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Abstract. Dynamic group Diffie-Hellman protocols for Authenticated Key Exchange
(AKE) are designed to work in a scenario in which the group membership is not known in
advance but where parties may join and may also leave the multicast group at any given
time. While several schemes have been proposed to deal with this scenario no formal
treatment for this cryptographic problem has ever been suggested. In this paper, we
define a security model for this problem and use it to precisely define Authenticated
Key Exchange (AKE) with “implicit” authentication as the fundamental goal, and
the entity-authentication goal as well. We then define in this model the execution of a
protocol modified from a dynamic group Diffie-Hellman scheme offered in the litterature
and prove its security.

1 Introduction

1.1 The Group Diffie-Hellman Key Exchange

Group Diffie-Hellman schemes for Authenticated Key Exchange are designed
to provide a pool of players communicating over a public network and holding
long-lived secrets with a session key to be used to achieve multicast message
confidentiality or multicast data integrity. In this paper, we consider the scenario
in which the group membership is not known in advance – dynamic rather than
static – where parties may join and leave the multicast group at any given time.

After the initialization phase, and throughout the lifetime of the multicast
group, the parties need to be able to engage in a conversation after each change
in the membership at the end of which the session key is updated to be sk′.
The secret value sk′ is only known to the party in the multicast group during
the period when sk′ is the session key. The adversary may generate repeated
and arbitrarily ordered changes in the membership for subsets of parties of his
choice.

The above scenario is a distributed application in which up to one hundred
parties work together in order to get a task done where many of the parties
may be sending data to the multicast group [12]. Examples of such applications
include replicated server [21], audio-video conferencing [20] and collaborative
tools [2].
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Several papers [3, 18, 19, 28] have addressed this scenario and one of its incar-
nations is the system offered in [1]. However these protocols, and this existing
system, are based on or use an informal approach and do not rely on proofs of
security. These approaches are several years later often found to be flawed and,
indeed, weaknesses have already been discovered for some protocols [23]. One
way to improve the security of the protocols is to complete formal proofs and
thus avoid many of the weaknesses.

1.2 The Security Notions

In the paradigm of provable security [24] one identifies a concrete cryptographic
problem to solve (like the group Diffie-Hellman key exchange) and defines a for-
mal model for this problem. The model captures the capabilities of the adversary
and the capabilities of the players. Within this model one defines security goals
to capture what it means for a group Diffie-Hellman scheme to be secure. And,
for a particular scheme one exhibits a proof of its security. The security proof
aims to show that the scheme actually achieves the claimed security goals under
computational assumptions.

The fundamental security goal for a group Diffie-Hellman scheme to achieve
is Authenticated Key Exchange (with “implicit” authentication) identified as
AKE. In AKE, each player is assured that no other player aside from the arbi-
trary pool of players can learn the session key. Another stronger highly desirable
goal for a group Diffie-Hellman scheme to provide is Mutual Authentication
(MA). In MA, each player is assured that only its partners actually have pos-
session of the distributed session key.

With these security goals in hand the security of a group Diffie-Hellman
scheme can be analyzed in the standard model or in an idealized model of com-
putation (ideal-hash model [7, 13], ideal-cipher model [5], generic model [26]).
Previous security analyses in the ideal-hash model, the so-called random-oracle
model [7, 13] wherein the cryptographic hash functions (like SHA or MD5) are
viewed as random functions, provide satisfactorily convincing guarantees of se-
curity for numerous cryptographic schemes [8, 14, 25] although not at the same
level as those in the standard model.

1.3 Contributions

This paper provides major contributions to the solution of the group Diffie-
Hellman key exchange problem. We present the first formal model to help man-
age the complexity of definitions and proofs for the authenticated group Diffie-
Hellman key exchange when the group membership is dynamic. This model is
equipped with some notions of dynamicity in the group membership where the
various types of attacks are modeled by queries to the players. This model does
not yet encompass attacks involving multiple player’s instances activated con-
currently and simultaneously by the adversary. Also, in order to be correctly
formalized, the intuition behind mutual authentication requires cumbersome
definitions of session IDS and partner IDS which may be skipped at the first
reading.
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We start with the model and definitions introduced in [10] and extend them
to deal with the authenticated dynamic group Diffie-Hellman key exchange. We
define the partnering, freshness of session key and measures of security for AKE.
In this model we define the execution of a protocol, we refer to it as AKE1,
modified from [3] and show that it can be proven secure under reasonable and
well-defined intractability assumptions.

Our paper is organized as follows. In the remainder of this section we sum-
marize the related work. In Section 2 we define our security model. We use it in
Section 3 to define the security definitions that should be satisfied by a group
Diffie-Hellman scheme. We present the AKE1 protocol in Section 4 and justify
its security in the random oracle model. Finally in Section 5 we briefly deal with
MA in the random oracle model.

1.4 Related Work

Many group Diffie-Hellman protocols [3, 4, 11, 15, 17, 27, 29, 30] aim to distribute
a session key among the multicast group members for a scenario in which the
membership is static and known in advance. However these protocols are not
well-suited for a scenario in which members join and leave the multicast group
at a relatively high rate. Fortunately, these protocols can be extended to address
this latter scenario and several papers [3, 18, 19, 28] have shown how to do so. The
protocol presented in [3] has been found to be flawed in [23] and the other papers
assume authenticated links, or more specifially do not consider the AKE and MA
goals as part of the protocols. These goals need to be addressed separately.

A first step has already been taken toward a formal treatment of the authen-
ticated Diffie-Hellman key exchange problem in the multi-party setting. Indeed,
we presented in [10] the first formal model for this problem for a scenario in
which the membership is static. The model was derived from Bellare et al.’s
model of distributed computing [5, 16]. Addressed in detail were the AKE and
MA goals. For each we presented a definition, a protocol and a proof that the
protocol achieves these goals.

2 The Model

In this section we formalize the group Diffie-Hellman key exchange and the
adversary’s capabilities. In our formalization, the players do not deviate from
the protocol, the adversary is not a player and the adversary’s capabilities are
modeled by various queries. These queries provide the adversary a capability
to initialize a multicast group via Setup-queries, add players to the multicast
group via Join-queries, and remove players from the multicast group via Remove-
queries.

2.1 Protocol Participants.

We fix a nonempty set U of players that can participate in a group Diffie-Hellman
key exchange protocol P . The number n of players is polynomial in the security



4

parameter k. Also, when we mean a specific player of U we use Ui while when
we mean a not fixed member of U we use U without any index.

We also consider a nonempty subset of U which we call the multicast group

I. And in I a player UGC , the so-called “group controller”, initiates the addition
of players to I or the removal of players from I. UGC is trusted to do only this.

2.2 Long-Lived Keys

Each player U ∈ U holds a long-lived key LLU which is either a pair of matching
public/private keys or a symmetric key. Associated to protocol P is a LL-key
generator GLL which at initialization generates LLU and assigns it to U .

2.3 Generic Group Diffie-Hellman Schemes

A group Diffie-Hellman scheme P for U is defined by four algorithms: (the session
key SK is known by any player in I but unknown to any player not in I.)

– the key generation algorithm GLL which has an input of 1k, where k is the
security parameter, provides each player in U with a long-lived key LLU .
GLL is a probabilistic algorithm.

– the setup algorithm which has an input of a set of players J , sets variable I
to be J and provides each player U in I with a session key SKU . The setup
algorithm is an interactive multi-party protocol between some players of U .

– the remove algorithm which has an input of a set of players J , updates
variable I to be I\J (the set of all players in I that are not in J ) and
provides each player U in this updated set with an updated session key
SKU . The remove algorithm is an interactive multi-party protocol between
some players of U .

– the join algorithm which has an input of a set of players J , updates variable
I to be I∪J and provides each player U in this updated set with an updated
session key SKU . The join algorithm is an interactive multi-party protocol
between some players of U .

An execution of P consists of running the key generation algorithm once,
and then many times the setup, remove and join algorithms. We will also use
the term operation to mean one of the algorithms: setup, remove or join.

Session IDS. We define the session IDS (SIDS) for player Ui in an execution of
protocol P as SIDS(Ui) = {SIDij : j ∈ ID} where SIDij is the concatenation of
all flows that Ui exchanges with player Uj in executing an operation. Therefore,
Ui setsSKUi

to 0 and SIDS(Ui) and ∅ before executing an operation. (SIDS is
publicly available.)

Accepting and Terminating. A player U accepts when it has enough in-
formation to compute a session key SKU . At any time a player U who is in
“expecting state” can accept and it accepts at most once in executing an opera-
tion. As soon as U accepts in executing an operation, SK and SIDS are defined.
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Now once having accepted U has not yet terminated this execution. Player U
may want to get confirmation that its partners in this execution have actually
computed SK or that they are really the ones it wants to share a session key
with. As soon as U gets this confirmation message, it terminates the execution
of this operation - it will not send out any more messages and remains in a
“stand by” state until the next operation.

2.4 Security Model

Queries. The adversary A interacts with the players U by making various
queries. There are seven types of queries. The Setup, Join and Remove queries
may at first seem useless since, using Send queries, the adversary already has
the ability to initiate a setup, a remove or a join operation. Yet these queries
are essential for properly dealing with the dynamic case. To deal with sequential
membership changes, these three queries are only available if all the players
in U have terminated. We now explain the capability that each kind of query
captures.

– Setup(J ): This query models adversary A initiating the setup operation. The
query is only available to adversary A if all the players in U have terminated
and are thus in a “stand by” state.. A gets back from the first player U in J
the flow initiating the setup execution. Other players are aware of the setup

and move to an “expecting state” but do not reply any message.

– Remove(J ): This query models adversary A initiating the remove operation.
The query is only available to adversary A if all the players in U have
terminated. A gets back from the group controller UGC the flow initiating
the remove execution. Other players are aware of the remove operation but
do not reply. They move from a “stand by” state to an “expecting state”.

– Join(J ): This query models adversary A initiating the join operation. The
query is only available to adversary A if all the players in U have terminated.
A gets back from the group controller UGC the flow initiating the join exe-
cution. Other players are aware of the join operation but do not reply. They
move from a “stand by” state to an “expecting state”.

– Send(U, m): This query models adversary A sending a message to a player.
The adversary A gets back from his query the response which player U would
have generated in processing message m (this could be the empty string if
the message is uncorrect or unexpected). If player U has not yet terminated
and the execution of protocol P leads to accepting, variable SIDS(U) is
updated as explained above.

– Reveal(U): This query models the attacks resulting in the misuse of the
session key, which may then be revealed. The query is only available to
adversary A if player U has accepted. The Reveal-query unconditionally
forces player U to release SKU which is otherwise hidden to the adversary.

– Corrupt(U): This query models the attacks resulting in the player U ’s LL-
key been revealed. A gets back LLU but does not get any internal data of U
executing P .
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– Test(U): This query models the semantic security of the session key SK,
namely the following game Gameake(A, P ) between adversary A and the
players U involved in an execution of the protocol P . The Test-query is only
available if U is Fresh (see Section 3). In the game A asks any of the above
queries however it can only ask a Test-query once. Then, one flips a coin b
and returns skU if b = 1 or a random string if b = 0. At the end of the game,
adversary A outputs a bit b′ and wins the game if b = b′.

Executing the Game. Choose a protocol P with a session-key space SK, and
an adversary A. The security definitions take place in the context of making A
play Gameake(A, P ). P determines how players behave in response to messages
from the environment. A sends these messages: she controls all communications
between players; she can repeatedly initiate in a non-concurrent way but in
arbitrary order sequential changes in the membership for subsets of players of
her choice; she can at any time force a player U to divulge SK or more seriously
LLU . This game is initialized by providing coin tosses to GLL, A, all U , and
running GLL(1k) to set LLU . Then

1. Initialize any U with SIDS← null, PIDS← null,SK← null,
2. Initialize adversary A with 1k and access to all U ,
3. Run adversary A and answer queries made by A as defined above.

3 The Definitions

In this section we present the definitions that should be satisfied by a group
Diffie-Hellman scheme. We define the partnering from the session IDS and use it
to define security measurements that an adversary will defeat the security goals.
We also recall that a function ε(k) is negligible if for every c > 0 there exists a
kc > 0 such that for all k > kc, ε(k) < k−c.

3.1 Partnering using SIDS

The partnering captures the intuitive notion that the players with which Ui has
exchanged messages in executing an operation, are the players with which Ui

believes it has established a session key. Another simple way to understand the
notion of partnering is that Uj is a partner of Ui in the execution of an operation,
if Uj and Ui have directly exchanged messages or there exists some sequence of
players that have directly exchanged messages from Uj to Ui.

In an execution of P , or in Gameake(A, P ), we say that players Ui and Uj

are directly partnered if both players accept and SIDS(Ui) ∩ SIDS(Uj) 6= ∅
holds. We denote the direct partnering as Ui ↔ Uj.

We also say that players Ui and Uj are partnered if both players accept
and if, in the graph GSIDS = (V, E) where V = {Ui : i = 1, . . . , |I|} and
E = {(Ui, Uj) : Ui ↔ Uj} the following holds:

∃k > 1,≺ U1, U2, . . . , Uk � with U1 = Ui, Uk = Uj, Ui−1 ↔ Ui.
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We denote this partnering as Ui
� Uj.

We complete in polynomial time (in |V |) the graph GSIDS to obtain the graph
of partnering: GPIDS = (V ′, E ′), where V ′ = V and E ′ = {(Ui, Uj) : Ui

� Uj},
and then define the partner IDS for oracle Ui as:

PIDS(Ui) = {Uj : Ui
� Uj}

3.2 Freshness

A player U is Fresh, in the current operation execution, (or holds a Fresh SK)
if the following two conditions are satisfied. First, nobody in U has ever been
asked for a Corrupt-query from the beginning of the game. Second, in the current
operation execution, U has accepted and neither U nor its partners PIDS(U)
have been asked for a Reveal-query.

Let’s also recall that forward-secrecy entails that loss of a LL-key does not
compromise the semantic security of previously-distributed session keys.

3.3 Security Notions

AKE Security. In an execution of P , we say an adversary A wins if she asks
a single Test-query to a Fresh player U and correctly guesses the bit b used
in the game Gameake(A, P ). We denote the ake advantage as Advake

P (A); the
advantage is taken over all bit tosses. (The advantage is twice the probability
that A will defeat the AKE security goal of the protocol minus one1.) Protocol
P is an A-secure AKE if Advake

P (A) is negligible.

MA Security. In an execution of P , we say adversary A violates mutual au-
thentication (MA) if there exists an operation execution wherein a player U
terminates holding SIDS(U), PIDS(U) and |PIDS(U)| 6= |I| − 1. We denote the
ma success as Succma

P (A) and say protocol P is an A-secure MA if Succma
P (A)

is negligible.
Therefore to deal with mutual authentication, we consider a new game, we

denote Gamema(A, P ), wherein the adversary exactly plays the same way as
in the game Gameake(A, P ) with the same player accesses but with a different
goal: to violate the mutual authentication.

Secure Signature Schemes. A signature scheme is defined by the follow-
ing [25]:

– Key generation algorithm G. On input 1k with security parameter k, the
algorithm G produces a pair (Kp, Ks) of matching public and secret keys.
Algorithm G is probabilistic.

– Signing algorithm Σ. Given a message m and (Kp, Ks), Σ produces a sig-
nature σ. Algorithm Σ might be probabilistic.

1 A can trivially defeat AKE with probability 1/2, multiplying by two and substracting one rescales
the probability.
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– Verification algorithm V . Given a signature σ, a message m and Kp, V tests
whether σ is a valid signature of m with respect to Ks. In general, algorithm
V is not probabilistic.

The signature scheme is (t, ε)-CMA-secure if there is no adversary A which
can get a probability greater than ε in mounting an existential forgery under
an adaptively Chosen-Message Attack (CMA) within time t. We denote this
probability ε as Succcma

Σ (A).

3.4 Diffie-Hellman Problems

Computational Diffie-Hellman Assumption (CDH). Let
�

be a cyclic
group < g > of prime order q and x1, x2 chosen at random in � q. A (T, ε)-CDH-
attacker in

�
is a probabilistic Turing machine ∆ running in time T that given

(gx1, gx2), outputs gx1x2 with probability at least ε. We denote this probability by
Succcdh� (∆). The CDH problem is (T, ε)-intractable if there is no (T, ε)-attacker
in

�
.

Group Computational Diffie-Hellman Assumption (G-CDH). Let
�

be
a cyclic group < g > of prime order q and a polynomial-bounded integer n. Let
In be {1, . . . , n}, P(In) be the set of all subsets of In and Γ be a subset of P(In)
such that In /∈ Γ .

We define the Group Diffie-Hellman distribution relative to Γ as:

G-CDHΓ =
{

⋃

J∈Γ

(J, g
�

j∈J xj ) | x = (x1, . . . , xn) ∈R � n
p

}

.

If Γ = P(I)\{In}, we say that G-CDHΓ is the Full Generalized Diffie-

Hellman distribution [9, 22, 29].
Given Γ , a (T, ε)-G-CDHΓ -attacker in

�
is a probabilistic Turing machine

∆ running in time T that given G-CDHΓ outputs gx1···xn with probability at
least ε. We denote this probability by Succ

gcdh� (∆). The G-CDHΓ problem is
(T, ε)-intractable if there is no (T, ε)-G-CDHΓ -attacker in

�
.

Random Self-Reducibility of CDH and G-CDH. In a prime-order group�
, the CDH and G-CDH are random self-reducible problems [22]. Informally,

this property means that solving the problem on any original instance D can
be reduced to solving the problem on a random instance D′. This requires an
efficient way to generate the random instances D′ from the original instance D
and an efficient way to compute the solution to the problem on D′ from the
solution to the problem on D.

Certainly the most common is the additive random self-reducibility of the
CDH and G-CDH problems. We examplify this property for the G-CDH prob-
lem. Given, for example, an instance D = (ga, gb, gc, gab, gbc, gac) for any a, b, c it
is possible to generate a random instance

D′ = (g(a+α), g(b+β), g(c+γ), g(a+α).(b+β), g(b+β).(c+γ), g(a+α).(c+γ))
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where α, β and γ are random numbers in � q; however the cost of such a compu-
tation may be high. And given the solution z = g(a+α).(b+β).(c+γ) to the instance
D′ it is possible to recover the solution gabc to the random instance D (i.e.
gabc = z(gab)−γ(gac)−β(gbc)−α(ga)−βγ(gb)−αγ(gc)−αβg−αβγ). It is, in effect, easy
to see that such a reduction works only if D is the Full Generalized DH distri-
bution and that its cost increases exponentially with the size of D.

The other one is the multiplicative random self-reducibility of the CDH and
G-CDH problems. The property holds if

�
is a prime-order cyclic group. We

examplify this property for the G-CDH problem. Given, for example, an in-
stance D = (ga, gb, gab, gac) for any a, b, c it is easy to generate a random in-
stance D′ = (gaα, gbβ, gabαβ , gacαγ) where α, β and γ are random numbers in

� ∗
q. And given the solution gaαbβcγ to the instance D′ it is easy to see that

the solution gabc to the random instance D can be efficiently computed (i.e.

gabc =
(

gaαbβcγ
)(αβγ)−1

). Such a reduction is efficient and only requires a linear
number of modular exponentiations.

Adversary’s Resources. The security is formulated as a function of the
amount of resources the adversary A expends. The resources are:

– T -time of computing;
– qs, qr, qc, QS, QR, QJ numbers of Send, Reveal, Corrupt, Setup, Remove and

Join queries the adversary A respectively makes.

By notation Adv(T, . . .) or Succ(T, . . .), we mean the maximum values of
Adv(A) or Succ(A) respectively, over all adversaries A that expend at most the
specified amount of resources.

4 A Secure Authenticated Group Diffie-Hellman
Scheme

In the following theorem and proof we assume the random oracle model [6] and
denote H a hash function from {0, 1}∗ to {0, 1}`, where ` is a security parameter.
The session-key space SK associated to this protocol is {0, 1}` equipped with
a uniform distribution. The arithmetic is in a finite cyclic group

�
=< g > of

order a k-bit prime number q and the operation is denoted multiplicatively. This
group could be a prime subgroup of � ∗

p, or it could be an (hyper)-elliptic curve
based group.

4.1 Description

The AKE1 protocol consists of the SETUP1, REMOVE1 and JOIN1 algorithms.
As illustrated by an AKE1 execution in Figures 1, 2 and 3 (an execution with
more steps is depicted in Figure 6), this is a protocol wherein the players are
arranged in a ring, and wherein each player saves the set of values it receives
in the down-flow of SETUP1, REMOVE1, JOIN1. In effect, in the subsequent
removal of players from I any player U could be selected as UGC and so will
need these values to execute REMOVE1.
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U 1 U 2 U 3 U 4

x1
R
← [1, q − 1] x2

R
← [1, q − 1] x3

R
← [1, q − 1] x4

R
← [1, q − 1]

X1 := {g, gx1}
Fl1 := {I‖X1}

[F l1]U1
−−−−−−−−→

V (Fl1)
?
= True

X2 := {gx2 , gx1 , gx1x2}
Fl2 := {I‖X2}

[F l2]U2
−−−−−−−−→

V (Fl2)
?
= True

X3 := {gx2x3 , gx1x3 , gx1x2 , gx1x2x3}
Fl3 := {I‖X3}

[F l3]U3
−−−−−−−−→

V (Fl3)
?
= True

X4 := {gx2x3x4 , gx1x3x4 , gx1x2x4 , gx1x2x3}
Fl4 := {X‖I‖X4}

[F l4]
U4

←−−−−−−−−
[F l4]

U4
←−−−−−−−− −−−−−−−−−−−

[F l4]
U4

←−−−−−−−− −−−− −−−−−−− −−−−−−−−−−−

V (Fl4)
?
= True

K := (gx2x3x4 )x1

skU1
:= H(I‖Fl4‖K)

V (Fl4)
?
= True

K := (gx1x3x4 )x2

skU2
:= H(I‖Fl4‖K)

V (Fl4)
?
= True

K := (gx1x2x4 )x3

skU3
:= H(I‖Fl4‖K)

K := (gx1x2x3 )x4

skU4
:= H(I‖Fl4‖K)

Fig. 1. Algorithm SETUP1. An example of an honest execution with 4 players: J = {U1, U2, U3, U4}.
The multicast group is I = {U1, U2, U3, U4} and the shared session key is sk = H(I‖F l4‖g

x1x2x3x4).
The partner IDS for U1 is pidsU1 = {U2, U3, U4}, for U2 is pidsU2 = {U1, U3, U4}, for U3 is pidsU3 =
{U1, U2, U4} and for U4 is pidsU4 = {U1, U3, U4}.

U 1 U 2 U 3 U 4

x1 ∈ [1, q − 1] x2 ∈ [1, q − 1] x3 ∈ [1, q − 1] x4 ∈ [1, q − 1]
Previous set of values is X4 = {gx2x3x4 , gx1x3x4 , gx1x2x4 , gx1x2x3}

x′

3
R
← [1, q − 1]

X′

3 := {g
x2x3x4(x

−1
3 x

′

3)
, gx1x2x4}

Fl3 := (X4‖I‖X
′

3)
[F l3]

U3
←−−−−−−−− −− −−−−−−−−−

V (Fl3)
?
= True

K = (gx2x
′

3x4 )x1 = (hx
′

3 )x1

skU1
:= H(U1‖U3‖Fl3‖K)

K = (gx1x2x3x4 )x3
−1

x
′

3 = (hx1 )x
′

3

skU3
:= H(U1‖U3‖Fl3‖K)

where h = gx2x4

Fig. 2. Algorithm REMOVE1. An example of an honest execution with 4 players: I =
{U1, U2, U3, U4}, J = {U2, U4}. The new multicast group is I = {U1, U3}, UGC = U3 and the

shared session key is sk = H(I‖F l3‖g
x1x2x′

3x4), the partner IDS for U1 is pidsU1 = {U3}, for U3 is
pidsU3 = {U1}.

Unlike [3], this is a protocol wherein the player with the highest-index in
I is the group controller, the flows are signed using the long-lived key LLU ,
the names of the players are in the protocol flows, and the session key SK is
sk = H(I‖F lmax(I)‖g

x1...xmax(I)); F lmax(I) is the down-flow, SIDS and PIDS are
appropriately defined. The notion of index models “pre-existing” relationships
among players: for example, it may capture different levels of reliability (i.e.
the higher the index is, the more reliable the player). This is also a protocol,
unlike [3], where the set of values from the down-flow is included in the flows of
REMOVE1 and JOIN1, which avoids replay attacks.

Algorithm SETUP1. The algorithm consists of two stages: up-flow and down-
flow. The multicast group I is set to J . As illustrated by the example in Figure 1,
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U 1 U 2 U 3 U 4

x1 ∈ [1, q − 1] x′

3 ∈ [1, q − 1]

Previous set of values is X′

3 = {hx
′

3 , hx1}, where h = gx2x4

x′′

3
R
← [1, q − 1] x′

4
R
← [1, q − 1]

X′′

3 := {hx
′

3(x′

3
−1

x
′′

3 )
, hx1 , h

x1(x′′

3 )}
Fl3 := (X′

3‖I‖X
′′

3 )
[F l3]U3
−−−−−−−−→

V (Fl3)
?
= True

X′

4 := {hx
′′

3 x
′

4 , h
x1x

′

4 , h
x1x

′′

3 }
Fl4 := (X′

3‖I‖X
′

4)
[F l4]

U4
←−−−−−−−−

[F l4]
U4

←−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−

V (Fl4)
?
= True V (Fl4)

?
= True

K = (hx
′′

3 x
′

4 )x1

skU1
:= H(I‖Fl4‖K)

K = (hx1x
′

4 )x
′′

3

skU3
:= H(I‖Fl4‖K)

K = (hx1x
′′

3 )x
′

4

skU4
:= H(I‖Fl4‖K)

Fig. 3. Algorithm JOIN1. An example of an honest execution with 4 players: I = {U1, U3}, J = {U4}
and UGC = U3. The new multicast group is I = {U1, U3, U4} and the shared session key is sk =

H(I‖F l4‖g
x1x2x′′

3 (x4x′

4)) The partner IDS for U1 is pidsU1 = {U3, U4}, for U3 is pidsU3 = {U1, U4}
and for U4 is pidsU4 = {U1, U3}.

in the up-flow the player Ui receives a set (Y, Z) of intermediate values, with

Y =
⋃

0<m<i

{Z1/xm} and Z, where Z = g
�

0<t<i xt.

Player Ui chooses at random a private value xi, raises the values in Y to the
power of xi and then concatenates with Z to obtain his intermediate values

Y ′ =
⋃

0<m≤i

{Z ′1/xm}, where Z ′ = Zxi = g
�

0<t≤i xt.

Player Ui then forwards the values (Y ′, Z ′) to the next player in the ring. The
down-flow takes place when Umax(I) receives the last up-flow. At that point
Umax(I) performs the same steps as a player in the up-flow but broadcasts the
set of intermediate values Y ′ only. In effect, the value Z ′ computed by Umax(I)

will lead to the session key sk, since Z ′ = g
�

0<t≤n xt. Players in I compute sk
and accept.

Algorithm REMOVE1. This algorithm consists of a down-flow only. The
multicast group I is first set to I\J . As illustrated in Figure 2, the group
controller UGC (i.e. player with the highest-index in I\J ) generates a random
value x′

GC and removes from the saved previous broadcast the values destinated
to the players in J . UGC then raises all the remaining values in which xGC

appeared to the power of (x−1
GC .x′

GC) and broadcasts the result. (xGC is UGC ’s
previous secret value.) Players in I compute sk and accept. Players in J erase
any internal data. UGC erases xGC and x−1

GC while internally saving x′
GC .

Algorithm JOIN1. This algorithm consists of two stages: up-flow and down-
flow. As illustrated in Figure 3, the group controller UGC (i.e. player with the
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highest-index in I) generates a random value x′
GC , raises the values from the

saved previous broadcast in which xGC appears to the power of (x−1
GC .x′

GC) and
obtains a set of values Y ′. (xGC is UGC ’s previous secret exponent.) UGC also
computes the value Z ′ by raising the last value in Y ′ to x′

GC . Ui then forwards
the values (Y ′, Z ′) to the first joining player in J . From that point JOIN1 will
work as the SETUP1 algorithm. Upon receiving the brodcast flow players in
I ∪J erase previous session keys, compute sk and accept. The multicast group
I is then set to I ∪ J .

4.2 Security Result

Theorem 1. Let P be the AKE1 protocol, SK be the session-key space and G be

the associated LL-key generator. Let A be an adversary against the AKE security

of P within a time bound T , on a multicast group of size s among the n players

in U , after Q = QS +QJ +QR interactions with the parties, qs send-queries and

qh hash-queries. Then we have:

Advake
P (T, Q, qs, qh) ≤ 2Q ·

(n

s

)

· s · qh · Succ
gcdhΓs� (T ′) + 2n · Succcma

Σ (T ′, Q + qs)

where T ′ ≤ T + (Q + qs)nTexp(k); Texp(k) is the time of computation required

for an exponentiation modulo a k-bit number and Γs corresponds to the elements

the adversary A can possibly view:

Γs =
⋃

2≤j≤s−2

{{i | 1 ≤ i ≤ j, i 6= l} | 1 ≤ l ≤ j}

⋃

{{i | 1 ≤ i ≤ s, i 6= k, l} | 1 ≤ k, l ≤ s} .

Let us just highlight the main ideas. We consider an adversary A attacking
the protocol P and then “breaking” the AKE security. A would have carried out
her attack in different ways: (1) she may have gotten her advantage by forging
a signature with respect to some player’s long-lived public key. We will then use
A to build a forger by “guessing” for which player A will produce her forgery,
(2) she may have broken the scheme without altering the content of the flows.
We will use it to solve an instance of the G-CDH problem, by “guessing” the
moment at which A will make the Test-query and by injecting into the game
the elements from the instance of G-CDH received as input.

To work (2) requires two things. We first “guess” the moment of the Test-
query which means that we have to “guess”: the number of operations that
will occur before the adversary makes the Test-query and the membership of the
multicast group when the adversary makes the Test-query. Second, based on this
guess we ”embed” the instance of G-CDH into the protocol. We generate many
random instances from the original instance of G-CDH using the (multiplicative)
random self-reducibility property of the G-CDH problem2. Indeed, the group
Diffie-Hellman secret key relative to these random instances can efficiently be
computed from the group Diffie-Hellman secret relative to the original instance.

2 The multiplicative random self-reducibility will lead to a far more efficient reduction than the
additive one would do.
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The specific structure of Γs (see figure 4 for Γ4) makes the simulation per-
fectly indistinguishable from the adversary point of view if our guesses are all
correct.

j = 0
j = 1 {1}

j = 2 {1} {2}
j = 3 (= s− 1) {1, 2} {1, 3} {2, 3} {1, 4} {2, 4} {3, 4}
j = 4 (= s) {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

� ��� � � ��� �

basic trigon extension

Fig. 4. Extended Trigon for Γ4

But then, because of the random oracleH, to have any information about the
session key the adversary wants to test, she has to have asked forH(I‖F llast‖K),
where K is the value we are looking for. Therefore, if the adversary has some
advantage in breaking the AKE security, this value K can be found in the list of
the queries asked toH. The details of the simulation can be found in appendix A.

4.3 AKE1 in Practice

We want our results to be practical. This means that when system designers
choose a scheme they will take into account its security but also its efficiency in
terms of computation, communication, ease of integration and so on. However,
if provable security is achieved at the cost of a loss of efficiency, system designers
will often prefer the heuristic schemes.

AKE1 is to date the first group Diffie-Hellman scheme to exhibit a proof that
it achieves a strong notion of security. It is secure in the random oracle model
under the G-CDH assumption. It thus provides stronger security guarantees than
other schemes [3, 11, 17] while being more efficient than [3]. However security
proofs for existing schemes or slight variants may show up.

On the integration front, the question that may be raised is what happens
when several groups merge to form a larger group. A scenario that occurs in
practice when a network failure partitions the multicast group in several disjoints
sub-groups which will later need to merge when the network is be repaired [1].
The most efficient way in terms of computation and communication is to add
players from the smaller sub-groups into the largest of the merging sub-groups.
That is, UGC is chosen as the player with the highest-index in the largest merging
sub-group and the players from the smaller sub-groups are added via the JOIN1
algorithm.

5 Mutual Authentication

The well-known approach [5] for turning an AKE protocol into a protocol that
provides mutual authentication (MA) is to use the shared session key to con-
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struct a simple “authenticator” for the other parties. We have described in [10]
the transformation for turning an AKE group Diffie-Hellman scheme into a pro-
tocol providing MA and justified its security in the random-oracle model. We
turn an AKE dynamic group Diffie-Hellman scheme into a protocol providing
MA by simply applying the transformation MA described in [10] to the setup,
join and remove algorithms respectively.

6 Conclusion and Further Research

This paper provides the first formal treatment of the authenticated group Diffie-
Hellman key exchange problem in a scenario in which the membership is dynamic

rather than static. Addressed in this paper were two security goals of the group
Diffie-Hellman key exchange: the authenticated key exchange and the mutual
authentication. For each we presented a definition, a protocol and a security
proof in the random oracle model that the protocol meets its goals.

The model introduced in this paper captures attacks that are realistic threats
in practice. However the model does not yet capture “more serious” attacks: in-
deed, it does not recognize multiple player’s instances the adversary may activate
in concurrent and simultaneous sessions. A typical research topic is to enhance
our model to capture these attacks and to investigate in this more stringent
setting the security of the protocols presented in this paper. We are currently
extending our model to encompass these attacks.

The security reduction presented for AKE1 in this paper does not inject much
of the security of the group computational Diffie-Hellman problem and signature
scheme: actually, the reduction is exponential in s. This leads one to use a larger
security parameter or to limit the maximum size of the group. Another research
direction is to find a security proof that would achieve a better security bound.
We believe it is possible and are currently working on it.
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A Proof of Theorem 1

Let A be an adversary that can get an advantage ε in breaking the AKE security
of protocol P within time T . We construct from it a (T ′′, ε′′)-forger F and a
(T ′, ε′)-G-CDHΓs

-attacker ∆.

A.1 Forger F

Let’s assume that A breaks the protocol P by forging, with probability greater
than ν, a signature with respect to some player’s (public) LL-key (Of course
before A corrupts U). We construct from it a (T ′′, ε′′)-forger F which outputs a
forgery (σ, m) with respect to a given (public) LL-key Kp, produced by GLL(1k).
F receives as input Kp and access to a signing oracle. F provides coin tosses

to GLL, A and all Ui. F picks at random i0 ∈ [1, n] and runs GLL(1k) to set the
players’ LL-keys. However for player i0, F sets LLi0 to Kp. F then starts running
A as a subroutine and answers the oracle queries made by A as explained below.
F also uses a variable K, initially set to ∅.

The Send-queries, Setup-queries, Join-queries and Remove-queries are an-
swered in a straightforward way, except if the query is made to player Ui0 .
In this latter case the answers go through the signing oracle, and F stores in
K the oracle query and the oracle reply. The Reveal-queries and Test-query are
answered in a straightforward way as well. Eventually, the Corrupt-query is also
answered in a straightforward way, except if the query is made to player Ui0 . In
this latter case since F does not know the LL-key Ks for player i0, F stops and
outputs “Fail”. But anyway, no signature forgery occurred before, and so, such
an execution can be used with the other reduction. The Hash-query is simulated
as depicted in Figure 5.
F succeeds if A has made a query of the form Send(∗, (σ, m)) where σ is a

valid signature on m with respect to Kp and (σ, m) /∈ K. In this case F halts
and outputs (σ, m) as a forgery. Otherwise the process stops when A terminates
and F outputs “Fail”.

The probability that F outputs a forgery is the probability that A produces
a valid flow by itself multiplied by the probability of “correctly guessing” the
value of i0: Succcma

Σ (F) ≥ ν/n.
The running time of F is the running time of A added to the time to process

the Send, Setup, Join and Remove-queries. This is essentially the time for at most
n modular exponentiations. This leads to the given formula for T .

A.2 G-CDH ��� -attacker ∆

Let’s assume that A breaks the protocol P without producing a forgery. Here,
with probability smaller than ν, the (valid) flows signed using LLU come from
player U and not from A (Of course before A corrupts U). The replay attacks
involving the flows of JOIN1 and REMOVE1 do not also need to be considered
since the values from the previous broadcast are included in these flows. One
may then worry about replay attacks against SETUP1, however SETUP1 has
already been proved to be secure for concurrent executions by Bresson et al. [10].
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We now construct from A a (T ′, ε′)-G-CDHΓs
-attacker ∆ that receives as

input an instance D of G-CDHΓs
with random size s and outputs the Diffie-

Hellman secret value (i.e gx1...xs) relative to this instance. More precisely, a G-
CDHΓs

with size s ∈ [1, n] and Γs of the form

Γs =
⋃

2≤j≤s−2

{{i | 1 ≤ i ≤ j, i 6= l} | 1 ≤ l ≤ j}

⋃

{{i | 1 ≤ i ≤ s, i 6= k, l} | 1 ≤ k, l ≤ s} .

This in turn leads to an instance D = (S1, S2, . . . , Ss−2, Ss−1, Ss) wherein: Sj,
for 2 ≤ j ≤ s− 2 and j = s, is the set of all the j − 1-tuples one can build from
{1, . . . , j}; but Ss−1 is the set of all s− 2 tuples one can build from {1, . . . , s}.

The aim of the simulation is to have all the elements of Ss, embedded into the
protocol when the adversary A asks the Test-query. In this case, A will not be
able to get any information about the value sk of the session key without having
previously queried the random hash oracle H on the Diffie-Hellman secret value
gx1...xs. Thus, to break the security of P the adversary A would have to have
asked a query of the form H(I, F llast, g

x1...xs) which as a consequence will be in
the list of queries asked to H.

To reach this aim ∆ has to guess several values: c0, I0 and i0. We now describe
what these values are used for and we will return to the formal simulation later
on.

∆ first picks at random in [1, Q] the number of operations c0 that will occur
before A asks the Test-query and embeds the elements of Ss into the operation
that will occur at c0. However ∆ can not embed all the elements of Ss at c0 since,
contrary to SETUP1, in JOIN1 and REMOVE1 the players are not all added
to the group at c0. ∆ rather embeds the elements from S1 to Ss in the order the
players are added to the group but only for the players that will belong to the
group at c0. Thus, ∆ also chooses at random s index-values u1 through us in
[1, n] that it hopes will make up the group membership at c0.

∆ also needs to cope with protocol executions wherein the players ui, 1 ≤
i ≤ s, are repeatedely added and removed from the group in order to have
several times before reaching c0 the group membership be I0. If, in effect, ∆
embeds all the elements of Ss into the protocol execution the first time the
group membership is I0, ∆ is neither able to compute the Diffie-Hellman secret
value involved nor the session key value sk needed to answer to the Reveal-query.

To be able to answer, ∆ does not in fact embed Ss into the broadcast flow
of the operation which updates the group membership to be I0 but embeds
truly random values. ∆ guesses the player ui0 from I0 who will embed Ss into
the broadcast flow of the operation that occurs at c0

3 but generates a truly
random exponent and uses it to embed truly random values for the operations
that occur before c0 and after c0. The index i0 is set as follows. If the c0-th
operation is JOIN1 then i0 is the last joining player’s index, otherwise i0 is the
group controller’s index max(I0).

3 ∆ may also embed a self-reduced element generated from Ss into the broadcast flow.
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We now show that the above simulation and the random self-reducibility of
G-CDH allows ∆ to answer all the queries until A asks the Test-query at c0.
Since ∆ embeds elements of Si when a player ui from I0 (except ui0) is added to
the group and ∆ does not remove it when ui leaves, each protocol flow consists
of a random self-reduction on one line (line 0, i.e. S0 down to line s− 1, i.e. s−1)
of the basic trigon. The trigon is illustrated on Figure 4. Thus, ∆ can derivate
the value sk of the session key from one of the values in the line below (line 1,
i.e. S1 up to line s, i.e. Ss).

However, ∆ also needs to be able to answer to all queries after c0 and more
specifically the Reveal-queries. To this aim, ∆ has to un-embed the element Ss

from the protocol and do it in the operation that occurs at c0 + 1. However
depending on the operation that occurs at c0 + 1, ∆ may not be able to do
it for player ui0 . This is the reason why the line Ss−1 has to contain all the
possible (s− 2)-tuples: extension of the basic trigon illustrated on Figure 4. For
the operations that will occur after c0 + 1, ∆ uses truly random exponents for
all the players including those in I0. Thus, after c0 + 1 all the protocol flows
involve elements in Ss−1 and Ss only.

Formally, the simulator works as follows. ∆ provides coin tosses to GLL,A, all
Ui and runs GLL(1k) to set the player’s LL-keys. ∆ sets an operation counter c to
0, and two variable K and T to ∅. ∆ will use variable K to store (all) the random
exponents involved in the game Gameake(A, P ) and variable T to store which
exponents of instance D have been injected in the game so far. Then, ∆ starts
running A as a subroutine and answers the queries as depicted in Figure 5.

When A makes a Send-query to some player Ui, if this player is not in I0

then ∆ proceeds as in the real protocol P using a random exponent. Otherwise
∆ proceeds with the (multiplicative) random self-reducibility property using the
elements from the instance D in the order wherein players join the multicast
group, players ui0 excepted since it uses a random exponent. To properly deal
with self-reducibility, ∆ uses variable T to reconstruct well-formatted (blinded)
flows from D.

When A makes a query of the form Send(Ui0 , ∗), ∆ answers using random
exponents before c0, but for operation c0, injects the last element from the
instance D.

This way, after the joining operation of the j-th player from I0, Ui0 excepted,
the broadcast flow involves a random self-reduction of the j-th line in the basic
trigon (see figure 4), the up-flows involve elements in the j − 1-th line, and the
session key one element from the j + 1-th line. Thus, before operation c0, ∆
is able to answer the Join and Remove-queries and knows all the session keys
needed to answer the Reveal-queries.

Another technical difficulty may show up if the adversary A does not output
the bit b′ right away after asking the Test-query and keeps playing the game for
more rounds. Indeed, the session key is derivated from the G-CDH one is looking
for. And forthcoming session keys would as well. Therefore, ∆ would be unable
to answer Reveal-queries. ∆ has to reduce the number of exponents taken from
the instance D: basically, we go down in the basic trigon while player join the
group. Until having involved s− 1 exponents from instance D. At the very last
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Setup(J ) Reset T to 0
Increment c

Update I ← J
u← min(J )
• c < c0 : u ∈ I0, u 6= i0 ⇒ simulate using RSR according to T
• c = c0 : J 6= I0 ⇒ output “Fail”

J = I0, u = i0 ⇒ simulate using RSR according to T

Else proceed as in P using ru
R
← � ∗q

Join(J ) Increment c

u← max(I)
Update I ← I ∪ J
• c < c0 : u ∈ I0, u 6= i0 simulate using RSR according to T
• c = c0 : I 6= I0 ∨max(J ) 6= i0 ⇒ output “Fail”

I = I0 ⇒ simulate using RSR according to T

Else proceed as in P using ru
R
← � ∗q

Remove(J ) Increment c

Update I ← I\J
u← max(I)
• c < c0 : u ∈ I0, u 6= i0 simulate using RSR according to T
• c = c0 : I 6= I0 ⇒ output “Fail”

I = I0 ⇒ simulate using RSR according to T

Else proceed as in P using ru
R
← � ∗q

Send(Ui, m) • c < c0 : i ∈ I0, i 6= i0 ⇒ simulate using RSR according to T
• c = c0 : i ∈ I0 ⇒ simulate using RSR according to T

Else proceed as in P using ri
R
← � ∗q

Reveal(Ui) If Ui has accepted Then

If c = c0 Then output “Fail”
Else return skUi

.

Corrupt(Ui) return LLUi
.

Test (Ui) If Ui has accepted Then

If c = c0 Then return a random `-bit string
Else output “Fail”.

Hash(m) H(m) = r; Hash-query has been made and the answer is r.
If m 6∈ H-list, then r is a chosen random value in the
corresponding range, and H-list←H-list‖(m, r).
Otherwise, r is taken from H-list.

Fig. 5. Gameake(A, P ). The multicast group is I. The Test-query is “guessed” to be made: after c0

operations, the multicast group is I0, and the last joining player is Ui0 .

broadcast before the Test-query, we inject the last exponent (xs, s being the size
of our G-CDH instance). Then, just after the last broadcast (i.e., just after the
Test-query), the group controller removes his own exponent, in order to come
back into the trigon.

Unfortunately, this group controller is not necessarily Ui0 , and thus we do
not go back into the basic trigon, but anyway with only s−1 exponents involved.
Therefore, the future session keys will be derivated from the s-th line, but the
broadcasts may involve any element in the extended s − 1-th line, and the up-
flows may also involve any element in the extended (s− 1)-th line.

When A makes a Setup, Join or Remove-query, ∆ increments c and proceeds
in a similar way as for the Send-query. That is, ∆ uses a random exponent for
players that do not belong to I0 and proceeds with the random self-reducibility
for players that belong to I0 but again only at c0 for Ui0 . Each time a Setup-
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query occurs, variable T is reset to 0.
∆ stops and outputs “Fail” if some of his guesses turn out to be wrong.

When A makes a Reveal-query, ∆ proceeds as in the real protocol P except
at c = c0 where ∆ stops and outputs “Fail”: the guess on c0 was wrong. ∆
answers the Corrupt-queries in a straightforward way, since he knows the long-
term keys. Finally when A makes a Test-query ∆ stops and outputs “Fail” if
c 6= c0. Otherwise ∆ returns a random string of length `.

We now show that given the group Diffie-Hellman secret value relative to
the instance D′, involved in tested session key, ∆ can easily compute the group
Diffie-Hellman secret value relative to the instance D. We emphasize that there
may be more than s players in the multicast group before c0. For the players
that do not belong to I0, ∆ had chosen random exponents and so will be able
to “unblind” the self-reduced instance D′ even if those exponents still appear in
the session key (One may have already noticed that a leaving player leaves its
secret exponent in the subsequent session keys). For the players in I0, ∆ had
used the instance D with blinding exponents and, thus, ∆ is also able to unblind
the G-CDHΓs

instance. Assuming the ∆’s guesses are correct, the elements from
D involving the s-th exponent are only used in the final broadcast (just before
the Test-query). This latter session key thus involves the solution to a blinded
version D′ of D, and ∆ knows how to unblind the solution, possibly found among
the queries asked to the random oracle H.

Indeed, if one assumes that the adversary A has made a Test-query and has
terminated outputing a bit b′ at some point. ∆ then looks in the H-list to see if
queries of the form Hash(I0‖F l0‖∗) have been asked (F l0 is the flow broadcasted
in the execution of the c0-th operation). If so, ∆ chooses at random one of them
and then looks in variable K (thanks to the flow F l0) for the corresponding
random exponents ∆ had used with the random self-reducibility to blind. ∆
then unblinds’ the remaining part “∗” of the Hash-query and outputs it.

The probability that ∆ correctly “guesses” the moment of the Test-query is
the probability that A makes its Test-query after c0 operations (proba � 1/Q)
multiplied by the probability that at c0 the multicast group is I0 (proba �
1/

(

n
s

)

). The probability ∆ correctly “guesses” the index i0 player is at least
1/s. Also the solution is correctly extracted from the H-list with probability
1/qh, since one just picks one candidate at random. Otherwise, one could output
all the possible unblinded candidates and use the by now classical reduction
from [26].

Succ
gcdhΓ� (∆) ≥

Pr[AskH]

qh

×
1

Q ·
(

n
s

)

· s·

The running time of ∆ is the running time of A added to the time to process the
Send-queries, Setup-queries, Remove-queries and Join-queries. This is essentially
n modular exponentiation computations per Send-query, Setup-query, Remove-
query or Join-query.

Finally, we have:

Pr[b = b′] = Pr[b = b′|Forge] + Pr[b = b′|¬Forge]



21

≤ ν + Pr[b = b′|¬Forge ∧ AskH] Pr[¬Forge ∧ AskH]

+ Pr[b = b′|¬Forge ∧ ¬AskH] Pr[¬Forge ∧ ¬AskH]

≤ ν + Pr[AskH] +
1

2

The result then follows from the definition ε = 2 Pr[b = b′]− 1:

ε ≤ 2n · Succcma
Σ (F) + 2Q ·

(n

s

)

· s · qh · Succ
gcdhΓs� (∆)
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U 1 U 2 U 3 U 4

Setup{U1, U2, U3} c = 0, I = {1, 2, 3}, SK = gx1x2x3

g, gx1

−−−−−−−−−−−−−−−−−−→
gx2 , gx1 , gx1x2

−−−−−−−−−−−−−−−−−−→
gx2x3 , gx1x3 , gx1x2

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Remove{U2} c = 1, I = {1, 3}, SK = gx1x2x′

3

gx2x′

3 , gx1x2

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Join{U4} c = 2, I = {1, 3, 4}, SK = gx1x2x′′

3 x4

gx2x′′

3 , gx1x2 , gx1x2x′′

3

−−−−−−−−−−−−−−−−−−−−−→

gx2x′′

3 x4 , gx1x2x4 , gx1x2x′′

3

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Join{U2} c = 3, I = {1, 2, 3, 4}, SK = gx1x2x′

2x′′

3 x′

4

gx2x′′

3 x′

4 , gx1x2x′

4

←−−−−−−−−−−−−−−−
gx1x2x′′

3 , gx1x2x′′

3 x′

4

U4

gx2x′

2x′′

3 x′

4 , gx1x2x′′

3 x′

4 , gx1x2x′

2x′

4 , gx1x2x′

2x′′

3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
broadcast sent by U2

Remove{U1, U2} c = 4, I = {3, 4}, SK = gx1x2x′

2x′′

3 x′′

4

gx1x2x′

2x′′

4 , gx1x2x′

2x′′

3

←−−−−−−−−−−−−−−−−−−−−−

Join{U2} c = 5, I = {2, 3, 4}, SK = gx1x2x′

2x′′

2 x′′

3 x′′′

4

gx1x2x′

2x′′′

4 , gx1x2x′

2x′′

3 , gx1x2x′

2x′′

3 x′′′

4

←−−−−−−−−−−−−−−−−−−−−−−−−− U4

gx1x2x′

2x′′

3 x′′′

4 gx1x2x′

2x′′

2 x′′′

4 gx1x2x′

2x′′

2 x′′

3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 6. An example of an execution of the real protocol P=AKE1
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U 1 U 2 U 3 U 4

Setup{U1, U2, U3} c = 0, I = {1, 2, 3}, SK = (gab)r2 is known to ∆

g, ga

−−−−−−−−−−−−−−−−−−→
gr2 , ga , gar2

−−−−−−−−−−−−−−−−−−→

gr2b , gab , gar2

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Remove{U2} c = 1, I = {1, 3}, SK = (gab′)r2 is known to ∆

gr2b′ , gar2

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Join{U4} c = 2, I = {1, 3, 4}, SK = (gab′′c)r2 is known to ∆

gr2b′′ , gar2 , gar2b′′

−−−−−−−−−−−−−−−−−−−−−→

gr2b′′c , gar2c , gar2b′′

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Join{U2} c = 3, I = {1, 2, 3, 4}, SK is the DH secret

gr2b′′c′ , gar2c′

←−−−−−−−−−−−−−−−
gar2b′′ , gar2b′′c′

U4
Test-query guessed now

gr2db′′c′ , gar2b′′c′ , gadr2c′ , gadr2b′′

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
broadcast sent by U2

Remove{U1, U2} c = 4, I = {3, 4}, SK = (gab′′d)r2r4 is known to ∆ again

gadr2r4 , gadr2b′′

←−−−−−−−−−−−−−−−−−−−−−

Join{U2} c = 5, I = {2, 3, 4}, SK = (gab′′d)r2r′

2r4r′

4 is known to ∆

gadr2r4r′

4 , gadr2b′′ , gadr2b′′r4r′

4

←−−−−−−−−−−−−−−−−−−−−−−−−− U4

gadr2b′′r4r′

4 gadr2r′

2r′

4 gadr2r′

2b′′

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 7. An example of an execution of the protocol P=AKE1 with the adversary. We represent the
simulation by ∆ according to the following “guesses”: c0 = 3, s = 4, I0 = {1, 2, 3, 4}, i0 = 2. We denote
by b, b′, b′′ etc. some blinding exponents used in the self-reduction of G-CDH (think b′′ as being bβ′′,
e.g.). Also note that when rejoining the group at steps c = 3 and c = 5, U2 does not “remove” its
random exponent.


