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Abstract. Semantic security against chosen-ciphertext attacks (IND-CCA) is widely
believed as the correct security level for public-key encryption scheme. On the other
hand, it is often dangerous to give to only one people the power of decryption. Therefore,
threshold cryptosystems aimed at distributing the decryption ability. However, only two
efficient such schemes have been proposed so far for achieving IND-CCA. Both are El
Gamal-like schemes and thus are based on the same intractability assumption, namely
the Decisional Diffie-Hellman problem.
In this article we rehabilitate the twin-encryption paradigm proposed by Naor and Yung
to present generic conversions from a large family of (threshold) IND-CPA scheme into
a (threshold) IND-CCA one in the random oracle model. An efficient instantiation is
also proposed, which is based on the Paillier cryptosystem. This new construction pro-
vides the first example of threshold cryptosystem secure against chosen-ciphertext at-
tacks based on the factorization problem. Moreover, this construction provides a scheme
where the “homomorphic properties” of the original scheme still hold. This is rather
cumbersome because homomorphic cryptosystems are known to be malleable and there-
fore not to be CCA secure. However, we do not build a “homomorphic cryptosystem”,
but just keep the homomorphic properties.
Key words: Threshold Cryptosystems, Chosen-Ciphertext Attacks

1 Introduction

1.1 Chosen-Ciphertext Security

Semantic security against chosen-ciphertext attacks represents the correct se-
curity definition for a cryptosystem [31, 41, 4]. Therefore a lot of works [26, 25,
38, 34] have recently proposed schemes to convert any one-way function into a
cryptosystem secure according to this security notion.

Before this notion, Naor and Yung in [33] proposed a weaker security notion
that they called lunch-time attack (a.k.a. indifferent, or non-adaptive, chosen-
ciphertext attack). The adversary can only ask decryption of ciphertexts before
he receives the target ciphertext. Naor and Yung [33] presented a conversion to
secure schemes against chosen-ciphertext attack in a lunch-time scenario. They
used non-interactive zero-knowledge proof systems (proofs of membership [9, 8])
to show the consistency of the ciphertext, but not to prove that the people who
built the ciphertext necessarily “knew its decryption”.

Later Rackoff and Simon [41] refined this construction replacing the non-
interactive zero-knowledge proofs of membership by non-interactive zero-know-
ledge proofs of knowledge. Therefore, when encrypting a message, one further-
more appends a non-interactive proof of knowledge of the plaintext, which leads
to (adaptive) chosen-ciphertext secure cryptosystems. Indeed, the sender proves
that he knows the plaintext and thus CCA is reduced to CPA.
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A similar notion has thereafter been defined, the so-called “plaintext-aware-
ness” [7, 4], which means that when someone builds a valid ciphertext, he nec-
essarily “knows” the corresponding plaintext. Therefore, a decryption oracle is
unuseful for an adversary. But this latter notion is meaningful only in the random
oracle model [6].

For few years, several efficient schemes have been proposed which achieve
this high security level. Most of them have only been proven in the random
oracle model [7, 27, 48, 36, 25, 26, 38, 34] using the plaintext-awareness property,
but only one in the standard model [14].

1.2 Threshold Cryptosystems

On the one hand, in public-key cryptography in general, the ability of decrypting
or signing is restricted to the owner of the secret key. This means that only one
people has all the power. Whereas in some situations, such an ability should not
be given to only one people, but shared among a group of users, such that a
minimal number of them, the threshold, is needed to sign or decrypt.

On the other hand, the goal of cryptography is to withstand attackers. In
the case of break-ins, i.e. adversary that can enter into a computer and steal
the secret key, public-key systems in general are not protected against exposure
of the secret key. As this kind of attacks done by intruders (hackers, Trojan
horses) or by corrupted insiders are very common and frequently easy to perform,
systems must be protected against them. Threshold cryptography can solve this
problem by distributing trust among several components or servers. The secret
key is then split into shares and each share is given to one of a group of servers.

First, the key generation process has to be distributed, in order to generate
the shares of each server, without trusted party. This has been done in both the
discrete logarithm [37, 30, 21], and the RSA [10, 24, 20] settings. For signature
schemes, the signing process has been distributed in both environments [43, 29,
28, 22, 40, 47] as well.

For distributing the decryption process, similar techniques can be used, un-
til one just wants to prevent chosen-plaintext attacks from passive adversaries
(see below for precise definitions). However, when we want to prevent chosen-
ciphertext attacks, in general, servers cannot start decryption before knowing
whether the ciphertext is valid or not because an attacker can be one of these
servers and in case of invalid ciphertexts, he had learned some information.

Consequently, when we try to share a cryptosystem, we should not wait un-
til the end of the decryption to know whether the servers can really decrypt
or not. Therefore, we have to integrate some proof of validity of the ciphertext
that should be publicly verifiable. Unfortunately, most of all the known cryp-
tosystems secure against chosen-ciphertext attacks are not suitable. Indeed, in
the decryption processes, the alleged plaintext is decrypted, and the redundancy
is checked just before returning the plaintext. Since the redundancy involves a
hash function, the final check cannot be done efficiently in a distributed way.
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1.3 Related Work

There are two methods to distribute the decryption process of a cryptosystem.
Whereas the first one uses randomness, the second follows the model described
by Lee and Lim in [32] where the usual decryption process for attaining cryp-
tosystems immune against CCA is reversed: the receiver starts checking whether
the ciphertext is valid before decrypting.

The first method has been proposed by Canetti and Goldwasser in [12].
In the Cramer-Shoup cryptosystem [14], the receiver can check the validity of
a ciphertext by using one part of the secret key, before decrypting the valid
ciphertext using the second part of the secret key. Therefore, one can think that
it is easy to share this cryptosystem. Canetti and Goldwasser [12] succeeded
in distributing this cryptosystem. But instead of checking the validity of the
ciphertext in a first round and decrypting it according to the validity, they
proposed a new strategy with only one round. The servers decrypt any ciphertext
submitted and the decryption process is randomized. The servers compute m ·
(v′/v)s where s is a random shared between the servers (part of the secret key),
v the proof inside the ciphertext, and v′ the proof calculated by the servers. In
the centralized version, the decryption process verifies whether v = v ′ or not. In
the distributed version, if the proof is correct, (v/v ′)s = 1 and the decryption
gives m, otherwise it returns a random value. Nobody knows if the decrypted
message is correct or not if there is no redundancy in the plaintext m. A solution
is to decrypt twice the same ciphertext. If the results are the same, the message
was well-formed. The main drawback is that the servers must keep in the secret
key a sharing of a random s and hence, the length of the key is linear in the size
of the number of decrypted messages. Consequently, even if the basic method
with two rounds appears to be slower, it has nice features in term of storage and
avoids the need of a protocol to compute a shared random.

This method is unfortunately specific to the Cramer-Shoup cryptosystem.
The second method used by Shoup and Gennaro [48] follows Lee and Lim
paper [32], with the El Gamal [17] cryptosystem, but in the random oracle
model [6]. First, they tried to add a non-interactive zero-knowledge proof of
knowledge of discrete logarithm, using the Schnorr signature [44]. But they re-
marked that the decryption simulation without the secret key would require an
exponential time, because of a combinatorial explosion of the forking lemma [39].
This explosion can be avoided under stronger assumption [45]. They finally used
non-interactive zero-knowledge proofs of membership (as in [33]) to avoid the
rewinding, and thus the combinatorial explosion in the decryption simulation.
In fact, the simulation of the decryption process cannot rewind the machine.
The problem is the same as in the resettable zero-knowledge setting. Therefore,
the same techniques of proof of membership in a hard language can be used [5].
We can note here that the proof of knowledge of Rackoff and Simon is actually
a proof of membership. In this cryptosystem, there are two keys as in [33] : one
which belongs to the receiver but the other one belongs to the sender. Since
the prover has one of the two keys, he can decrypt and obtain the plaintext.
Therefore, the proof turns to be a proof of knowledge for a specific sender. The
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sender can then decrypt messages and since it is a proof of membership we can
simulate the proof without using rewinding technique.

1.4 The Basic Tool: Non-Interactive Zero-Knowledge Proof Systems

The model proposed by Naor and Yung strongly uses non-interactive zero-
knowledge proofs of language membership in the common random string set-
ting. Because of that, they had to restrict the power of the security model to
lunch-time attacks since the adversary could use the target ciphertext and gen-
erate a new proof of membership. If the proof was correct, the decryption oracle
decrypts it. But Naor and Yung cannot prove that the proof of membership can-
not be changed by someone who does not know a witness. Indeed, they did not
use any non-malleable property for the non-interactive zero-knowledge proof.
Recently, this property has been considered [42], but only for theoretical proof
systems.

In this paper, we use the idealized assumption of the random oracle model [6],
which assumes that some functions behave like truly random functions. This
allows to build efficient non-interactive zero-knowledge proofs, without the com-
mon random string setting, which achieve a weaker notion than non-malleability,
but strong enough for our purpose, the simulation soundness [42].

Simulation Soundness. Let us consider any language L, and a non-interactive
zero-knowledge proof system for L. For any adversary A, with access to a proof
p?, for a word x?, in or out of L, we consider her ability to forge a new proof p,
for a word out of L. Therefore, for any adversary A, we consider

Succsim−nizk(A) = Pr[(x, p)← A(Q) | x ∈ L̄ ∧ (x, p) 6∈ Q],

having access to a bounded list Q of proven words (x?, p?), where the word w?

is any word (in or out of the language L) and p? an accepted proof for w?. We
denote by L̄ the complement of L, and thus all the words out of the language
L.

More generally, we denote by Succsim−nizk(t) the maximal success probability
over any adversary, with running time bounded by t, in forging a new accepted
proof for an invalid word, even after having seen a bounded number of accepted
proofs on (in)valid words. In our situation, this bounded number will just be
one.

This is a stronger notion than the classical soundness for non-interactive
zero-knowledge proofs, but a weaker than non-malleability. Indeed, Sahai [42]
showed that non-malleability of non-interactive zero-knowledge proofs implies
this notion, that he calls simulation soundness.

As we see in the sequel, in the random oracle model, we can provide efficient
proofs which achieve this security level.

1.5 Our solution

Fujisaki and Okamoto [26] proposed a generic conversion from any IND-CPA

cryptosystem into an IND-CCA one, in the random oracle model [6]. In this pa-
per, we revisit the twin-encryption technique of Naor and Yung [33], by providing
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a generic conversion from any IND-CPA cryptosystem into an IND-CCA one with
publicly verifiable validity of the ciphertext (in front of the same kind of ad-
versary, see below). Namely, this conversion provides threshold cryptosystems
strongly secure. We furthermore present practical instantiations in the random
oracle model, which achieve IND-CCA against active and adaptive adversaries.

2 Security Model

2.1 The Network

We assume a group of ` (probabilistic) servers, all connected to a common broad-
cast medium, called the communication channel. It can be an asynchronous
channel like the Internet.

2.2 The Adversary

The adversary is computationally bounded and it can corrupt servers at any
time by viewing the memories of corrupted servers (passive adversary), and/or
modifying their behavior (active adversary). The adversary decides on whom
to corrupt at the start of the protocol (static adversary). We also assume that
the adversary corrupts no more than t out of ` servers throughout the protocol,
where ` ≥ 2t + 1.

2.3 Threshold Cryptosystems

A t out of ` threshold cryptosystem consists of the following components:

– A key generation algorithm K that takes as input a security parameter in
unary notation 1k, the number ` of decryption servers, and the threshold
parameter t; it outputs a public key pk, a list sk1, . . . , sk` of private keys
(which represents a sharing of the private key sk) and a list vk1, . . . , vk` of
verification keys.

– An encryption algorithm E that takes as input the public key pk and a
cleartext m, and outputs a ciphertext c.

– Several decryption algorithms Di (for 1 ≤ i ≤ `) that take as input the
public key pk, the private key ski, a ciphertext c, and output a decryption
share σi (which may include a verification part to achieve robustness).

– A recovery algorithm that takes as input the public key pk, a ciphertext c,
and a list σ1, . . . , σ` of decryption shares (or at least t+1 of them), together
with the verification keys vk1, . . . , vk`, and outputs a cleartext m or rejects if
less than t+1 decryption shares are correct in the case of active adversaries.
All users can run this algorithm.

2.4 Security Notions

In this section, we define the game an adversary plays and tries to win in order
to achieve the goal of the attack. Adversary against threshold cryptosystems
tries to attack the two following properties :
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– Security of the underlying primitive. In the case of cryptosystem, it means
one-wayness, semantic security [31], or non-malleability [16].

– Robustness. This means that corrupted players should not be able to pre-
vent uncorrupted servers from decrypting ciphertexts. This notion is useful
only in the presence of active adversaries. In other terms, it means that the
decryption service is available even if the adversary can send bad decryption
shares.

A user who wants to decrypt a ciphertext c sends it to a special server,
called the combiner, who forwards it to all servers. The servers start checking
the validity of the ciphertext, then compute a decryption share σi and eventu-
ally return it to the combiner. This latter combines the decryption shares to
obtain the plaintext m and returns it to the user. If we want to withstand active
adversaries, the combiner must decide when he receives decryption shares σi

whether they are valid or not. A nice way is to use checking protocols [23], and
verification keys are consequently needed. The goal of checking protocols is to
allow each server to prove to others that it has achieved its task correctly.

Semantic Security. In the following, we focus on the semantic security [31]
goal, denoted IND, and forget any other security notions (one-wayness and non-
malleability.) Therefore, the game to consider is the following :

1. The key generation algorithm K is run. The adversary therefore receives the
public key pk. With this public key, the adversary has the ability to encrypt
any plaintext of his choice (hence the basic “chosen-plaintext attack”).

2. The adversary chooses two cleartexts m0 and m1. These are given to an
“encryption oracle” that chooses b ∈ {0, 1} at random, encrypts mb and
gives the ciphertext c to the adversary.

3. At the end of the game, the adversary outputs b′ ∈ {0, 1}. We say that the
adversary wins the game if b′ = b.

Semantic security against chosen-plaintext attack means that for any poly-
nomial time bounded adversary, b′ = b with probability only negligibly greater
than 1/2.

Chosen Ciphertext Attacks. A stronger attack is usually considered, the
so-called chosen-ciphertext attack [41], in which the adversary is given a full
access to the decryption oracle Dsk, feeding it with any ciphertext. It therefore
obtains the corresponding plaintext, or the “reject” answer. There is the trivial
restriction not to ask the challenge ciphertext.

Threshold Security. The above attacks are the classical attacks in the stan-
dard (non-threshold) setting of the cryptosystem. Even if it is a threshold one,
the view of the adversary is the same as if there would be only one secret key.
However, in the threshold setting, we have to consider the leakage of decryption
shares. To this aim, we give a new oracle access to the adversary: the adversary
is given a full access to the decryption oracles Dski

, but feeding them with a
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valid pair of plaintext-ciphertext. It therefore obtains the decryption share σi.
If the pair is not valid (the ciphertext does not encrypt the given plaintext)
the oracle may output anything [19]. This is therefore the basic security no-
tion (for both IND-CPA and IND-CCA) in the threshold setting: IND-TCPA and
IND-TCCA respectively.

As explained in the motivation of threshold cryptosystems, such a scheme
should resist to the corruption of some servers. Therefore, we have to consider
this situation, which means that the adversary has control of some servers:

– still playing honestly — the adversary is thus a passive adversary. He has
access to any internal data of some servers, but cannot modify their behavior.

– or modifying their behavior — the adversary is then an active adversary.

To sum up, we have several possible mixes of attacks and adversaries: the
chosen-plaintext (CPA) or chosen-ciphertext (CCA) attacks, performed by pas-
sive (-Passive) or active (-Active) adversaries. According to the choice of cor-
rupted servers, we consider adaptive or non-adaptive adversaries. Non-adaptive
adversaries make their choice first (before anything else), whereas adaptive ones
make their choice along the attack, adaptively. It has been proven that passive
and adaptive adversaries are equivalent to passive and non-adaptive adversaries,
when the number of servers is logarithmic [11].

One may remark that in the particular case where ` = 1 and t = 0, we are
back to the classical situation, where passive/active and (non)-adaptive adver-
saries are meaningless.

3 Generic Conversions into IND-CCA Cryptosystems

In this section, we revisit the twin-encryption paradigm proposed by Naor and
Yung [33], while assuming that (K, E ,D) is a (possibly threshold) cryptosystem
which already achieves semantic security against chosen-plaintext attacks (IND-
CPA or IND-TCPA, in the threshold setting). Then, we provide a new scheme
which prevents CCA (or TCCA, resp.) whatever the kind of adversary.

3.1 Generic Conversion GC

The Key Generation: K(1k) runs twice K(1k) to get two public keys (pk, pk′),
which represent the new public key PK. The same way, one defines the new set
of secret keys as SK = {SKi}1≤i≤` = {sk, sk′} = {ski, sk

′
i}1≤i≤` and the new set

of verification keys VK = {VKi}1≤i≤` = {vk, vk′} = {vki, vk
′
i}1≤i≤`.

Encryption of m

– one first encrypts twice m under pk and pk′, a0 = Epk(m) and a1 = Epk′(m);

– one then builds a proof that both ciphertexts encrypt the same plaintext
under the keys pk and pk′ respectively, c = Proof[pk, pk′,Dsk(a0) = Dsk′(a1)].
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Partial Decryption of (a0, a1, c)

– the server checks the validity of the proof c;
– it computes both decryption shares of the ciphertexts a0 and a1 (only one

could be enough, but the same random choice should be done by all the
servers).

It is then possible to reconstruct the plaintext, using the recovery algorithm.

With this generic construction, it is not clear that the proof c does not leak
any information (as remarked in [33]), furthermore such a proof can seldom be
done efficiently in the standard model. However, the random oracle model allows
to make efficient non-interactive zero-knowledge proofs [39].

3.2 Non-Interactive Zero-Knowledge Proofs

In order to make the following proof to work, we need a strong security notion
about the proof c on the language

L = {(pk, pk′, Epk(m), Epk′(m)) | ∀m},

called simulation soundness [42].
Indeed, we want that any adversary A, having seen a pair (x?, c?), where

x? = (pk, pk′, Epk(m), Epk′(m
′)) (with m = m′ but also possibly m 6= m′) and c?

an accepted proof for x?, has a negligible success probability in forging a new
proof c for a word x 6∈ L:

Succsim−nizk(A) = Pr[(x, c)← A(x?, c?) | x ∈ L̄ ∧ (x, c) 6= (x?, c?)].

The idea behind this success probability is that the adversary should not be
able to build a new proof from previous ones, excepted for valid words (which
means in L). Indeed, one cannot avoid the adversary to build an accepted proof
for a correct word chosen by herself, and in such a case the ciphertext is valid.

Furthermore, the adversary has access to a proof for a word in L, or maybe
out of L, because the simulator will sometimes create an accepted proof for a
word that is not in L. Such a proof should not give any further information to
the adversary either.

The proof c convinces everybody that the ciphertext is valid before starting
the decryption. In the security proof, the decryption simulator knows one secret
key. But the challenge ciphertext will not necessarily be a valid one (possibly
with two distinct encrypted messages). Thanks to the random oracle model, it is
still possible to simulate, in an indistinguishable way, an accepted proof even for
such a wrong string, under the assumption of the intractability of the problem
of deciding membership (a weaker assumption than the semantic security of the
underlying cryptosystem).

Finally, we present some practical non-interactive zero-knowledge proofs,
which are easily proven to be simulation-sound using the forking lemma tech-
nique [39].
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3.3 Security Proof

We show that from any adversary A against IND-CCA of twin scheme, we can
build an adversary B against IND-CPA of the original scheme, first only consid-
ering passive adversaries.

3.4 Passive Adversaries

Theorem 1. Given an IND-CPA (or IND-TCPA) cryptosystem S, the twin con-
version provides an IND-CCA (or IND-TCCA, resp.) cryptosystem Stw, in the
random oracle model.

Proof. Our proof proceeds by reduction. Given a (t, ε)-adversary A against our
scheme Stw in the sense of IND-CCA, we build a (t′, ε′)-attacker B against scheme
S where t′ = t and ε′ = (ε− 9 · Succsim−nizk(t))/4.

First of all, one can note that if a (classical) cryptosystem is IND-CPA, then
if we encrypt the same message under two different public keys, the resulting
twin-cryptosystem is still IND-CPA. This result can be shown by applying hybrid
techniques [31] and it has already been formally proven in [3, 2], with a advantage
loss (divided by 2).

Now, we show how to make the reduction. The attacker B receives a given
public key pk and we show how this attacker can use the adversary A that
breaks IND-CCA to win the game (IND-CPA). The simulator B runs K(1k) and
gets (pk′, sk′ = {sk′i}). He tosses a coin b, and sets pkb = pk, while pk1−b = pk′.
Then, he sends (pk0, pk1) to A.

At the step 2 in the game, the adversary A outputs two messages m0, m1.
The simulator B sends them to the challenger: the challenger chooses at random
a bit b′ and encrypts mb′ under Epkb

, yielding to a?
b = Epkb

(mb′).

Then, B tosses a new coin b′′ at random and computes a?
1−b = Epk1−b

(mb′′)
and sends to the adversary the target ciphertext y? = (a?

0, a
?
1, c

?), where c? is
a simulated proof of correctness of a?

0 and a?
1, which can be done in an indis-

tinguishable way in the random oracle model, under the intractability of the
decision problem: do a?

0 and a?
1 encrypt the same message?

Now, we show how to simulate the decryption oracle. Adversary A can
perform queries y = (a0, a1, d) to the decryption oracle, at any time, where
ai = Epki

(m) and c is a proof of correctness of the ciphertext. The simulator
B easily decrypts a1−b, as he knows the secret keys related to pk1−b = pk′. If
the proof is correct we know that a0 and a1 encrypt the same value m. This
simulation is perfect. If the proof is not correct, but accepted, the adversary had
broken the simulation soundness, after having seen only one proof.

Finally, A answers with a bit b?, which is output by B. Since the simulation
may not be perfect, the adversary may never stop. In this latter case, after
a time-out, B flips a coin b?. This latter has won if b? = b′, and thus with
probability

ε′ + 1

2
= Pr[b? = b′∧NIZK]+Pr[b? = b′∧¬NIZK] ≥ Pr[b? = b′ |NIZK] ·Pr[NIZK].
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In the above formula, NIZK denotes the event that none of the proofs sent by
the adversary to the decryption oracle breaks the simulation soundness, after
having possibly seen one proof.

Indeed, if the adversary can forge proofs of membership, for wrong words, the
simulator will always answer with the message encrypted under pk′. Therefore,
the adversary can decide which key has the simulator.

However, under the assumption NIZK, saying that the adversary did not forge
a wrong proof, our simulation of the decryption oracle is perfect. Then, using
the notation pr for probabilities under this assumption:

– in the case b′′ = b′, the simulation is perfect. Indeed, the challenge cipher-
text is a valid ciphertext, and all the decryption queries are valid ciphertexts
(under the NIZK assumption). And thus, the advantage is greater than ε/2,
thanks to results about multicast encryption [2, 3] (excepted a possible ad-
vantage in the real game thanks to an attack on the soundness). Thus

pr[b? = b′ | b′′ = b′] ≥ ε/2 + 1

2
− Pr[¬NIZK] =

ε

4
+

1

2
− Pr[¬NIZK].

– in the case b′′ 6= b′, even a powerful adversary that can decrypt a0 and a1,
will obtain m0 and m1. Therefore, he cannot get any advantage. However,
the adversary who detects it may choose to never stop, or to cheat. If she
decides to never stop, the time-out makes B to flip a coin. If she tries to
cheat, she has no information about b′. Then, pr[b? = b′ | b′′ 6= b′] = 1/2.

Therefore,

ε′ + 1

2
≥

(

pr[b? = b′ | b′′ = b′] + pr[b? = b′ | b′′ 6= b′]

2

)

· Pr[NIZK]

≥ 1

2
·
(ε

4
+ 1− Pr[¬NIZK]

)

· Pr[NIZK] ≥ 1

2
·
(

ε

4
+ 1− 9

4
· Pr[¬NIZK]

)

.

And thus,

ε′ = 2 Pr[b? = b′]− 1 ≥ ε− 9 · Pr[¬NIZK]

4
.

In order to upper bound Pr[¬NIZK], we play the same game but knowing the
two secret keys. Then, as soon as the adversary produces an accepted proof for
an invalid word, we detect it, and thus output it. This breaks the simulation
soundness with time t: Pr[¬NIZK] ≤ Succsim−nizk(t). ut

3.5 Active Adversaries

It is clear that the proof still holds whatever the adversary is, even in the
threshold setting. We provided a rigorous proof without any corruption. But
if the underlying scheme already prevents IND-TCPA against passive or active
adversaries, the new one even prevents IND-TCCA against the same kind of
adversaries.
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4 Examples

The first example of semantically secure cryptosystem with easy proofs of equal-
ity of plaintexts is certainly the El Gamal cryptosystem [17]. Even if more effi-
cient threshold versions have already been proposed [48] (even in the standard
model [12]), we apply the first conversion on it.

The second example will provide the first RSA-based threshold cryptosys-
tem secure under chosen-ciphertext attacks, even against active and adaptive
adversaries. It is based on the Paillier’s cryptosystem [35, 19]. Another version
to share Paillier cryptosystem appears in [15].

In this part, we describe the cryptosystems and we insist on the proofs of
membership which are specific.

4.1 The El Gamal Cryptosystem

Description of the El Gamal Cryptosystem. Let p be a strong prime, such
that q|p− 1 is also a large prime, and g be an element of

�
∗
p of order q. We thus

denote by G the subgroup of
�

∗
p of the elements of order q. It is spanned by g.

Let y = gx be the public key corresponding to the secret key x. To encrypt a
message M ∈ G, randomly choose r ∈ �

q and compute the ciphertext (M.yr, gr).
To decrypt a ciphertext a = (α, β), the receiver computes α/βx. It is well-known
that the semantic security of El Gamal is based on the Decisional Diffie-Hellman
(DDH) problem [49].

IND-CPA Threshold Version of El Gamal Cryptosystem. The secret
key x is split with Shamir secret sharing scheme. Each server has a share ski

of the secret key sk and a verification key vki = gski. To decrypt a ciphertext
a = (α, β), each server computes a decryption share βi = βski , and proves that
logg vki = logβ βi. The combiner selects a set S of t + 1 correct shares and
computes

βx =
∏

i∈S

β
λS
0,i

i mod p

where λS
i,0 denote the symbol of Lagrange. Finally, the combiner computes

α/βx mod p to recover the plaintext. One can easily show that if an adver-
sary can break the semantic security of this cryptosystem, one can build an
attacker that can break the semantic security of El Gamal, and thus the DDH
assumption.

IND-CCA Threshold Version of El Gamal Cryptosystem. We can there-
fore apply previous twin conversion. One still gets one group G, with a generator
g of prime order. Then the key generation algorithm is run twice and the public
keys are y0 = gx0 and y1 = gx1. To encrypt a message M , the sender computes
a0 = (M · yr

0, g
r) = (α0, β0) and a1 = (M · ys

1, g
s) = (α1, β1).

The proof of equality of plaintexts consists in proving the existence of r and
s such that β0 = gr, β1 = gs and α0/α1 = yr

0y
−s
1 .
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To this aim, one chooses random a, b ∈ �
q, and computes A = ga, B = gb

and C = ya
0y

b
1. Then, one gets the random challenge e ∈ �

q from a hash function
which is assumed to behave like a random oracle: e = H(g, y0, y1, a0, a1, A, B, C).
Eventually, one computes ρ = a − re mod q and σ = b + se mod q. This proof
can be easily verified by A = gρβe

0, B = gσβ−e
1 , and C = yρ

0y
σ
1 (α0/α1)

e, or
equivalently by

e = H(g, y0, y1, a0, a1, g
ρβe

0, g
σβ−e

1 , yρ
0y

σ
1 (α0/α1)

e),

where the proof consists of the tuple (e, ρ, σ).
The decryption process is straightforward, using the same technique as pre-

sented above, but twice, after having checked the validity of the ciphertext.

Security Analysis. The basic threshold El Gamal cryptosystem is clearly IND-
CPA. The generic conversion makes then the new proposal to be IND-TCCA, but
under the condition that the above proof of equality of plaintexts is simulation-
sound. We thus have to prove it.

First, we have to be able to build a list Q of accepted proofs for words in
and out of the language. This can easily be done, thanks to the random oracle
property of H: one chooses ρ, σ and e in

�
q, and defines

H(g, y0, y1, a0, a1, g
ρβe

0, g
σβ−e

1 , yρ
0y

σ
1 (α0/α1)

e)← e.

Now, let us assume that with access to this list of proofs, an adversary is
able to forge a new proof for a wrong word (pk0, pk1, a0, a1), with probability ν,
within time t. Since everything is included in the query to the random oracle H,
we can apply the forking lemma [39], which claims that

Lemma 2. Let A be a probabilistic polynomial time Turing machine which can
ask qh queries to the random oracle, with qh > 0. We assume that, within the
time bound t, A produces, with probability ν ≥ 7qh/q, a new accepted proof for
a wrong word (pk0, pk1, a0, a1), (g, y0, y1, a0, a1; A, B; e; ρ, σ). Then, within time
t′ ≤ 16qht/ν, and with probability ν ′ ≥ 1/9, a replay of this machine outputs two
accepted proofs of a wrong word (pk0, pk1, a0, a1):

(g, y0, y1, a0, a1; A, B; e0; ρ0, σ0) and (g, y0, y1, a0, a1; A, B; e1; ρ1, σ1),

with e0 6= e1 mod q.

Let us assume that the adversary has not broken the collision intractability of
H, then

gρ0βe0
0 = gρ1βe1

0 , gσ0β−e0
1 = gσ1β−e1

1

yρ0

0 yσ0
1 (α0/α1)

e0 = yρ1

0 yσ1
1 (α0/α1)

e1

and thus,
β0 = gρ, β1 = gσ, and α0/α1 = yρ

0y
−σ
1 ,

where

ρ =
ρ1 − ρ0

e0 − e1

mod q, and σ =
σ0 − σ1

e0 − e1

mod q.
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Since α0 = M0y
ρ
0, and α1 = M1y

σ
1 , we eventually get M0 = M1, which means that

the word is in the language, unless one has broken the collision intractability
for H. But under the random oracle assumption, to get a probability greater
than 1/9 to find a collision, one has to have asked more than

√
q/3 queries to

H, using the birthday paradox, and thus

16qht

ν
≥ t′ ≥

√
q

3
τ,

where τ is the time required for an evaluation of H. This leads to

Succsim−nizk(t) ≤ ν ≤ 48
qh√
q

t

τ
.

This proves the soundness of the proof system. But since this lemma still holds,
even for an adversary with auxiliary information (the list Q), it furthermore
proves the simulation soundness.

4.2 The Paillier Cryptosystem

Review of the Basic Cryptosystem. The Paillier cryptosystem is based on
the properties of the Carmichael lambda function in

�
∗
n2. We recall here the

main two properties: for any w ∈ �
∗
n2,

wλ(n) = 1 mod n, and wnλ(n) = 1 mod n2

Let n be an RSA modulus n = pq, where p and q are prime integers. Let g be
an integer of order nα modulo n2. The public key is pk = (n, g) and the secret
key is sk = λ(n). To encrypt a message M ∈ �

n, randomly choose x ∈ �
∗
n and

compute the ciphertext c = gMxn mod n2. To decrypt c, compute

M =
L(cλ(n) mod n2)

L(gλ(n) mod n2)
mod n,

where the L function takes elements from the set Un = {u < n2 | u = 1 mod n}
and computes L(u) = (u−1)/n. The semantic security is based on the difficulty
to distinguish nth residues modulo n2. We refer to [35] for details.

IND-CPA Threshold Version of Paillier Cryptosystem. We recall that
∆ = `! where ` is the number of servers.

Key Generation Algorithm. Choose an integer n, product of two safe primes p
and q, such that p = 2p′ + 1 and q = 2q′ + 1 and gcd(n, ϕ(n)) = 1. One can
note that the safe prime requirement can be avoided [20] using Shoup protocol
[47] without using safe primes. This allows to fully share Paillier cryptosystem
from the key generation protocol to the decryption process as it appears difficult
to generate RSA moduli with safe prime modulus using [10]. However, for the
clarity of the description we use RSA moduli with safe primes. Set m = p′q′. Let
β be an element randomly chosen in

�
∗
n.

The secret key sk = β × m is shared with the Shamir scheme [46] modulo
mn. Let v be a square that generates with overwhelming probability the cyclic
group of squares in

�
∗
n2. The verification keys vki are obtained with the formula

v∆ski mod n2.
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Encryption Algorithm. To encrypt a message M , randomly pick x ∈ �
∗
n and

compute c = gMxn mod n2.

Partial Decryption Algorithm. The ith player Pi computes the decryption share
ci = c2∆ski mod n2 using his secret share ski. He makes a proof of correct de-
cryption which assures that c4∆ mod n2 and v∆ mod n2 have been raised to the
same power ski in order to obtain c2

i and vki.

Recovery Algorithm. If less than t + 1 decryption shares have valid proofs of
correctness the algorithm fails. Otherwise, let S be a set of t+1 valid shares and
compute the plaintext using the Lagrange interpolation on the exponents (which
is possible since exponents are multiplied by ∆ = `!, and thus no modular root
extraction is required.)

In [19], they proved the following theorem.

Theorem 3. Under the decisional composite residuosity assumption and in the
random oracle model, the threshold version of Paillier cryptosystem is IND-
TCPA against active but non-adaptive adversaries.

Even if their definition of threshold security (the partial decryption oracles be-
havior) is not the same, the security result still holds within our model.

IND-CCA Threshold Version of Paillier Cryptosystem. We can therefore
apply previous twin conversion.

Key Generation Algorithm. Choose, for j = 0, 1, an integer nj, product of two
safe primes pj and qj. Set mj = (pj−1)(qj−1)/4. Let βj be an element randomly
chosen in

�
∗
nj

.
The secret keys skj = βj×mj are shared with the Shamir scheme [46] modulo

mjnj. Let vj be a square that generates all the cyclic group of squares in
�

∗

n2
j

.

The verification keys vki,j are obtained with the formula v
∆ski,j

j mod n2
j .

Encryption Algorithm. To encrypt a message M , randomly pick xj ∈
�
∗
nj

and

compute aj = gM
j x

nj

j mod n2
j . Furthermore compute a proof that a0 and a1

encrypt the same value: Let r be a randomly chosen element in [0, A[, and
random elements αj ∈

�
∗
nj

. Compute yj = gr
jα

nj

j mod n2
j . Let e be the hash

value H(g0, g1, a0, a1, y0, y1) where H is a hash function which outputs values in
the range [0, B[. Then, compute z = r + e ×M , uj = αjx

e
j mod nj A proof of

equality is the tuple

(e, z, u0, u1) ∈ [0, B[×[0, A[× � ∗
n1
× � ∗

n2

It is checked by the equation

e = H(g0, g1, a0, a1, g
z
0u

n0
0 /ae

0 mod n2
0, g

z
1u

n1
1 /ae

1 mod n2
1)

The decryption process is the same as in [19]. Furthermore, the above proof
can be shown to be simulation-sound, using the same technique as for the
El Gamal scheme, thanks to the forking lemma [39].
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It is amazing to note that the Generic Conversion of Paillier cryptosystem
keeps the homomorphic properties, namely that E(M1 + M2) ≡ E(M1)× E(M2)
and E(M)k ≡ E(kM). For example, in voting scheme, such as [15, 1], the au-
thority can check the universally checkable proofs of validity of ciphertext and
compute the tally. However, the result will no longer be a ciphertext that with-
stands CCA.

5 Conclusion

In this paper we have constructed generic conversions to threshold cryptosystems
secure against chosen-ciphertext attacks from any cryptosystems secure against
CPA. We have proposed the first version of threshold cryptosystems CCA-secure
which rely on the factorization problem. A new version of Paillier cryptosystem
based on a new assumption related to RSA appears in [13]. By applying our
techniques, one can also share this cryptosystem under their new assumption.
This provides the second threshold cryptosystem secure under CCA based on
RSA.

However, as it is noted in [48], it appears to be difficult to share RSA. It seems
even difficult to share OAEP-RSA without redundancy, which is a cryptosystem
which achieves IND-CPA, but in the random oracle model. Indeed, the proof of
membership appears to be odd and not practical.

Acknowledgement. We would like to thank Masayuki Abe for fruitful discus-
sions.
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