key distribution scheme [8]
together with the Schnorr’s authentication scheme [17] (and the GPS scheme for
the optimized version [9, 16].) Thanks to the latter, much precomputation can
be performed so that no on-line computation is required of the client. Therefore,
the client can be any low-cost device.

The first scheme is presented in figure 1, the second differs on only a few
points:

– It introduces a new security parameter, k′.
– Instead of selecting t uniformly at random from

�
q, t is selected uniformly

at random from
�

q′, where q′ = q 2k+k′

.
– Instead of computing d as d = t− exB mod q, it is computed as d = t− exB .

(Note the absence of the modular reduction.)

5 Modeling the Protocol

For this proof of security, we use the Bellare and Rogaway model [4, 5] revisited
by Shoup [19] to handle the forward-secrecy. In this model (see figure 2), any

6

Server A Client B

Initialization

G = 〈g〉, group of prime order q

H0 : G × G × G → {0, 1}`0

H1 : G × G × G × G → {0, 1}`1

H2 : G × G × G → {0, 1}`2

k, security parameter

yA = gxA yB = gxB

Precomputation

b, t ∈ � q random,

B = gb, T = gt

For known yA: K = yb
A

r = H1(T, yA, B, K)
A′ = H2(yA, B, K)
sk = H0(yA, B,K)

Storage: t, r, B, A′, sk

acc← term← False acc← term← False

A, B, r
←−−−−−−−−−−−−

K = BxA

A = H2(yA, B, K)

0 ≤ e < 2k random
A, e

−−−−−−−−−−−−→

B, d
←−−−−−−−−−−−−

A′ ?
= A
if not satisfied:

term← True

d = t− exB mod q
acc← term← True

r
?
= H1(g

dye
B , yA, B, K)

if not satisfied:
term← True

else acc← term← True

sk = H0(yA, B, K)
sid = (A, B, r,A, e,B, d)

Fig. 1. Mutual Authentication

A1

AqA

B1

BqB

C

history

0/1

Fig. 2. Security Model

7

instance of each party, A or B, is seen as an oracle. At the end of each protocol,
when any party Ui has accepted, he gets a session key, denoted by ski

U , and
a session ID, denoted by sidi

U which is the concatenation of all the flows. The
session ID’s are made public, while the session keys clearly remain secret. Indeed,
the session keys are the common secret shared by the two parties at the end of
the protocol. The session ID’s have a technical significance: they are used to
define partnership. The partner of a party is an instance which has a similar
session ID. Since the session ID’s are public, the partnership is also public. With
such a definition of partnership, one can remark that a party may have many
partners, although we will show that it is very unlikely.

The adversary can interact, as a man-in-the-middle, with the parties, or more
formally with many instances of them (Ai for the server and Bj for the client)
as many times as he wants in a concurrent way. He can ask them the following
queries

– Send (U , i, string) – which means that the adversary sends the message
string to the oracle Ui (either a server or a client). The oracle makes some
computation according to the protocol and gives the answer back.

– Reveal (U , i) – if the oracle Ui has accepted (the tag acc has been set to
True), he returns the session key ski

U . It models the misuse of a session key
by the parties after having established it.

– Test (U , i) – if the oracle Ui has accepted, one tosses a coin b. If b = 1 then
the session key ski

U is returned, else a random string is returned. The aim of
the attack is then to guess this bit b. Therefore, there are trivial restrictions
about this query:

• it can just be asked once;
• no Reveal-query has been asked to Ui;
• no Reveal-query has been asked to Vj, where Vj is partnered with Ui.

– Corrupt (U) – in order to deal with the forward-secrecy, one allows the adver-
sary to corrupt the parties. Then, he obtains the secret key (the long-term
secret key xU) of the corrupted party U . Therefore, the Test-query will have
to be asked to a party which had accepted before any corruption.

The above game, with the Test-query, just deals with the key agreement
property but not with authentication. We will say that the protocol provides
mutual authentication if no instance accepts and not exactly one partner exists.
Otherwise, it would mean that the adversary has impersonated a party. More
precisely, if an instance Ai of the server accepts with no partner, it means that
the adversary had impersonated the client, and therefore broken the client-to-
server authentication.

In the other direction, if an instance Bj of the client accepts with no partner,
it means that the adversary had impersonate the server, and therefore broken
the server-to-client authentication.

A key exchange protocol guarantees mutual authentication if for any ad-
versary, her probabilities in breaking the client-to-server authentication or the
server-to-client authentication are both negligible. This is usually guaranteed by
implicit authentication together with key confirmations from both parties [2].

8

6 Analysis of the First Scheme

6.1 Presentation

This section deals with the security of the scheme presented in figure 1. We
prove that it achieves the security requirements:

– an adversary cannot learn any information about a session key which has not
been revealed. This is proven by the fact that any adversary can just obtain
a negligible advantage in guessing the bit b involved in the Test-query;

– an adversary cannot impersonate any of the parties, which guarantees the
mutual authentication;

– forward-secrecy is ensured as long as the server is not corrupted.

As usual, some assumptions have to be made to provide the security result.
The following proof just runs in the random oracle model [3] and assume the
intractability of the gap Diffie–Hellman problem [14].

Indeed, we cannot hope to weaken the computational assumption, but can
prove that it is sufficient.

6.2 The Gap Diffie–Hellman Problem: a Necessary Assumption

First, let us specify more formally the Diffie–Hellman problems we will use. In
the protocol, G is any group of prime order q. For any pair (g, h) of G-elements,
we define the following Diffie–Hellman problems, which are particular instances
of the general problems presented previously.

– C-DHg,h: given an element a, find the element b = C-DH(g, h, a).
– D-DHg,h: given a pair (a, b), decide whether b = C-DH(g, h, a), which is

equivalent to decide whether D-DH(g, h, a, b) is true or not.
– G-DHg,h: given an element a, find the element b = C-DH(g, h, a) with the

help of a D-DHg,h oracle.

First, it is clear that if the discrete logarithm problem can be broken, then
this authentication scheme is no longer secure. Furthermore, for the server, the
computational Diffie–Hellman problem C-DHg,yA

is enough to be broken so that
the security of the overall scheme vanishes. However, one may also remark that
the adversary has access to a kind of oracle D-DHg,yA

that answers to any query
D-DHg,yA

(a, b), by saying whether b = C-DH(g, yA, a) or not, for any pair (a, b)
of her choice: indeed, the adversary chooses a random r and sends A, a, r to
the server. This latter answers A, e. The adversary stops the game and simply
checks whether A = H2(yA, a, b), which answers the D-DHg,yA

(a, b) query.
Therefore, if one can break the Gap Diffie–Hellman problem G-DHg,yA

, which
is exactly to compute C-DHg,yA

(B) = C-DH(g, yA, B) for a non-negligible part of
B with non-negligible probability, with an access to a D-DHg,yA

oracle, which
answers whether C = D-DH(g, yA, B) or not, for any pair (B, C), then one can
use the server for simulating the D-DHg,yA

oracle, as shown above.
Now, let us prove that this mathematical assumption is enough for the secu-

rity of this scheme, which would prove the equivalence of the security and the

9

Gap Diffie–Hellman problem [14]. Let us do it step by step. Whereas we want
to prove the security of the key exchange protocol and of the mutual authen-
tication, we do not proceed as usual. Indeed, we first study the client-to-server
authentication, then the security of the key agreement (no leakage of informa-
tion about any session key) and finally we complete the mutual authentication
by proving the server-to-client authentication.

In all the following claims and proofs, we denote by

– qA (resp. qB), the number of instances of the server (resp. client) involved in
the game;

– `0, `1 and `2, the output size of the oracles H0, H1 and H2;
– q0, q1 and q2, the number of queries asked to the oracles H0, H1 and H2;
– qH , the total number of queries asked to the oracles H0, H1 and H2;
– k, the size of the challenge e.

6.3 Client-to-Server Authentication

Let us first deal with the authentication of the parties to each other. In this aim,
we denote by Eventc2s the event that, at the end of the attack, there exists an
instance Ai of the server which has accepted without exactly one partner. This
event defines the violation of the client-to-server authentication. Respectively,
we denote by Events2c the event that, at the end of the attack, there exists an
instance Bj of the client which has accepted without exactly one partner. This
latter event defines the violation of the server-to-client authentication.

The following lemma states that the protocol provides client-to-server au-
thentication, relative to the discrete logarithm problem.

Lemma 1. Let us assume that an adversary can violate the client-to-server au-
thentication with probability ε within a time bound t. Then the discrete logarithm
can be solved within an expected time

t′ ≤ t×

(

1

ν
+

(

ν

4qA

−
1

2k

)

−1
)

, where ν = ε−

(

1

2`1
×

(

q2
B

q
+ q2

1

)

+
qAq1

q

)

.

Proof. Let us assume that, for some ν,

ε = Pr[Eventc2s] ≥ ν +
1

2`1
×

(

q2
B

q
+ q2

1

)

+
qAq1

q
.

First, one can easily simulate any client B instance without the secret key, thanks
to the random oracle used to commit the first flow. On the other hand, there is
no need to simulate the server instances, since we have the secret key. Let see
the figure 3. On may remark that this simulation is perfectly indistinguishable
from a real game, excepted in the case the definition H1(g

dye
B, yA, B, K) ← r

cannot be done in the Send (B, j, (A, e))-query. Indeed, H1 may have already
been defined at that point before. But since d is randomly chosen in

�
q, the

simulation fails with probability less than qAq1/q.
Therefore, one can consider this simulation as the game to study, which is

indistinguishable from a real game. Thus, one can remark that the probability

10

Initialization

Input g and y
Keys xA ∈ � q, yA = gxA , yB ← y

Hash functions H0, H1, H2

H0(?), H1(?), H2(?) if the value is not determined at that point, one chooses a
random value in the corresponding range and returns it.

Any hash value used below is implicitly obtained with this simulation, unless
something else is specified.

Instance Ai of A

Send (A, i, (A, B, r)) one computes K = BxA and A = H2(yA, B, K). Then one
chooses a random challenge 0 ≤ e < 2k and returns (A, e).

Send (A, i, (B, d)) one checks whether r = H1(g
dye

B, yA, B, K). If satisfied, one
accepts and terminates, else one just terminates, while still not
accepting.

Instance Bj of B

Send (B, j, “start′′) one chooses random b ∈ � q and r ∈ {0, 1}`1 . Then, one com-
putes B = gb, K = yb

A and returns (B, r).
Send (B, j, (A, e)) one checks whether A = H2(yA, B, K). If satisfied, one

chooses a random 0 ≤ d < q, computes T = gdye
B, defines

H1(T, yA, B, K)← r and returns (B, d) while accepting and
terminating, else one just terminates, while still not accepting.

Other queries

Reveal (U , i) if the oracle Ui has accepted, one returns the corresponding
H0(yA, B, K).

Test (U , i) if Ui has accepted, one flips a coin and either returns the cor-
responding H0(yA, B, K) or a random string.

Fig. 3. Game A: client-to-server authentication

for an Ai to have many partners is bounded by q2
B/q2`1, since B and r are

randomly chosen by the client instances. Furthermore, we condition, using PrH ,
all the probabilities to the event ¬EventColH, where EventColH denotes a collision
for H1. Therefore,

ν +
q2
1

2`1
≤ ε−

qAq1

q
−

q2
B

q · 2`1
≤ Pr[∃i Eventi] ≤ PrH [∃i Eventi] + Pr[EventColH]

≤ PrH [∃i Eventi] +
q2
1

2`1
,

where Eventi denotes the event that, at the end of the attack in the simulated
game, the instance Ai has accepted without any partner. Then PrH [∃i Eventi]
is lower-bounded by ν. The end of the proof works exactly as the security proof
of the signature schemes studied in [15], thanks to the forking lemma. Using
this technique, we make a fork on the execution sid = (A, B, r, A, e,B, d), on
which occurred the violation of the client-to-server authentication, by changing
e into e′ at the right time. We then obtain a new violation on the execution
sid′ = (A, B, r, A′, e′,B, d′). This uses the same values for B and r: note that
the correctness of B, and the knowledge of K, are both verified in the test
r = H1(g

dye
B, yA, B, K)1. More precisely, let us group inside the set I all the

1 We note that the absence of such a construction would allow a reuse of transcripts, which opens
up to serious abuse. We refer to [20] for a description of how such vulnerabilities can be taken
advantage of. Therein, a weakness of a previous version of our protocol is described and exploited.

11

most likely indices i: I = {i |PrH [Eventi |Eventc2s] ≥ 1/2qA}. Then one can
easily prove that we have PrH [∃i ∈ I, Eventi] ≥ 1/2.

Let us call EventPartial

i the event defined by the following property: when the
instance Ai receives the Send (A, i, (A, B, r)) query,

PrH [Eventi |EventPartial

i] ≥ ν/4qA.

Then, using the splitting lemma [15] one can claim that for any index i ∈ I,
PrH [EventPartial

i |Eventi] ≥ 1/2. Indeed,

PrH [Eventi] = PrH [Eventi ∧ Eventc2s]

= PrH [Eventi |Eventc2s]× PrH [Eventc2s] ≥
1

2qA

× ν.

Therefore, if one runs the attack, until the event Eventc2s occurs, which re-
quires an expected number of iterations bounded by 1/ν. In that case, with prob-
ability of 1/2, we furthermore have Eventi with an instance i ∈ I. That event
means that the adversary (since it is not an instance of B) has answered d which
satisfies r = H1(g

dye
B, yA, B, K). Therefore, with probability 1/2, EventPartial

i oc-
curs too. One rewinds the game up to the Send (A, i, (A, B, r)) query, answering
with a random challenge e′. One resumes and rewinds with new challenges e′ until
another event Eventc2s occurs, or at most (ν/4qA − 1/2k)−1 times. If EventPartial

i

occurred, we obtain a second success Eventi with probability greater than 1/2.
Globally, after at most 1/ν + (ν/4qA − 1/2k)−1 iterations of the game, we

have obtained two answers d, d′ to two distinct challenges e 6= e′ with probability
greater than 1/8, for the same (A, B, r, A).

Thanks to e 6= e′, d, d′, since we have assumed that no collision has been
found for H1, we have the relation geyd

B = ge′yd′

B , which leads to the discrete
logarithm of yB in basis g. ut

Let us postpone the study of mutual authentication and study right now the
security of the key agreement. Indeed, the proof relies on the previous result,
and will be useful for the server-to-client authentication.

6.4 Key Agreement

Theorem 2. Let us assume that an adversary can guess the bit involved in
the Test-query with advantage ε within a time bound t. Then the computational
Diffie–Hellman problem can be solved with probability ε′ ≥ ε/2− pc2s, within al-
most the same time, where pc2s is the maximal probability for an adversary to
violate the client-to-server authentication within a time bound t (cf. Lemma 1),
with at most qH queries to the decision Diffie–Hellman oracle. Thus the security
relies on the gap Diffie–Hellman problem.

Proof. Let us first remark that because of the randomness of the hash function,
to gain any advantage in guessing correctly the coin involved in the Test-query,
the adversary must ask the query (yA, B, K) to H0: Pr[AskK] ≥ Adv/2, where
AskK denotes the event that the query (yA, B, K) corresponding to the sid of

12

the Test-query has been asked to H0. Therefore, because of the constraints on
the Test-query,

Pr[AskK ∧ ∃i Test (A, i) ∧ Eventc2s] + Pr[AskK ∧ ∃i Test (A, i) ∧ ¬Eventc2s]

+ Pr[AskK ∧ ∃j Test (B, j)] ≥ Adv/2.

If one denotes by pc2s the probability to break the client-to-server authenticity,
one can claim that

Pr[AskK∧∃i Test (A, i)∧¬Eventc2s]+Pr[AskK∧∃j Test (B, j)] ≥ Adv/2− pc2s.

Let us now consider the simulation of the parties, as described on figure 4.
Thanks to the Decision Diffie–Hellman Oracle D-DHg,α, one can perfectly sim-
ulate all the parties and the random oracles. Indeed, the tables HDH

0 , HDH
1 and

HDH
2 are managed using this decision Diffie–Hellman oracle, and record the an-

swers of the oracles H0, H1 and H2, when inputs are Diffie–Hellman triples.

The simulation may just fail, in the Test (A, i) query, since this latter simula-
tion requires a client-partner, if the event Eventc2s occurs. Anyway, with this sim-
ulation, the event “(∃i) Test (A, i)∧¬Eventc2s” implies event “(∃j)Test (B, j)”:

Pr[AskK ∧ (∃j)Test (B, j)] ≥ Adv/2− pc2s.

Because of the simulation of Bj, we have

Adv/2− pc2s ≤ Pr[AskK for (yA = α, B = βb, K = C-DH(g, yA, B))].

Therefore, the AskK event says that K = C-DH(g, α, βb) can be extracted from
the queries asked to the H0 oracle, while verifying the correctness thanks to
the Decision Diffie–Hellman Oracle (the D-DHg,α), with probability greater than
Adv/2− pc2s. Thus, C-DH(g, α, β) = Kd, where d = b−1 mod q.

To conclude the proof, one can just remark that if the Gap Diffie–Hellman
problem G-DHg,yA

is intractable, so do is the discrete logarithm problem too,
which guarantees that pc2s is small. ut

6.5 Mutual Authentication

Since we have already proven the client-to-server authentication, we just need
to prove the server-to-client authentication to ensure mutual authentication.

Lemma 3. Let us assume that an adversary can violate the server-to-client
authentication (without any violation of the client-to-server authentication) of
the protocol with probability π within a time bound t. Then the computational
Diffie–Hellman problem can be solved with probability π ′ within almost the same
time, where

π′ ≥ π −

(

qB

2`2
+

q2
B

q

)

.

13

Initialization

Input g, α and β
Keys yA ← α, xB ∈ � q, yB ← gxB

Hash functions H0, H1, H2

H0(a, b, c) two different situations may appear.
– a = α and c = C-DH(g, a, b), checked by the D-DHg,α

oracle: if HDH
0 (a, b) has been defined, to say d, (which

occurs iff H0 has been defined to d in the point (a, b, c),
then returns d, else, (i.e. H0 is undefined at the point
(a, b, c)) then one chooses a random value d ∈ {0, 1}`0 ,
defines HDH

0 (a, b)← d and returns d.
– otherwise: if H0 is undefined at the point (a, b, c), then

one chooses a random value in {0, 1}`0 and returns it.
H1(T, a, b, c) same as for H0, but using `1 and HDH

1 (T, a, b).

H2(a, b, c) same as for H0, but using `2 and HDH
2 (a, b).

HDH
0 (a, b) if the query (a, b) has not been asked to HDH

0 then one chooses
a random value in {0, 1}`0 and returns it.

HDH
1 (T, a, b) same as for HDH

0 , but using `1, and queries of the form (T, a, b).
HDH

2 (a, b) same as for HDH
0 , but using `2.

Any hash value used below is implicitly obtained with this simulation, unless
something else is specified. Furthermore, only the simulated parties have access
to the HDH

0 , HDH
1 and HDH

2 oracles.

Instance Ai of A

Send (A, i, (A, B, r)) one asks for A = HDH
2 (yA, B), chooses a random challenge

0 ≤ e < 2k and returns (A, e).

Send (A, i, d) one checks whether r = HDH
1 (gdye

B , yA, B). If satisfied, one
accepts and terminates, else one just terminates, while still
not accepting.

Instance Bj of B

Send (B, j, “start′′) one chooses random b, t ∈ � q and computes B = βb, T = gt as
well as r = HDH

1 (T, yA, B), and returns (B, r).

Send (B, j, (A, e)) if A = HDH
2 (yA, B) then one computes d = t − exB mod q

and returns d while accepting and terminating, else one just
terminates, while still not accepting.

Other queries

Reveal (U , i) if Ui has accepted, one returns the corresponding HDH
0 (yA, B).

Test (B, j) if Ui has accepted, one flips a coin and either returns the cor-
responding HDH

0 (yA, B) or a random string.
Test (A, i) let us denote by Bj the partner of Ai (abort if not uniquely

defined), and run Test (B, j).
Corrupt (B) one returns xB.

Fig. 4. Game B: key agreement protocol

14

Proof. As we have seen above, the simulation presented on figure 4 is perfect
unless the event Eventc2s occurs. Therefore, let us study the event Events2c, know-
ing ¬Eventc2s. It means that at some point, after having sent (A, B = αb, r) and
received (A, e), a client accepts the proof whereas it has not been produced by
a server:

– either the adversary guessed the value A (probability less than qB/2`2)

– or the value B occurred in an other session (probability less than q2
B/q, since

it is randomly chosen by the client)

– or the adversary has asked for (yA, B, K) to the oracle H2

Then

Pr[Events2c | ¬Eventc2s] ≤ Pr

[

(yA, B, K) asked, with yA = α,
B = βb, K = C-DH(g, yA, B))

]

+
qB

2`2
+

q2
B

q
,

which completes the proof of the lemma. ut

Thanks to both lemma 1 and lemma 3, one can easily claim the following
theorem.

Theorem 4. Let us assume that an adversary can violate the mutual authenti-
cation of the protocol with probability ε within a time bound t. Then the compu-
tational Diffie–Hellman problem can be solved within an expected time bound

t′ ≤ t×

(

1

ν
+

(

ν

4qA

−
1

2k

)

−1

+

(

ε

2
−

qB

2`2
−

q2
B

q

)

−1
)

,

where

ν =
ε

2
−

(

1

2`1
×

(

q2
B

q
+ q2

1

)

+
qAq1

q

)

.

Proof. Simply adding results of both Lemmas 1 and 3, one gets the expected
result, since ε ≤ Pr[Eventma] = Pr[Eventc2s] + Pr[Events2c | ¬Eventc2s], and there-
fore either Pr[Eventc2s] ≥ ε/2 or Pr[Events2c | ¬Eventc2s] ≥ ε/2. ut

6.6 Forward Secrecy

This protocol furthermore provides partial forward-secrecy. Indeed, it is clear
that if the server is corrupted, then all the session keys can be recovered from
the transcript. However, the corruption of the client may not help to recover
the session keys: the forward-secrecy just deals with the key agreement property
which can be perfectly simulated by the game presented on figure 4. This simu-
lation provides the Corrupt-query, since the client secret key is known. Then the
theorem 2 still holds, since the Test-query has to be asked for a session which
occurs before the corruption.

15

7 Improvements

7.1 Analysis of the Second Scheme

Without the q-modular reduction, the simulation of the client-to-server authen-
tication, while choosing 0 ≤ d < q·2k+k′

, is not perfect [16]. However the distance
of the distribution of the transcripts is less than 1/2k′

(statistical indistinguisha-
bility). Therefore, all the security results still remain, under the condition that
1/2k′

is negligible.

7.2 Hash Functions

Using the proof technique proposed by Girault and Stern [10], one can still
prove the client-to-server authentication even with a short hash function H1, just
considering the multi-collision resistance. Indeed, if one can avoid `-collisions for
H1, with probability greater than p`, then the lemma 1 is slightly modified, as
follows.

Lemma 5. Let us assume that an adversary can violate the client-to-server au-
thentication with probability ε within a time bound t, then the discrete logarithm
can be solved within an expected time

t′ ≤ t×

(

1

ν
+ (`− 1)×

(

ν

4qA

−
1

2k

)

−1
)

, where ν = ε−

(

q2
B

2`1q
+

qAq1

q
+ p`

)

.

The main modification appears in the time complexity, since in the forking
lemma, one has to rewind many times to obtain ` values, so that at least 2 are
distinct.

7.3 Size of the Parameters

One can use the following sizes for achieving a good security level, assuming that
the adversary cannot ask more than qA, qB ≤ 230 queries to the instance-oracles
and q0, q1, q2 ≤ 264 queries to the random oracles:

– a 160-bit order q for the group G prevents baby-step/giant-step attacks [18]
or any other generic attack. Then a convenient group as to be chosen to
avoid any other kind of attack (e.g. G = 〈g〉 ⊂

�
?
p, or an elliptic curve). The

integer n will denote the bit-size of the encoding of the elements in G;
– k = k′ = 64 make the simulation indistinguishable but with a very small

distance (less than 2−64);
– `1 = 80, for providing a 5-collision resistant hash function; `2 = 64 or 128;

and `0, whatever needed for a session key, say 64.

7.4 Storage and Computation

With these parameters, the client can precompute anything required during the
protocol:

– two exponentiations before knowing the server;

16

– one exponentiation and three hashings when he knows the server;

Then, he has to store

– B, a group element (of size n);
– t and r, where t is a |q|+ k + k′ = 288-bit long integer and r a 80-bit hash

value;
– A′ and sk, two 64-bit hash values.

The total memory required for one authenticated key agreement is n+496 bits.
Using an elliptic curve group, this is less than 82 bytes.

Thereafter, the client will just have to perform on-line,

– one test of equality between two 64-bit elements;
– one multiplication between a 64-bit and a 160-bit integers;
– one addition between a 224-bit and a 288-bit integers.

One can even decrease the storage-memory by choosing and storing 0 ≤ t <
q, but computing d = t + ρ · q + e · xB, where ρ is a random 128-bit element.

Then the storage-memory required for one authenticated key agreement is
n + 368 bits. Using an elliptic curve group, this is less than 66 bytes. But one
multiplication and one addition more have to be performed on-line.

8 Conclusion

In this paper, we have proposed a key exchange scheme which achieves mu-
tual authentication and forward-secrecy (but just for the leakage of the client
long-term key). The main interest of this scheme is the computational efficiency.
Indeed, it requires the client to perform only a few additions and multiplications
of short integers, and a few comparisons between 64-bit strings. The storage
requirements are less than 70 bytes per process, which allows more than 15 pre-
computed tuples per kilobyte.

Acknowledgements

We are grateful to Wong and Chan [20] for detecting a vulnerability in the
presented version. Our paper, as it appears here, takes their findings into con-
sideration by ensuring that transcripts are not inappropriately reused. We refer
to their publication for a detailed description of the importance of protecting
against such attacks.

References

1. M. Bellare, R. Canetti, and H. Krawczyk. A Modular Approach to the Design and Analysis of
Authentication and Key Exchange Protocols. In Proc. of the 30th STOC. ACM Press, New York,
1998.

2. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against Dic-
tionary Attacks. In Eurocrypt ’2000, LNCS 1807, pages 139–155. Springer-Verlag, Berlin, 2000.

3. M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for Designing Efficient
Protocols. In Proc. of the 1st CCS, pages 62–73. ACM Press, New York, 1993.

17

4. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In Crypto ’93, LNCS
773, pages 232–249. Springer-Verlag, Berlin, 1994.

5. M. Bellare and P. Rogaway. Provably Secure Session Key Distribution: the Three Party Case. In
Proc. of the 27th STOC. ACM Press, New York, 1995.

6. D. Chaum. Zero-Knowledge Undeniable Signatures. In Eurocrypt ’90, LNCS 473, pages 458–464.
Springer-Verlag, Berlin, 1991.

7. D. Chaum and H. van Antwerpen. Undeniable Signatures. In Crypto ’89, LNCS 435, pages
212–216. Springer-Verlag, Berlin, 1990.

8. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Informa-

tion Theory, IT–22(6):644–654, November 1976.
9. M. Girault. Self-Certified Public Keys. In Eurocrypt ’91, LNCS 547, pages 490–497. Springer-

Verlag, Berlin, 1992.
10. M. Girault and J. Stern. On the Length of Cryptographic Hash-Values used in Identification

Schemes. In Crypto ’94, LNCS 839, pages 202–215. Springer-Verlag, Berlin, 1994.
11. R. M. Needham and M. D. Schroeder. Using Encryption for Authentication in Large Networks

of Computers. Communications of the ACM, 21:993–999, 1978.
12. B. C. Neuman and T . Ts’o. Kerberos: An Authentication Service for Computer Networks. IEEE

Communications Magazine, 32(9):33–28, September 1994.
13. T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric Cryptosystem

Transform. In RSA ’2001, LNCS 2020, pages 159–175. Springer-Verlag, Berlin, 2001.
14. T. Okamoto and D. Pointcheval. The Gap-Problems: a New Class of Problems for the Security

of Cryptographic Schemes. In PKC ’2001, LNCS 1992, pages 104–118. Springer-Verlag, Berlin,
2001.

15. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind Signatures.
Journal of Cryptology, 13(3):361–396, 2000.

16. G. Poupard and J. Stern. Security Analysis of a Practical “on the fly” Authentication and
Signature Generation. In Eurocrypt ’98, LNCS 1403, pages 422–436. Springer-Verlag, Berlin,
1998.

17. C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In Crypto ’89, LNCS 435,
pages 235–251. Springer-Verlag, Berlin, 1990.

18. D. Shanks. Class Number, a Theory of Factorization, and Genera. In Proceedings of the Sympo-

sium on Pure Mathematics, volume 20, pages 415–440. AMS, 1971.
19. V. Shoup. On Formal Models for Secure Key Exchange. Technical Report RZ 3120, IBM Research,

April 1999.
20. D. S. Wong and A. H. Chan. Efficient and Mutually Authenticated Key Exchange for Low-Power

Computing Devices In Asiacrypt’ 01, LNCS. Springer-Verlag, Berlin, 2001. To appear.

