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Abstract

We compare the relative strengths of popular notions of security for public-key encryption
schemes. We consider the goals of privacy and non-malleability, each under chosen-plaintext
attack and two kinds of chosen-ciphertext attack. For each of the resulting pairs of definitions
we prove either an implication (every scheme meeting one notion must meet the other) or a
separation (there is a scheme meeting one notion but not the other, assuming the first notion
can be met at all). We similarly treat plaintext awareness, a notion of security in the random-
oracle model. An additional contribution of this paper is a new definition of non-malleability
which we believe is simpler than the previous one.

Keywords: Asymmetric encryption, Chosen ciphertext security, Non-malleability, Rackoff-
Simon attack, Plaintext awareness, Relations among definitions.

∗Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
CA 92093, USA. E-Mail: {mihir, adesai}@cs.ucsd.edu URL: http://www-cse.ucsd.edu/users/{mihir, adesai}/
Supported in part by NSF CAREER Award CCR-9624439 and a 1996 Packard Foundation Fellowship in Science and
Engineering.
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1 Introduction

In this paper we compare the relative strengths of various notions of security for public-key encryp-
tion. We want to understand which definitions of security imply which others. We start by sorting
out some of the notions we will consider.

1.1 Notions of Encryption Scheme Security

A convenient way to organize definitions of secure encryption is by considering separately the
various possible goals and the various possible attack models, and then obtain each definition as a
pairing of a particular goal and a particular attack model. This viewpoint was suggested to us by
Moni Naor [25].

We consider two different goals: indistinguishability of encryptions, due to Goldwasser and
Micali [21], and non-malleability, due to Dolev, Dwork and Naor [13]. Indistinguishability (IND)
formalizes an adversary’s inability to learn any information about the plaintext x underlying a
challenge ciphertext y, capturing a strong notion of privacy. Non-malleability (NM) formalizes an
adversary’s inability, given a challenge ciphertext y, to output a different ciphertext y ′ such that
the plaintexts x, x′ underlying these two ciphertexts are “meaningfully related”. (For example,
x′ = x + 1.) It captures a sense in which ciphertexts can be tamper-proof.

Along the other axis we consider three different attacks. In order of increasing strength these
are chosen-plaintext attack (CPA), non-adaptive chosen-ciphertext attack (CCA1), and adaptive
chosen-ciphertext attack (CCA2). Under CPA the adversary can obtain ciphertexts of plaintexts
of her choice. In the public-key setting, giving the adversary the public key suffices to capture
these attacks. Under CCA1, formalized by Naor and Yung [26], the adversary gets, in addition
to the public key, access to an oracle for the decryption function. The adversary may use this
decryption function only for the period of time preceding her being given the challenge ciphertext y.
(The term non-adaptive refers to the fact that queries to the decryption oracle cannot depend on
the challenge y. Colloquially this attack has also been called a “lunchtime,” “lunch-break,” or
“midnight” attack.) Under CCA2, due to Rackoff and Simon [27], the adversary again gets (in
addition to the public key) access to an oracle for the decryption function, but this time she may
use this decryption function even on ciphertexts chosen after obtaining the challenge ciphertext y,
the only restriction being that the adversary may not ask for the decryption of y itself. (The attack
is called adaptive because queries to the decryption oracle can depend on the challenge y.) As a
mnemonic for the abbreviations CCA1 / CCA2, just remember that the bigger number goes with
the stronger attack.

One can “mix-and-match” the goals {IND,NM} and attacks {CPA,CCA1,CCA2} in any com-
bination, giving rise to six notions of security:

IND-CPA, IND-CCA1, IND-CCA2, NM-CPA, NM-CCA1, NM-CCA2 .

Most are familiar (although under different names). IND-CPA is the notion of [21];1 IND-CCA1 is
the notion of [26]; IND-CCA2 is the notion of [27]; NM-CPA, NM-CCA1 and NM-CCA2 are from
[13, 14, 15].

1.2 Implications and Separations

In this paper we work out the relations between the above six notions. For each pair of notions
A,B ∈ { IND-CPA, IND-CCA1, IND-CCA2, NM-CPA, NM-CCA1, NM-CCA2 }, we show one of

1Goldwasser and Micali referred to IND-CPA as polynomial security, and also showed this was equivalent to
another notion, semantic security.
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Figure 1: An arrow is an implication, and in the directed graph given by the arrows, there is a path
from A to B if and only A⇒ B. The hatched arrows represent separations we actually prove; all
others follow automatically. The number on an arrow or hatched arrow refers to the theorem in
this paper which establishes this relationship.

the following:

• A⇒ B: A proof that if Π is any encryption scheme meeting notion of security A then Π also
meets notion of security B.

• A 6⇒ B: A construction of an encryption scheme Π that provably meets notion of security A
but provably does not meet notion of security B.2

We call a result of the first type an implication, and a result of the second type a separation. For
each pair of notions we provide one or the other, so that no relation remains open.

These results are represented diagrammatically in Figure 1. The (unhatched) arrows repre-
sent implications that are proven or trivial, and the hatched arrows represent explicitly proven
separations. Specifically, the non-trivial implication is that IND-CCA2 implies NM-CCA2, and
the separations shown are that IND-CCA1 does not imply NM-CPA; nor does NM-CPA imply
IND-CCA1; nor does NM-CCA1 imply NM-CCA2.

Figure 1 represents a complete picture of relations in the following sense. View the picture as a
graph, the edges being those given by the (unhatched) arrows. (So there are eight edges.) We claim
that for any pair of notions A,B, it is the case that A implies B if and only if there is a path from
A to B in the graph. The “if” part of this claim is of course clear from the definition of implication.
The “only if” part of this claim can be verified for any pair of notions by utilizing the hatched and
unhatched arrows. For example, we claim that IND-CCA1 does not imply IND-CCA2. For if we
had that IND-CCA1 implies IND-CCA2 then this, coupled with NM-CCA1 implying IND-CCA1
and IND-CCA2 implying NM-CCA2, would give NM-CCA1 implying NM-CCA2, which we know
to be false.

That IND-CCA2 implies all of the other notions helps bolster the view that adaptive CCA is
the “right” version of CCA on which to focus. (IND-CCA2 has already proven to be a better tool
for protocol design.) We thus suggest that, in the future, “CCA” should be understood to mean
adaptive CCA.

1.3 Plaintext Awareness

Another adversarial goal we will consider is plaintext awareness (PA), first defined by Bellare and
Rogaway [6]. PA formalizes an adversary’s inability to create a ciphertext y without “knowing” its
underlying plaintext x. (In the case that the adversary creates an “invalid” ciphertext what she
should know is that the ciphertext is invalid.)

2This will be done under the assumption that there exists some scheme meeting notion A, since otherwise the
question is vacuous. This (minimal) assumption is the only one made.
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So far, plaintext awareness has only been defined in the random-oracle (RO) model. Recall
that in the RO model one embellishes the customary model of computation by providing all parties
(good and bad alike) with a random function H from strings to strings. See [5] for a description of
the random-oracle model and a discussion of its use.

The six notions of security we have described can be easily “lifted” to the RO model, giving six
corresponding definitions. Once one makes such definitional analogs it is easily verified that all of
the implications and separations mentioned in Section 1.2 and indicated in Figure 1 also hold in
the RO setting. For example, the RO version of IND-CCA2 implies the RO version of NM-CCA2.

Since PA has only been defined in the RO model it only makes sense to compare PA with
other RO notions. Our results in this vein are as follows. Theorem 4.2 shows that PA (together
with the RO version of IND-CPA) implies the RO version of IND-CCA2. In the other direction,
Theorem 4.4 shows that the RO version of IND-CCA2 does not imply PA.

1.4 Definitional Contributions

Beyond the implications and separations we have described, we have two definitional contributions:
a new definition of non-malleability, and a refinement to the definition of plaintext awareness.

The original definition of non-malleability [13, 14, 15] is in terms of simulation, requiring, for
every adversary, the existence of some appropriate simulator. We believe our formulation is simpler.
It is defined via an experiment involving only the adversary; there is no simulator. Nonetheless,
the definitions are equivalent [7], under any form of attack.

Thus the results in this paper are not affected by the definitional change. We view the new
definition as an additional, orthogonal contribution which could simplify the task of working with
non-malleability. We also note that our definitional idea lifts to other settings, like defining semantic
security [21] against chosen-ciphertext attacks. (Semantic security seems not to have been defined
against CCA.)

With regard to plaintext awareness, we make a small but important refinement to the defi-
nition of [6]. The change allows us to substantiate their claim that plaintext awareness implies
chosen-ciphertext security and non-malleability, by giving us that PA (plus IND-CPA) implies the
RO versions of IND-CCA2 and NM-CCA2. Our refinement is to endow the adversary with an
encryption oracle, the queries to which are not given to the extractor. See Section 4.

1.5 Motivation

In recent years there has been an increasing role played by public-key encryption schemes which
meet notions of security beyond IND-CPA. We are realizing that one of their most important uses is
as tools for designing higher-level protocols. For example, encryption schemes meeting IND-CCA2
appear to be the right tools in the design of authenticated key exchange protocols in the public-key
setting [1]. As another example, the designers of SET (Secure Electronic Transactions) selected
an encryption scheme which achieves more than IND-CPA [28]. This was necessary, insofar as
the SET protocols would be wrong if instantiated by a primitive which achieves only IND-CPA
security. Because encryption schemes which achieve more than IND-CPA make for easier-to-use
(or harder-to-misuse) tools, emerging standards rightly favor them.

We comment that if one takes the CCA models “too literally” the attacks we describe seem
rather artificial. Take adaptive CCA, for example. How could an adversary have access to a
decryption oracle, yet be forbidden to use it on the one point she really cares about? Either she
has the oracle and can use it as she likes, or she does not have it at all. Yet, in fact, just such
a setting effectively arises when encryption is used in session key exchange protocols. In general,
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one should not view the definitional scenarios we consider too literally, but rather understand that
these are the right notions for schemes to meet when these schemes are to become generally-useful
tools in the design of high level protocols.

1.6 Related Work and Discussion

Relations. The most recent version of the work of Dolev, Dwork and Naor, the manuscript [15],
has, independently of our work, considered the question of relations among notions of encryptions
beyond IND-CPA. It contains (currently in Remark 3.6) various claims that overlap to some extent
with ours. (Public versions of their work, namely the 1991 proceedings version [13] and the 1995
technical report [14], do not contain these claims.)

Foundations. The theoretical treatment of public-key encryption begins with Goldwasser and
Micali [21] and continues with Yao [29], Micali, Rackoff and Sloan [24], and Goldreich [18, 19]. These
works treat privacy under chosen-plaintext attack (the notion we are capturing via IND-CPA). They
show that various formalizations of it are equivalent, in various models. Specifically, Goldwasser and
Micali introduced, and showed equivalent, the notions of indistinguishability and semantic security;
Yao introduced a notion based on computational entropy; Micali, Rackoff and Sloan showed that
appropriate variants of the original definition are equivalent to this; Goldreich [18] made important
refinements to the notion of semantic security and showed that the equivalences still held; and
Goldreich [19] provided definitions and equivalences for the case of uniform adversaries. We build
on these foundations both conceptually and technically. In particular, this body of work effectively
justifies our adopting one particular formulation of privacy under chosen-plaintext attack, namely
IND-CPA.

None of the above works considered chosen-ciphertext attacks and, in particular, the question of
whether indistinguishability and semantic security are equivalent in this setting. In fact, semantic
security under chosen-ciphertext attack seems to have not even been defined. As mentioned earlier,
definitions for semantic security under CCA can be obtained along the lines of our new definition
of non-malleability. We expect (and hope) that, after doing this, the equivalence between semantic
security and indistinguishability continue to hold with respect to CCA, but this has not been
checked.

Recent work on simplifying non-malleability. As noted above, Bellare and Sahai [7]
have shown that the definition of non-malleability given in this paper is equivalent to the original
one of [13, 14, 15]. In addition, they provide a novel formulation of non-malleability in terms of
indistinguishability, showing that non-malleability is just a form of indistinguishability under a
certain type of attack they call a parallel attack. Their characterization can be applied to simplify
some of the results in this paper.

Schemes. It is not the purpose of this paper to discuss specific schemes designed for meeting any
of the notions of security described in this paper. Nonetheless, as a snapshot of the state of the art,
we attempt to summarize what is known about meeting “beyond-IND-CPA” notions of security.
Schemes proven secure under standard assumptions include that of [26], which meets IND-CCA1,
that of [13], which meets IND-CCA2, and the much more efficient recent scheme of Cramer and
Shoup [10], which also meets IND-CCA2. Next are the schemes proven secure in a random-oracle
model; here we have those of [5, 6], which meet PA and are as efficient as schemes in current
standards. Then there are schemes without proofs, such as those of [11, 30]. Finally, there are
schemes for non-standard models, like [16, 27].

We comment that it follows from our results that the above mentioned scheme of [10], shown
to meet IND-CCA2, is also non-malleable, even under an adaptive chosen-ciphertext attack.
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Symmetric encryption. This paper is about relating notions of security for public-key (ie. asym-
metric) encryption. The same questions can be asked for private-key (ie. symmetric) encryption.
Definitions for symmetric encryption scheme privacy under CPA were given by [2]. Those notions
can be lifted to deal with CCA. Definitions for non-malleability in the private-key setting can be
obtained by adapting the public-key ones. Again we would expect (and hope) that, if properly
done, the analogs to the relations we have proven remain.

One feature of definitions in this setting is worth highlighting. Recall that in the public-key
setting, nothing special had to be done to model CPA; it corresponds just to giving the adversary
the public key. Not so in a private-key setting. The suggestion of [3] is to give the adversary an
oracle for encryption under the private key. This must be done in all definitions, and it is under
this notion that we expect to see an analog of the results for the public-key case.

Goldreich, in discussions on this issue, has noted that in the private-key case, one can consider an
attack setting weaker than CPA, where the adversary is not given an encryption oracle. He points
out that under this attack it will not even be true that non-malleability implies indistinguishability.

Encryption scheme security which goes beyond indistinguishability is important in the private-
key case too, and we feel it deserves a full treatment of its own which would explore and clarify
some of the above issues.

Further remarks. We comment that non-malleability is a general notion that applies to primi-
tives other than encryption [13]. Our discussion is limited to its use in asymmetric encryption.

Bleichenbacher [8] has recently shown that a popular encryption scheme, RSA PKCS #1, does
not achieve IND-CCA1. He also describes a popular protocol for which this causes problems. His
results reinforce the danger of assuming anything beyond IND-CPA which has not been demon-
strated.

A preliminary version of this paper appeared as [3]. We include here material which was omitted
from that abstract due to space limitations.

2 Definitions of Security

This section provides formal definitions for the six notions of security of an asymmetric (ie., public-
key) encryption scheme discussed in Section 1.1. Plaintext awareness will be described in Section 4.
We begin by describing the syntax of an encryption scheme, divorcing syntax from the notions of
security.

Experiments. We use standard notations and conventions for writing probabilistic algorithms
and experiments. If A is a probabilistic algorithm, then A(x1, x2, . . . ; r) is the result of running
A on inputs x1, x2, . . . and coins r. We let y ← A(x1, x2, . . .) denote the experiment of picking r
at random and letting y be A(x1, x2, . . . ; r). If S is a finite set then x ← S is the operation of
picking an element uniformly from S. If α is neither an algorithm nor a set then x← α is a simple
assignment statement. We say that y can be output by A(x1, x2, . . .) if there is some r such that
A(x1, x2, . . . ; r) = y.

Syntax and conventions. The syntax of an encryption scheme specifies what kinds of algorithms
make it up. Formally, an asymmetric encryption scheme is given by a triple of algorithms, Π =
(K, E ,D), where

• K, the key generation algorithm, is a probabilistic algorithm that takes a security parameter
k ∈ N (provided in unary) and returns a pair (pk, sk) of matching public and secret keys.

• E , the encryption algorithm, is a probabilistic algorithm that takes a public key pk and a
message x ∈ {0, 1}∗ to produce a ciphertext y.
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• D, the decryption algorithm, is a deterministic algorithm which takes a secret key sk and
ciphertext y to produce either a message x ∈ {0, 1}∗ or a special symbol ⊥ to indicate that the
ciphertext was invalid.

We require that for all (pk, sk) which can be output by K(1k), for all x ∈ {0, 1}∗, and for all y
that can be output by Epk(x), we have that Dsk(y) = x. We also require that K, E and D can be
computed in polynomial time. As the notation indicates, the keys are indicated as subscripts to
the algorithms.

Recall that a function ε : N→ R is negligible if for every constant c ≥ 0 there exists an integer
kc such that ε(k) ≤ k−c for all k ≥ kc.

2.1 Framework

The formalizations that follow have a common framework that it may help to see at a high level
first. In formalizing both indistinguishability and non-malleability we regard an adversary A as
a pair of probabilistic algorithms, A = (A1, A2). (We will say that A is polynomial time if both
A1 and A2 are.) This corresponds to A running in two “stages.” The exact purpose of each stage
depends on the particular adversarial goal, but for both goals the basic idea is that in the first stage
the adversary, given the public key, seeks and outputs some “test instance,” and in the second stage
the adversary is issued a challenge ciphertext y generated as a probabilistic function of the test
instance, in a manner depending on the goal. (In addition A1 can output some state information s
that will be passed to A2.) Adversary A is successful if she passes the challenge, with what “passes”
means again depending on the goal.

We consider three types of attacks under this setup.
In a chosen-plaintext attack (CPA) the adversary can encrypt plaintexts of her choosing. Of

course a CPA is unavoidable in the public-key setting: knowing the public key, an adversary can,
on her own, compute a ciphertext for any plaintext she desires. So in formalizing definitions of
security under CPA we “do nothing” beyond giving the adversary access to the public key; that’s
already enough to make a CPA implicit.

In a non-adaptive chosen-ciphertext attack (CCA1) we give A1 (the public key and) access to a
decryption oracle, but we do not allow A2 access to a decryption oracle. This is sometimes called
a non-adaptive chosen-ciphertext attack, in that the decryption oracle is used to generate the test
instance, but taken away before the challenge appears.

In an adaptive chosen-ciphertext attack (CCA2) we continue to give A1 (the public key and)
access to a decryption oracle, but also give A2 access to the same decryption oracle, with the only
restriction that she cannot query the oracle on the challenge ciphertext y. This is an extremely
strong attack model.

As a mnemonic, the number i in CCAi can be regarded as the number of adversarial stages
during which she has access to a decryption oracle. Additionally, the bigger number corresponds
to the stronger (and chronologically later) formalization.

By the way: we do not bother to explicitly give A2 the public key, because A1 has the option
of including it in s.

2.2 Indistinguishability of Encryptions

The classical goal of secure encryption is to preserve the privacy of messages: an adversary should
not be able to learn from a ciphertext information about its plaintext beyond the length of that
plaintext. We define a version of this notion, indistinguishability of encryptions (IND), following
[21, 24], through a simple experiment. Algorithm A1 is run on input the public key, pk. At the end
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of A1’s execution she outputs a triple (x0, x1, s), the first two components being messages which
we insist be of the same length, and the last being state information (possibly including pk) which
she wants to preserve. A random one of x0 and x1 is now selected, say xb. A “challenge” y is
determined by encrypting xb under pk. It is A2’s job to try to determine if y was selected as the
encryption of x0 or x1, namely to determine the bit b. To make this determination A2 is given the
saved state s and the challenge ciphertext y.

For concision and clarity we simultaneously define indistinguishability with respect to CPA,
CCA1, and CCA2. The only difference lies in whether or not A1 and A2 are given decryption
oracles. We let the string atk be instantiated by any of the formal symbols cpa, cca1, cca2, while
ATK is then the corresponding formal symbol from CPA,CCA1,CCA2. When we say Oi = ε,
where i ∈ {1, 2}, we mean Oi is the function which, on any input, returns the empty string, ε.

Definition 2.1 [IND-CPA, IND-CCA1, IND-CCA2] Let Π = (K, E ,D) be an encryption scheme

and let A = (A1, A2) be an adversary. For atk ∈ {cpa, cca1, cca2} and k ∈ N let Advind-atk
A,Π (k)

def
=

2 · Pr
[

(pk, sk)← K(1k) ; (x0, x1, s)← AO1

1 (pk) ; b←{0, 1} ; y ← Epk(xb) :

AO2

2 (x0, x1, s, y) = b
]

− 1

where

If atk = cpa then O1(·) = ε and O2(·) = ε
If atk = cca1 then O1(·) = Dsk(·) and O2(·) = ε
If atk = cca2 then O1(·) = Dsk(·) and O2(·) = Dsk(·)

We insist, above, that A1 outputs x0, x1 with |x0| = |x1|. In the case of CCA2, we further insist
that A2 does not ask its oracle to decrypt y. We say that Π is secure in the sense of IND-ATK if A
being polynomial-time implies that Advind-atk

A,Π (·) is negligible.

2.3 Non-Malleability

Notation. We will need to discuss vectors of plaintexts or ciphertexts. A vector is denoted in
boldface, as in x. We denote by |x| the number of components in x, and by x[i] the i-th component,
so that x = (x[1], . . . ,x[|x|]). We extend the set membership notation to vectors, writing x ∈ x
or x 6∈ x to mean, respectively, that x is in or is not in the set { x[i] : 1 ≤ i ≤ |x| }. It will be
convenient to extend the decryption notation to vectors with the understanding that operations
are performed componentwise. Thus x ← Dsk(y) is shorthand for the following: for 1 ≤ i ≤ |y|
do x[i]← Dsk(y[i]).

We will consider relations of arity t where t will be polynomial in the security parameter k.
Rather than writing R(x1, . . . , xt) we write R(x,x), meaning the first argument is special and the
rest are bunched into a vector x with |x| = t− 1.

Idea. The notion of non-malleability was introduced in [13], with refinements in [14, 15]. The goal
of the adversary, given a ciphertext y, is not (as with indistinguishability) to learn something about
its plaintext x, but only to output a vector y of ciphertexts whose decryption x is “meaningfully
related” to x, meaning that R(x,x) holds for some relation R. The question is how exactly one
measures the advantage of the adversary. This turns out to need care. One possible formalization
is that of [13, 14, 15], which is based on the idea of simulation; it asks that for every adversary there
exists a certain type of “simulator” that does just as well as the adversary but without being given y.
Here, we introduce a novel formalization which seems to us to be simpler. Our formalization does
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not ask for a simulator, but just considers an experiment involving the adversary. It turns out that
our notion is equivalent to DDN’s [7].

Our formalization. Let A = (A1, A2) be an adversary. In the first stage of the adversary’s
attack, A1, given the public key pk, outputs a description of a message space, described by a
sampling algorithm M . The message space must be valid, which means that it gives non-zero
probability only to strings of some one particular length. In the second stage of the adversary’s
attack, A2 receives an encryption y of a random message, say x, drawn from M . The adversary
then outputs a (description of a) relation R and a vector y (no component of which is y). She
hopes that R(x,x) holds, where x← Dsk(y). An adversary (A1, A2) is successful if she can do this
with a probability significantly more than that with which R(x̃,x) holds for some random hidden
x̃←M .

Definition 2.2 [NM-CPA, NM-CCA1, NM-CCA2] Let Π = (K, E ,D) be an encryption scheme
and let A = (A1, A2) be an adversary. For atk ∈ {cpa, cca1, cca2} and k ∈ N define

Advnm-atk
A,Π (k)

def
=

∣

∣

∣ Succnm-atk
A,Π (k) − Succnm-atk

A,Π,$ (k)
∣

∣

∣

where Succnm-atk
A,Π (k)

def
=

Pr
[

(pk, sk)← K(1k) ; (M, s)← AO1

1 (pk) ; x←M ; y ← Epk(x) ;

(R,y)← AO2

2 (M, s, y) ; x← Dsk(y) : y 6∈ y ∧ ⊥ 6∈ x ∧R(x,x)
]

and Succnm-atk
A,Π,$ (k)

def
=

Pr
[

(pk, sk)← K(1k) ; (M, s)← AO1

1 (pk) ; x, x̃←M ; y ← Epk(x) ;

(R,y)← AO2

2 (M, s, y) ; x← Dsk(y) : y 6∈ y ∧ ⊥ 6∈ x ∧R(x̃,x)
]

where

If atk = cpa then O1(·) = ε and O2(·) = ε
If atk = cca1 then O1(·) = Dsk(·) and O2(·) = ε
If atk = cca2 then O1(·) = Dsk(·) and O2(·) = Dsk(·)

We insist, above, that M is valid: |x| = |x′| for any x, x′ that are given non-zero probability in the
message space M . We say that Π is secure in the sense of NM-ATK if for every polynomial p(k):
if A runs in time p(k), outputs a (valid) message space M samplable in time p(k), and outputs a
relation R computable in time p(k), then Advnm-atk

A,Π (·) is negligible.

The condition that y 6∈ y is made in order to not give the adversary credit for the trivial and
unavoidable action of copying the challenge ciphertext. Otherwise, she could output the equality
relation R, where R(a, b) holds iff a = b, and output y = (y), and be successful with probability
one. We also declare the adversary unsuccessful when some ciphertext y[i] does not have a valid
decryption (that is, ⊥ ∈ x), because in this case, the receiver is simply going to reject the adversary’s
message anyway. The requirement that M is valid is important; it stems from the fact that
encryption is not intended to conceal the length of the plaintext.

Remark 2.3 [Histories] One might want to strengthen the notion to require that the adversary’s
advantage remains small even if it obtains, somehow, some a priori information about the message x.
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Such incorporation of message “history” was made in Goldreich’s formalizations of semantic secu-
rity [19]. The DDN definitions similarly incorporate history in the context of non-malleability. The
same can be done for our definition. Whether or not one uses histories does not affect the results
in this paper, so for simplicity we have omitted this feature in the formal definition above, and
discuss it only in remarks.

Let us briefly sketch our way of adding histories to our definition. We simply change the meaning
of the message space M output by A during the first phase of her execution: make M a distribution
on pairs (x, a) consisting of messages and their associated auxiliary information (history). Now
modify the definition of Succnm-atk

A,Π (k) so as follows. The sampling from M in the experiment
becomes (x, a) ← M , and, later, a is given as an additional input to A2. Everything else is the
same. Similarly modify Succnm-atk

A,Π,$ (k) as follows. The sampling from M becomes (x, a), (x̃, ã)←M ,
and, later, A2 gets ã (not a) as an additional input. Everything else is the same.

We recall that the traditional approach of incorporating histories followed in [19, 14] is via a
fixed history function hist(x) that is then universally quantified at the start. Our approach would
seem to be simpler and also more general, since it allows one to associate with messages probabilistic
information efficiently computable only knowing secret coins associated to the message.

3 Relating IND and NM

We state more precisely the results summarized in Figure 1 and provide proofs. As mentioned
before, we summarize only the main relations (the ones that require proof); all other relations
follow as corollaries.

3.1 Results

The first result, that non-malleability implies indistinguishability under any type of attack, was of
course established by [13] in the context of their definition of non-malleability, but since we have a
new definition of non-malleability, we need to re-establish it. The (simple) proof of the following is
in Section 3.3.

Theorem 3.1 [NM-ATK⇒ IND-ATK] If encryption scheme Π is secure in the sense of NM-ATK
then Π is secure in the sense of IND-ATK, for any attack ATK ∈ {CPA,CCA1,CCA2}.

Remark 3.2 Recall that the relation R in Definition 2.2 was allowed to have any polynomially
bounded arity. However, the above theorem holds even under a weaker notion of NM-ATK in which
the relation R is restricted to have arity two.

The proof of the following is in Section 3.4.

Theorem 3.3 [IND-CCA2 ⇒ NM-CCA2] If encryption scheme Π is secure in the sense of
IND-CCA2 then Π is secure in the sense of NM-CCA2.

Remark 3.4 Theorem 3.3 coupled with Theorem 3.1 and Remark 3.2 says that in the case of
CCA2 attacks, it suffices to consider binary relations, meaning the notion of NM-CCA2 restricted
to binary relations is equivalent to the general one.

Now we turn to separations. Adaptive chosen-ciphertext security implies non-malleability according
to Theorem 3.3. In contrast, the following says that non-adaptive chosen-ciphertext security does
not imply non-malleability. The proof is in Section 3.5.
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Theorem 3.5 [IND-CCA16⇒NM-CPA] If there exists an encryption scheme Π which is secure in
the sense of IND-CCA1, then there exists an encryption scheme Π′ which is secure in the sense
of IND-CCA1 but which is not secure in the sense of NM-CPA.

Now one can ask whether non-malleability implies chosen-ciphertext security. The following says
it does not even imply the non-adaptive form of the latter. (As a corollary, it certainly does not
imply the adaptive form.) The proof is in Section 3.6.

Theorem 3.6 [NM-CPA 6⇒IND-CCA1] If there exists an encryption scheme Π which is secure
in the sense of NM-CPA, then there exists an encryption scheme Π′ which is secure in the sense
of NM-CPA but which is not secure in the sense of IND-CCA1.

Now the only relation that does not immediately follow from the above results or by a trivial
reduction is that the version of non-malleability allowing CCA1 does not imply the version that
allows CCA2. See Section 3.7 for the proof of the following.

Theorem 3.7 [NM-CCA16⇒NM-CCA2] If there exists an encryption scheme Π which is secure
in the sense of NM-CCA1, then there exists an encryption scheme Π′ which is secure in the sense
of NM-CCA1 but which is not secure in the sense of NM-CCA2.

3.2 Notation and Preliminaries

For relations R which could be of arbitrary arity we use the simplifying notation R(a, b) as a
shorthand for R(a,b) when it is clear that b[1] = b and |b| = 1. We let a denote the bitwise
complement (namely the string obtained by flipping each bit) of a.

For an IND-ATK adversary A = (A1, A2) we will, whenever convenient, assume that the mes-
sages x0, x1 that A1 outputs are distinct. Intuitively this cannot decrease the advantage because
the contribution to the advantage in case they are equal is zero. Actually one has to be a little
careful. The claim will be that we can modify A to make sure that the output messages are distinct,
and one has to be careful to make sure that when A outputs equal messages the modified adversary
does not get any advantage, so that the advantage of the modified adversary is the same as that of
the original one. For completeness we encapsulate the claim in the following proposition.

Proposition 3.8 Let A = (A1, A2) be any adversary attacking encryption scheme Π in the
sense of IND-ATK. Then there exists another adversary B = (B1, B2) attacking Π in the sense
of IND-ATK such that the two (equal length) messages that B1 outputs are always distinct,
Advind-atk

B,Π (k) = Advind-atk
A,Π (k), and the running time of B is within a constant factor of that of A.

Proof: Adversaries A and B have access to an oracle O1 in their first stage and an oracle O2 in
their second stage, these oracles being instantiated according to the attack ATK as described in
the definitions. The adversary B = (B1, B2) is as follows:

Algorithm BO1

1 (pk)

(x0, x1, s)← AO1

1 (pk)
if x0 6= x1 then d← 0 else d← 1
x′

0 ← x0 ; s′ ← s ‖ d
if d = 0 then x′

1 ← x1 else x′
1 ← x0

return (x′
0, x

′
1, s

′)

Algorithm BO2

2 (x′
0, x

′
1, s

′, y) where s′ = s ‖ d

if d = 0 then c← AO2

2 (x′
0, x

′
1, s, y)

else c← {0, 1}
return c

Note that by defining x′
0, x

′
1 this way we always have x′

0 6= x′
1. Also note that when x0 = x1 we

have B2 output a random bit c to make sure its advantage in that case is zero.
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It is easy to see that the running time of B is within a constant factor of that of A. Now we
claim that Advind-atk

B,Π (k) = Advind-atk
A,Π (k). To justify this, consider the experiments underlying the

definitions of the advantages of A and B, respectively:

Experiment1
def
= (pk, sk)← K(1k) ; (x0, x1, s)← A1(pk) ; b← {0, 1} ;

y ← Epk(xb) ; c← AO2

2 (x0, x1, s, y)

Experiment2
def
= (pk, sk)← K(1k) ; (x0, x1, s)← A1(pk) ; b← {0, 1} ;

y ← Epk(xb) ; c← BO2

2 (x′
0, x

′
1, s ‖ d, y) .

In the last experiment, x′
0, x

′
1, d are defined in terms of x0, x1 as per the code of B1. Let Pr1[ · ] =

Pr[Experiment1 : ·] be the probability function under Experiment1 and Pr2[ · ] = Pr[Experiment2 : ·]
be that under Experiment2. By definition

Advind-atk
A,Π (k) = 2 · Pr1 [ b = c ]− 1 and Advind-atk

B,Π (k) = 2 · Pr2 [ b = c ]− 1 .

Thus it suffices to show that Pr1 [ b = c ] = Pr2 [ b = c ]. Let E denote the event that x0 = x1, or,
equivalently, that d = 1. Then

Pr1 [ b = c ] = Pr1 [ b = c | E ] · Pr1 [E ] + Pr1
[

b = c | E
]

· Pr1
[

E
]

Pr2 [ b = c ] = Pr2 [ b = c | E ] · Pr2 [E ] + Pr2
[

b = c | E
]

· Pr2
[

E
]

.

That Pr1 [ b = c ] = Pr2 [ b = c ] now follows by putting together the following observations:

• Pr1 [ E ] = Pr2 [E ] since E depends only on A1.

• Pr1 [ b = c | E ] = 1/2 because when E is true, A2 has no information about b. On the other
hand Pr2 [ b = c | E ] = 1/2 because when E is true we have B2 output a random bit.

• Pr1
[

b = c | E
]

= Pr2
[

b = c | E
]

because in this case the experiments are the same, namely

we are looking at the output of A2.

This completes the proof of Proposition 3.8.

3.3 Proof of Theorem 3.1: NM-ATK⇒ IND-ATK

We are assuming that encryption scheme Π is secure in the NM-ATK sense. We will show it is also
secure in the IND-ATK sense. Let B = (B1, B2) be a IND-ATK adversary attacking Π. We want to
show that Advind-atk

B,Π (·) is negligible. To this end, we describe a NM-ATK adversary A = (A1, A2)
attacking Π. Adversaries A and B have access to an oracle O1 in their first stage and an oracle
O2 in their second stage, these oracles being instantiated according to the attack ATK as per the
definitions. Recall that z denotes the bitwise complement of a string z.

Algorithm AO1

1 (pk)

(x0, x1, s)← BO1

1 (pk)
M := {x0, x1}
s′ ← (x0, x1,pk, s)
return (M, s′)

Algorithm AO2

2 (M, s′, y) where s′ = (x0, x1,pk, s)

c← BO2

2 (x0, x1, s, y)
y′ ← Epk(xc)
return (R, y′) where R(a, b) = 1 iff a = b

The notation M := {x0, x1} means that M is being assigned the probability space which assigns to
each of x0 and x1 a probability of 1/2. AO2

2 outputs (the description of) the complement relation
R, which for any arguments a, b is 1 if a = b and 0 otherwise.
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We consider the advantage of A, given by

Advnm-atk
A,Π (k) =

∣

∣

∣ Succnm-atk
A,Π (k) − Succnm-atk

A,Π,$ (k)
∣

∣

∣ ,

where

Succnm-atk
A,Π (k) = Pr

[

(pk, sk)← K(1k) ; (M, s′)← AO1

1 (pk) ; x←M ; y ← Epk(x) ;

(R, y′)← AO2

2 (M, s′, y) ; x′ ← Dsk(y′) : y 6= y′ ∧ ⊥ 6= x′ ∧R(x, x′)
]

Succnm-atk
A,Π,$ (k) = Pr

[

(pk, sk)← K(1k) ; (M, s′)← AO1

1 (pk) ; x, x̃←M ; y ← Epk(x) ;

(R, y′)← AO2

2 (M, s′, y) ; x′ ← Dsk(y′) : y 6= y′ ∧ ⊥ 6= x′ ∧R(x̃, x′)
]

.

Recall the advantage of B is given by Advind-atk
B,Π (k) = 2 · pk − 1, where

pk = Pr
[

(pk, sk)← K(1k) ; (x0, x1, s)← BO1

1 (pk) ; b← {0, 1} ;

y ← Epk(xb) ; c← BO2

2 (x0, x1, s, y) : c = b
]

.

By Proposition 3.8 we may assume here, without loss of generality, that we always have x0 6= x1.
This turns out to be important below.

Claim 1: Succnm-atk
A,Π (k) = pk.

Proof: Look first at the code of A2. Note that R(x, x′) is true iff Dsk(y) = xc. Also note that when
R(x, x′) is true it must be that x 6= x′ and hence, by the unique decryptability of the encryption
scheme, that y 6= y′. Also we always have ⊥ 6= x′.

Now, consider the experiment defining pk. An important observation is that Dsk(y) = xc iff
b = c. (This uses the fact that x0 6= x1, and would not be true otherwise.) Now one can put
this together with the above and see that b = c in the experiment underlying pk exactly when
y 6= y′ ∧ ⊥ 6= x′ ∧R(x, x′) in the experiment underlying Succnm-atk

A,Π (k). 2

Claim 2: Succnm-atk
A,Π,$ (k) = 1/2.

Proof: This follows from an information theoretic fact, namely that A has no information about
the message x̃ with respect to which its success is measured. 2

Now we can apply the claims to get

Advind-atk
B,Π (k) = 2 ·

(

pk −
1

2

)

= 2 ·
(

Succnm-atk
A,Π (k)− Succnm-atk

A,Π,$ (k)
)

≤ 2 ·
∣

∣

∣ Succnm-atk
A,Π (k)− Succnm-atk

A,Π,$ (k)
∣

∣

∣

= 2 · Advnm-atk
A,Π (k) .

But since Π is secure in the NM-ATK sense we know that Advnm-atk
A,Π (·) is negligible, and hence the

above implies Advind-atk
B,Π (·) is negligible too. This concludes the proof of Theorem 3.1.

The claim of Remark 3.2 is clear from the above because the relation R output by A is binary.

3.4 Proof of Theorem 3.3: IND-CCA2⇒ NM-CCA2

We are assuming that encryption scheme Π is secure in the IND-CCA2 sense. We show it is also
secure in the NM-CCA2 sense. The intuition is simple: since the adversary has access to the
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decryption oracle, she can decrypt the ciphertexts she would output, and so the ability to output
ciphertexts is not likely to add power.

For the proof, let B = (B1, B2) be an NM-CCA2 adversary attacking Π. We must show
that Advnm-cca2

B,Π (·) is negligible. To this end, we describe an IND-CCA2 adversary A = (A1, A2)
attacking Π.

Algorithm ADsk

1 (pk)

(M, s)← BDsk
1 (pk)

x0 ←M ; x1 ←M
s′ ← (M, s)
return (x0, x1, s

′)

Algorithm ADsk

2 (x0, x1, s
′, y) where s′ = (M, s)

(R,y)← BDsk
2 (M, s, y) ; x← Dsk(y)

if (y 6∈ y ∧⊥ 6∈ x ∧R(x0,x)) then d← 0
else d← {0, 1}

return d

Notice A is polynomial time under the assumption that the running time of B, the time to compute
R, and the time to sample from M are all bounded by a fixed polynomial in k. The advantage of
A is given by Advind-cca2

A,Π (k) = pk(0)− pk(1) where for b ∈ {0, 1} we let

pk(b) = Pr
[

(pk, sk)← K(1k) ; (x0, x1, s
′)← ADsk

1 (pk) ; y ← Epk(xb) :

ADsk

2 (x0, x1, s
′, y) = 0

]

.

Also for b ∈ {0, 1} we let

p′k(b) = Pr
[

(pk, sk)← K(1k) ; (M, s)← BDsk

1 (pk) ; x0, x1 ←M ; y ← Epk(xb) ;

(R,y)← BDsk

2 (M, s, y) ; x← Dsk(y) : y 6∈ y ∧ ⊥ /∈ x ∧R(x0,x)
]

.

Now observe that A2 may return 0 either when x is R-related to x0 or as a result of the coin flip.
Continuing with the advantage then,

Advind-cca2
A,Π (k) = pk(0)− pk(1) =

1

2
· [1 + p′k(0)]−

1

2
· [1 + p′k(1)] =

1

2
· [p′k(0)− p′k(1)]

We now observe that the experiment of B2 being given a ciphertext of x1 and R-relating x to x0,
is exactly that defining Succnm-cca2

B,Π,$ (k). On the other hand, in case it is x0, we are looking at the

experiment defining Succnm-cca2
B,Π (k). So

Advnm-cca2
B,Π (k) = p′k(0) − p′k(1) = 2 · Advind-cca2

A,Π (k) .

But we know that Advind-cca2
A,Π (·) is negligible because Π is secure in the sense of IND-CCA2. It

follows that Advnm-cca2
B,Π (·) is negligible, as desired.

3.5 Proof of Theorem 3.5: IND-CCA1 6⇒ NM-CPA

Assume there exists some IND-CCA1 secure encryption scheme Π = (K, E ,D), since otherwise the
theorem is vacuously true. We now modify Π to a new encryption scheme Π′ = (K′, E ′,D′) which
is also IND-CCA1 secure but not secure in the NM-CPA sense. This will prove the theorem.

The new encryption scheme Π′ = (K′, E ′,D′) is defined as follows. Here x denotes the bitwise
complement of string x, namely the string obtained by flipping each bit of x.

Algorithm K′(1k)
(pk, sk)← K(1k)
return (pk, sk)

Algorithm E ′pk(x)

y1 ← Epk(x) ; y2 ← Epk(x)
return y1‖y2

Algorithm D′
sk(y1‖y2)

return Dsk(y1)
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In other words, a ciphertext in the new scheme is a pair y1 ‖ y2 consisting of the encryption of the
message and its complement. In decrypting, the second component is ignored. It is now quite easy
to see that:

Claim 3.9 Π′ is not secure in the NM-CPA sense.

Proof: Given a ciphertext y1 ‖ y2 of a message x, it is easy to create a ciphertext of x: just output
y2 ‖ y1. Thus, the scheme is malleable.

Formally, we can specify a polynomial time adversary A = (A1, A2) that breaks Π′ in the sense of
NM-CPA, with probability almost one, as follows. A1(pk) outputs (M,φ) where M puts a uniform
distribution on {0, 1}k . Then algorithm A2(M,φ, y1 ‖ y2) outputs (R, y2 ‖ y1) where R describes
the binary relation defined by R(m1,m2) = 1 iff m1 = m2. It is easy to see that the plaintext, x′,
corresponding to the ciphertext that A outputs is R-related to x with probability 1. Observe that
the probability of some random plaintext x̃ being R-related to x′ is at most 2−k. Thus Adv

nm-cpa
A,Π′ (k)

is 1− 2−k which is not negligible. (In fact it is close to one.) Hence A is a successful adversary and
the scheme is not secure in the sense of NM-CPA.

On the other hand, a hybrid argument establishes that Π′ retains the IND-CCA1 security of Π:

Claim 3.10 Π′ is secure in the sense of IND-CCA1.

Proof: Let B = (B1, B2) be some polynomial time adversary attacking Π′ in the IND-CCA1 sense.
We want to show that Advind-cca1

B,Π′ (k) is negligible. To do so, consider the following probabilities,
defined for i, j ∈ {0, 1}:

pk(i, j) = Pr
[

(pk, sk)← K(1k) ; (x0, x1, s)← BDsk

1 (pk) ; y1 ← Epk(xi) ; y2 ← Epk(xj) :

B2(x0, x1, s, y1‖y2) = 1
]

.

We know that Advind-cca1
B,Π′ (k) = pk(1, 1) − pk(0, 0). The following lemmas state that, under our

assumption that Π is IND-CCA1-secure, it must be that the differences pk(1, 1) − pk(1, 0) and
pk(1, 0) − pk(0, 0) are both negligible. This will complete the proof since

Advind-cca1
B,Π′ (k) = pk(1, 1) − pk(0, 0) = [pk(1, 1) − pk(1, 0)] + [pk(1, 0) − pk(0, 0)] ,

being the sum of two negligible functions, will be negligible. So it remains to (state and) prove the
lemmas.

Lemma 1: pk(1, 1) − pk(1, 0) is negligible.

Proof: We can construct an adversary A = (A1, A2) that attacks the scheme Π in the IND-CCA1
sense, as follows:

Algorithm ADsk

1 (pk)

(x0, x1, s)← B
D′

sk

1 (pk)
m0 ← x0 ; m1 ← x1

return (m0,m1, s)

Algorithm A2(m0,m1, s, y)
y1 ← Epk(m1) ; y2 ← y
d← B2(m0,m1, s, y1 ‖ y2)
return d

The computation B
D′

sk

1 (pk) is done by A1 simulating the D′
sk oracle. It can do this by replying

to query y1 ‖ y2 via Dsk(y1), using its own Dsk oracle and the definition of D′
sk . This adversary is

polynomial time. One can now check the following:

Pr
[

(pk, sk)← K(1k) ; (m0,m1, s)← ADsk

1 (pk) ; y ← Epk(m1) : A2(m0,m1, s, y) = 1
]

= pk(1, 1)

Pr
[

(pk, sk)← K(1k) ; (m0,m1, s)← ADsk

1 (pk) ; y ← Epk(m0) : A2(m0,m1, s, y) = 1
]

= pk(1, 0)
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Thus Advind-cca1
A,Π (k) = pk(1, 1) − pk(1, 0). The assumed security of Π in the IND-CCA1 sense now

implies the latter difference is negligible. 2

Lemma 2: pk(1, 0) − pk(0, 0) is negligible.

Proof: We can construct an adversary A = (A1, A2) that attacks the scheme Π in the IND-CCA1
sense, as follows:

Algorithm ADsk

1 (pk)

(x0, x1, s)← B
D′

sk

1 (pk)
return (x0, x1, s)

Algorithm A2(x0, x1, s, y)
y1 ← y and y2 ← Epk(x0)
d← B2(x0, x1, s, y1‖y2)
return d

Again A is polynomial time and can simulate D ′
sk given Dsk . We observe that

Pr
[

(pk, sk)← K(1k) ; (x0, x1, s)← ADsk

1 (pk) ; y ← Epk(x1) : A2(x0, x1, s, y) = 1
]

= pk(1, 0)

Pr
[

(pk, sk)← K(1k) ; (x0, x1, s)← ADsk

1 (pk) ; y ← Epk(x0) : A2(x0, x1, s, y) = 1
]

= pk(0, 0)

Thus Advind-cca1
A,Π (k) = pk(1, 0) − pk(0, 0). The assumed security of Π in the IND-CCA1 sense now

implies the latter difference is negligible. 2

This completes the proof of Claim 3.10.

Remark 3.11 We could have given a simpler scheme Π′ than the one above that would be secure
in the IND-CCA1 sense but not in the NM-CPA sense. Let K′ be as above, let E ′pk(x)← y ‖ b where
y ← Epk(x) and b← {0, 1} and D′

sk(b ‖ y)← Dsk(y). The malleability of Π′ arises out of the ability
of the adversary to create another ciphertext from the challenge ciphertext y ‖ b, by returning y ‖ b.
This is allowed by Definition 2.2 since the only restriction is that the vector of ciphertexts y the
adversary outputs should not contain y ‖ b. However, the definition of [13] did not allow this, and,
in order to have a stronger separation result that also applies to their notion, we gave the above
more involved construction.

3.6 Proof of Theorem 3.6: NM-CPA 6⇒ IND-CCA1

Let’s first back up a bit and provide some intuition about why the theorem might be true and how
we can prove it.

Intuition and first attempts. At first glance, one might think NM-CPA does imply IND-CCA1
(or even IND-CCA2), for the following reason. Suppose an adversary has a decryption oracle, and
is asked to tell whether a given ciphertext y is the encryption of x0 or x1, where x0, x1 are messages
she has chosen earlier. She is not allowed to call the decryption oracle on y. It seems then the only
strategy she could have is to modify y to some related y ′, call the decryption oracle on y′, and use
the answer to somehow help her determine whether the decryption of y was x0 or x1. But if the
scheme is non-malleable, creating a y ′ meaningfully related to y is not possible, so the scheme must
be chosen-ciphertext secure.

The reasoning above is fallacious. The flaw is in thinking that to tell whether y is an encryption
of x0 or x1, one must obtain a decryption of a ciphertext y ′ related to the challenge ciphertext y. In
fact, what can happen is that there are certain strings whose decryption yields information about
the secret key itself, yet the scheme remains non-malleable.
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The approach to prove the theorem is to modify a NM-CPA scheme Π = (K, E ,D) to a new
scheme Π′ = (K′, E ′,D′) which is also NM-CPA but can be broken under a non-adaptive chosen-
ciphertext attack. (We can assume a NM-CPA scheme exists since otherwise there is nothing to
prove.) A first attempt to implement the above idea (of having the decryption of certain strings
carry information about the secret key) is straightforward. Fix some ciphertext u not in the range
of E and define D′

sk(u) = sk to return the secret key whenever it is given this special ciphertext.
In all other aspects, the new scheme is the same as the old one. It is quite easy to see that this
scheme falls to a (non-adaptive) chosen-ciphertext attack, because the adversary need only make
query u of its decryption oracle to recover the entire secret key. The problem is that it is not so
easy to tell whether this scheme remains non-malleable. (Actually, we don’t know whether it is or
not, but we certainly don’t have a proof that it is.)

As this example indicates, it is easy to patch Π so that it can be broken in the sense of
IND-CCA1; what we need is that it also be easy to prove that it remains NM-CPA secure. The
idea of our construction below is to use a level of indirection: sk is returned by D ′ in response to
a query v which is itself a random string that can only be obtained by querying D ′ at some other
known point u. Intuitively, this scheme will be NM-CPA secure since v will remain unknown to
the adversary.

Our construction. Given a non-malleable encryption scheme Π = (K, E ,D) we define a new
encryption scheme Π′ = (K′, E ′,D′) as follows:

Algorithm K′(1k)
(pk, sk)← K(1k)
u, v ← {0, 1}k

pk′ ← pk ‖u
sk′ ← sk ‖ u ‖ v
return (pk ′, sk ′)

Algorithm E ′
pk ‖u(x)

y ← Epk(x)
return 0 ‖ y

Algorithm D′
sk ‖u ‖ v(b ‖ y) where b ∈ {0, 1}

if b = 0 then return Dsk(y)
else if y = u then return v

else if y = v return sk
else return ⊥

Analysis. The proof of Theorem 3.6 is completed by establishing that Π′ is vulnerable to a
IND-CCA1 attack but remains NM-CPA secure.

Claim 3.12 Π′ is not secure in the sense of IND-CCA1.

Proof: The adversary queries D′
sk ‖u ‖ v(·) at 1 ‖ u to get v, and then queries it at the point 1 ‖ v,

to get sk. At this point, knowing the secret key, she can obviously perform the distinguishing task
we later require of her.

If you wish to see it more formally, the find stage A1 of the adversary gets pk as above and
outputs any two distinct, equal length messages x0, x1. In the next stage, it receives a ciphertext
0 ‖ y ← E ′

pk ‖u(xb) where b was a random bit. Now it can compute Dsk(y) to recover the message

and thus determine b with probability one. It is obviously polynomial time.

Remember that Π is assumed secure in the sense of NM-CPA. We will use this to establish the
following:

Claim 3.13 Π′ is secure in the sense of NM-CPA.

Proof: To prove this claim we consider a polynomial time adversary B attacking Π ′ in the NM-CPA
sense. We want to show that Adv

nm-cpa
B,Π′ (·) is negligible. To do this, we construct an adversary

A = (A1, A2) that attacks Π in the NM-CPA sense. The idea is that A can run B as a subroutine
and simulate the choosing of u, v by the key generation algorithm K ′ for B.
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Algorithm A1(pk)
u, v ← {0, 1}k

pk′ ← pk ‖u
(M, s)← B1(pk ′)
s′ ← (s, u, v,pk)
return (M, s′)

Algorithm A2(M, s′, y) where s′ = (s, u, v,pk)
(R, z)← B2(M, s, 0 ‖ y)
for 1 ≤ i ≤ |z| do parse z[i] as bi ‖ zi where bi is a bit
for 1 ≤ i ≤ |z| do

if bi = 0 then y[i]← zi

else if (bi = 1) ∧ (zi = u) then y[i]← Epk(v)
else y[i]← y

return (R,y)

We now define two experiments. The first is the one under which Adv
nm-cpa
A,Π (k) is evaluated, and

the second is the one under which Adv
nm-cpa
B,Π′ (k) is evaluated:

Experiment1
def
= (pk, sk)← K(1k) ; (M, (s, u, v,pk))← A1(pk) ; x, x̃←M ; y ← Epk(x) ;

(R,y)← A2(M, (s, u, v,pk), y) ; x← Dsk(y)

Experiment2
def
= (pk ‖u, sk ‖ u ‖ v)← K′(1k) ; (M, s)← B1(pk ‖u) ; x, x̃←M ;

0 ‖ y ← E ′pk ‖u(x) ; (R, z)← B2(M, s, 0 ‖ y) ; w← D′
sk‖u‖v(z) .

Let Pr1[ · ] = Pr[Experiment1 : · ] be the probability function under Experiment1 and Pr2[ · ] =
Pr[Experiment2 : · ] be that under Experiment2. Let E1,E2, and E3 be the following events:

E1
def
= ∀i : (bi = 0) ∨ (bi = 1 ∧ zi = u)

E2
def
= ∃i : (bi = 1 ∧ zi = v ∧ u 6= v)

E3
def
= ∃i : (bi = 1 ∧ zi 6= u ∧ zi 6= v)

For j = 1, 2, 3 let

p(1, j) = Pr1 [ y 6∈ y ∧ ⊥ 6∈ x ∧R(x,x) | Ej ]− Pr1 [ y 6∈ y ∧ ⊥ 6∈ x ∧R(x̃,x) | Ej ]

p(2, j) = Pr2 [ 0 ‖ y 6∈ z ∧ ⊥ 6∈ w ∧R(x,w) | Ej ]− Pr2 [ 0 ‖ y 6∈ z ∧ ⊥ 6∈ w ∧R(x̃,w) | Ej ] .

By conditioning we have:

Adv
nm-cpa
A,Π (k) =

∣

∣

∣

∑3
j=1 p(1, j) · Pr1[Ej ]

∣

∣

∣

Adv
nm-cpa
B,Π′ (k) =

∣

∣

∣

∑3
j=1 p(2, j) · Pr2[Ej ]

∣

∣

∣ .

We now upper bound Adv
nm-cpa
B,Π′ (k) in terms of Adv

nm-cpa
A,Π (k) by a series of lemmas. The first

observation is that the probability of our three events is the same in both experiments.

Lemma 1: Pr1[Ej ] = Pr2[Ej ] for j = 1, 2, 3.

Proof: These events depend only on the keys and B. 2

Let q be a polynomial which bounds the running time of B. In particular we can assume |z| < q(k).

Lemma 2: p(2, 1) ≤ p(1, 1) + q(k) · 2−k.

Proof: By event E1 every z[i] = bi ‖ zi has either (bi = 0) or (bi = 1 ∧ zi = u).

If bi = 0 then A will output zi in Experiment1, while B would be outputting 0 ‖ zi in Experiment2.
But D′

sk ‖u ‖ v(0 ‖ zi) = Dsk(zi), and furthermore y = zi (the challenge to A is equal to this compo-

nent of A’s output) iff 0 ‖ y = 0 ‖ zi (the challenge to B is equal to this component of B’s output).
Thus A properly simulates B.
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If bi = 1 and zi = u then D′
sk ‖u ‖ v(bi ‖ zi) = v is random and independent of the execution of B.

To “simulate” it we have A output an encryption of random v. But, A will only be successful if the
created ciphertext is different from y. The probability of this not happening can be upper bounded
by the probability that v = Dsk(y), which is at most 2−k. The worst case in this event is when
∀i : (bi = 1 ∧ zi = u). Since |z| ≤ q(k), the probability, under this event, that A does not match
the advantage of B, is at most q(k) · 2−k. 2

Lemma 3: Pr1[E2 ] ≤ q(k) · 2−k.

Proof: B has no information about v since the latter was chosen independently of its execution,
and also u has a 2−k chance of equaling v. The Lemma follows since |z| < q(k). 2

Lemma 4: p(1, 3) = p(2, 3) = 0.

Proof: When event E3 happens in Experiment1, one of the ciphertexts y[i] that A2 outputs equals
y and hence there is no contribution to the success probability. When event E3 happens in
Experiment2, the definition of D′

sk ‖u ‖ v says that the decryption of some z[i] is ⊥ and hence again
there is no contribution to the success probability. In other words, in both cases, there is no success
in either the “real” or the “random” experiment. 2

From Lemmas 1,2,3,4 we get

Adv
nm-cpa
B,Π′ (k) =

∣

∣

∣

∑3
j=1 p(2, j) · Pr1[Ej ]

∣

∣

∣

≤ q(k) · 2−k + | p(1, 1) · Pr1[E1 ] + p(2, 2) · Pr1[E2 ] + p(1, 3) · Pr1[E3 ] |

≤ q(k) · 2−k + | p(1, 1) · Pr1[E1 ] + p(1, 2) · Pr1[E2 ] + p(1, 3) · Pr1[E3 ] |

+ | p(2, 2) − p(1, 2) | · Pr1[E2 ]

≤ q(k) · 2−k +
∣

∣

∣

∑3
j=1 p(1, j) · Pr1[Ej ]

∣

∣

∣ + Pr1[E2 ]

≤ 2q(k) · 2−k + Adv
nm-cpa
A,Π (k) .

The assumption that Π is secure in the sense of NM-CPA implies that Adv
nm-cpa
A,Π (k) is negligible,

and hence it follows that Adv
nm-cpa
B,Π′ (k) is negligible.

3.7 Proof of Theorem 3.7: NM-CCA1 6⇒ NM-CCA2

The approach, as before, is to take a NM-CCA1 secure encryption scheme Π = (K, E ,D) and modify
it to a new encryption scheme Π′ = (K′, E ′,D′) which is also NM-CCA1 secure, but can be broken
in the NM-CCA2 sense.

Intuition. Notice that the construction of Section 3.6 will no longer work, because the scheme
constructed there, not being secure in the sense of IND-CCA1, will certainly not be secure in the
sense of NM-CCA1, for the same reason: the adversary can obtain the decryption key in the first
stage using a couple of decryption queries. Our task this time is more complex. We want queries
made in the second stage, after the challenge is received, to be important, meaning they can be
used to break the scheme, yet, somehow, queries made in the first stage cannot be used to break the
scheme. This means we can no longer rely on a simplistic approach of revealing the secret key in
response to certain queries. Instead, the “breaking” queries in the second stage must be a function
of the challenge ciphertext, and cannot be made in advance of seeing this ciphertext. We implement
this idea by a “tagging” mechanism. The decryption function is capable of tagging a ciphertext so
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as to be able to “recognize” it in a subsequent query, and reveal in that stage information related
specifically to the ciphertext, but not directly to the secret key. The tagging is implemented via
pseudorandom function families.

Our construction. Let Π = (K, E ,D) be the given NM-CCA1 secure encryption scheme. Fix
a family F = { F k : k ≥ 1 } of pseudorandom functions as per [20]. (Notice that this is not
an extra assumption. We know that the existence of even a IND-CPA secure encryption scheme
implies the existence of a one-way function [23] which in turn implies the existence of a family of
pseudorandom functions [22, 20].) Here each F k = { FK : K ∈ {0, 1}k } is a finite collection in
which each key K ∈ {0, 1}k indexes a particular function FK : {0, 1}k → {0, 1}k. We define the
new encryption scheme Π′ = (K′, E ′,D′) as follows. Recall that ε is the empty string.

Algorithm K′(1k)
(pk, sk)← K(1k)
K ← {0, 1}k

sk ′ ← sk ‖K
return (pk, sk ′)

Algorithm E ′pk(x)

y ← Epk(x)
return 0 ‖ y ‖ ε

Algorithm D′
sk ‖K(b ‖ y ‖ z) where b is a bit

if (b = 0) ∧ (z = ε) then return Dsk(y)
else if (b = 1) ∧ (z = ε) then return FK(y)
else if (b = 1) ∧ (z = FK(y)) return Dsk(y)

else return ⊥

Analysis. The proof of Theorem 3.7 is completed by establishing that Π′ is vulnerable to a
NM-CCA2 attack but remains NM-CCA1 secure.

Claim 3.14 Π′ is not secure in the sense of NM-CCA2.

Proof: The idea is that while the adversary may not ask for the decryption of the challenge
ciphertext 0‖y ‖ ε in its second stage, it may ask for the decryption of 1‖y‖FK(y). This is in fact
exactly the decryption of 0‖y ‖ ε. The adversary first needs to compute FK(y) without access to
K. This is easily done by calling the decryption oracle on 1‖y‖ε.

More precisely, the adversary A = (A1, A2) works like this. In the first stage it outputs a message
space M consisting of two distinct strings x0, x1, each having probability 1/2. A2, given challenge
ciphertext 0‖y ‖ ε, makes query 1‖y‖ε to get FK(y), and outputs (R,Z) where R(a, b) = 1 iff a = b
is the equality relation, and Z = 1 ‖ y ‖FK(y). Notice that Z 6= 0‖y ‖ ε so this is a valid output,
but D′

sk ‖K(Z) = D′
sk ‖K(0‖y ‖ ε) so Succnm-cca2

A,Π (k) = 1. On the other hand, Succnm-cca2
A,$,Π (k) ≤ 1/2.

So Advnm-cca2
A,Π (k) ≥ 1/2, which is certainly not negligible.

Remember that Π is assumed secure in the sense of NM-CCA1. We will use this to establish the
following:

Claim 3.15 Π′ is secure in the sense of NM-CCA1.

Let us first give some intuition and then the proof. The key point is that to defeat the scheme, the
adversary must obtain FK(y) where 0 ‖ y ‖ ε is the challenge. However, to do this she requires the
decryption oracle. This is easy for an NM-CCA2 adversary but not for an NM-CCA1 adversary,
which has a decryption oracle available only in the first stage, when y is not yet known. Once y is
provided (in the second stage) the possibility of computing FK(y) is small because the decryption
oracle is no longer available to give it for free, and the pseudorandomness of F makes it hard to
compute on one’s own.

Proof of Claim 3.15: To prove this claim we consider a polynomial time adversary B attacking
Π′ in the NM-CCA1 sense. We want to show that Advnm-cca1

B,Π′ (·) is negligible. To do this, we consider
the following adversary A = (A1, A2) attacking Π in the NM-CCA1 sense. The idea is that A can
choose the key K for the key generation algorithm K′ of B and thus provide a simulation of the
decryption oracle of B.
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Algorithm ADsk
1 (pk)

K ← {0, 1}k

(M, s)← B
D′

sk ‖K

1 (pk)
s′ ← (s,K,pk)
return (M, s′)

Algorithm A2(M, s′, y) where s′ = (s,K,pk)
(R, z)← B2(M, s, 0 ‖ y ‖ ε)
for 1 ≤ i ≤ |z| do parse z[i] as bi ‖ ui ‖ vi where bi is a bit
for 1 ≤ i ≤ |z| do

if (bi = 0) ∧ (vi = ε) then y[i]← ui

else if (bi = 1) ∧ (vi = ε) then y[i]← Epk(FK(ui))
else if (bi = 1) ∧ (vi = FK(ui)) then y[i]← ui

else y[i]← y
return (R,y)

The analysis follows in spirit that in the proof of Claim 3.13; the key new element is the pseudo-
random function. Roughly we seek to recapture the lemmas in that proof modulo the security of
the pseudorandom function family.

For the proof, we define two experiments. The first is the one under which Advnm-cca1
A,Π (k) is evalu-

ated, and the second is the one under which Advnm-cca1
B,Π′ (k) is evaluated:

Experiment1
def
= (pk, sk)← K(1k) ; (M, (s,K,pk))← ADsk

1 (pk) ; x, x̃←M ; y ← Epk(x) ;

(R,y)← A2(M, (s,K,pk), y) ; x← Dsk(y)

Experiment2
def
= (pk, sk ‖K)← K′(1k) ; (M, s)← B

D′
sk ‖K

1 (pk) ; x, x̃←M ;

0 ‖ y ‖ ε← E ′pk ‖u(x) ; (R, z)← B2(M, s, 0 ‖ y ‖ ε) ; w← D′
sk ‖K(z) .

Let Pr1[ · ] = Pr[Experiment1 : · ] be the probability function under Experiment1 and Pr2[ · ] =
Pr[Experiment2 : · ] be that under Experiment2. Let E1,E2, and E3 be the following events:

E1
def
= ∀i : (vi = ε) ∨ (bi = 1 ∧ vi = FK(ui) ∧ ui 6= y)

E2
def
= ∃i : (bi = 1 ∧ vi = FK(ui) ∧ ui = y ∧ vi 6= ε)

E3
def
= ∃i : (bi = 1 ∧ vi 6= FK(ui) ∧ vi 6= ε) ∨ (bi = 0 ∧ vi 6= ε)

For j = 1, 2, 3 let

p(1, j) = Pr1 [ y 6∈ y ∧ ⊥ 6∈ x ∧ R(x,x) | Ej ]− Pr1 [ y 6∈ y ∧ ⊥ 6∈ x ∧R(x̃,x) | Ej ]

p(2, j) = Pr2 [ 0 ‖ y ‖ ε 6∈ z ∧ ⊥ 6∈ w ∧R(x,w) | Ej ]− Pr2 [ 0 ‖y ‖ ε 6∈ z ∧ ⊥ 6∈ w ∧ R(x̃,w) | Ej ] .

By conditioning we have:

Adv
nm-cpa
A,Π (k) =

∣

∣

∣

∑3
j=1 p(1, j) · Pr1[Ej ]

∣

∣

∣

Adv
nm-cpa
B,Π′ (k) =

∣

∣

∣

∑3
j=1 p(2, j) · Pr2[Ej ]

∣

∣

∣ .

We now upper bound Adv
nm-cpa
B,Π′ (k) in terms of Adv

nm-cpa
A,Π (k) by a series of lemmas.

Lemma 1: Pr1[Ej ] = Pr2[Ej ] for j = 1, 2, 3.

Proof: These events depend only on the keys and B. 2

Let q be a polynomial which bounds the running time of B and in particular so that |z| < q(k).

Lemma 2: p(2, 1) ≤ p(1, 1) + ν(k) for some negligible function ν depending on B.
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Proof: We consider two possible cases for values of z[i] = bi ‖ui ‖ vi, given event E1.

First suppose (bi = 1 ∧ vi = FK(ui) ∧ ui 6= y). Note that vi = FK(ui) implies vi 6= ε since the
output of FK is always k bits long. Now, from the code of A2, we see that in this case A2 sets y[i]
to ui. Observe that if ciphertext y[i] (respectively z[i]) that A (respectively B) creates equals y
(respectively 0 ‖ y ‖ ε) then there is no contribution to the success probability. Since bi = 1 we know
that z[i] 6= 0 ‖ y ‖ ε. On the other hand the condition ui 6= y means that y[i] 6= y too. From the
definition of D′ we have D′

sk ‖K
(1 ‖ ui ‖FK(ui)) = Dsk(ui), so A is properly simulating B. (Meaning

the contribution to their respective success probabilities is the same.)

For the second case, namely vi = ε, we consider the two possible values of bi.

If bi = 0 then A will set y[i] = ui, and from the definition of D′ we have D′
sk ‖K(0 ‖ ui ‖ ε) = Dsk(ui).

Observe that A will output a ciphertext y[i] that equals y if and only if B outputs a ciphertext z[i]
that equals 0 ‖ y ‖ ε. So again A is properly simulating B.

If bi = 1 then D′
sk ‖K(1 ‖ ui ‖ ε) = FK(ui) by definition of D′. A correctly “simulates” this by

outputting an encryption of FK(ui). This choice of A contributes to the success probability as
long as it is different from y. The probability of this not happening can be upper bounded by the
probability that Epk(FK(ui)) = y. We must consider the worst case, which is when ∀i : (bi = 1∧vi =
ε), so we are interested in bounding the probability that there is some i such that Epk(FK(ui)) = y.
Intuitively, such “ciphertext collisions” are unlikely since otherwise the scheme would not be secure
even in the sense of IND-CCA1. Formally, one can show that the probability of such collisions is
at most ν(k), where ν(·) is a negligible function depending on B, by showing that if not, we could
design an adversary A′ that would break the scheme in the sense of IND-CCA1. This is standard,
and a sketch of the details follows.

In the first stage A′ does what A does, picking a key K so that it can provide a simulation of
the decryption oracle of B, similar to the simulation provided by A. It runs the first stage of B
and picks a pair of messages uniformly from the message space output by B. In the second stage
it is given an encryption of one of these messages as the challenge. It then obtains a polynomial
number of encryptions of one of the messages and checks if any of the resulting ciphertexts match
the challenge ciphertext. If it does then it bets that the challenge ciphertext corresponds to this
message, otherwise it decides by flipping a coin. Observe that the success of A ′ is exactly one half
the probability of there being some i such that Epk(FK(ui)) = y since the experiments defining the
success of A′ and the upper bound on the probability in question are similar. Since Π is given to
be secure in the NM-CCA1 sense (and therefore in the IND-CCA1 sense, see Theorem 3.1), we get
a bound of ν(k) where ν is a negligible function depending on B. 2

Notice that in the above we did not use the security of the pseudorandom function family. That
comes up only in the next lemma. Accordingly, in the following, for any polynomial f we let
δf (k) be a negligible function which upper bounds the advantage obtainable by any adversary in
distinguishing F from a family of random functions when the running time of this adversary is at
most f(k).

Lemma 3: Pr1[E2 ] ≤ q(k) · [δq(k) + ν(k)] for some negligible function ν that depends on B.

Proof: Event E2 occurs if B outputs 1 ‖ ui ‖ vi where ui = y and vi = FK(y). The claim is that
this happens with only a small probability.

Note that it is not impossible for B to compute the value of FK on a point, even though F is
pseudorandom, because it can compute FK(m) on a point m of its choice simply by querying its
decryption oracle on 1 ‖m ‖ ε. However, this oracle is only available in the first stage, and in that
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stage B does not know y. When she does get to know y (in the second stage) she no longer has the
decryption oracle. The pseudorandomness of F then says her chance of computing FK(y) is small.

To turn this intuition into a formal proof, first imagine that we use, in the role of FK , a random
function g. (Imagine that Dsk ‖K has oracle access to g and uses it in the role of FK .) In the

resulting scheme and experiment, it is clear that the chance that B computes g(y) is at most 2−k

plus the chance that she made a query involving y to the decryption oracle in the first stage. Since
y is a ciphertext created after the first stage, we claim that the chance that B could make a query
involving y in her first stage is negligible. This is true because if not, we would contradict the fact
that Π is IND-CCA1. (This can be argued analogously to the argument in the previous Lemma.
We omit the details.)

Let ν(k) then be the negligible probability of computing g(y). Now given that F is pseudorandom
in nature we can bound the probability of B correctly computing FK(y) by δq(k) + ν(k) for some
polynomial q which depends on B. (Justified below.) So while B could always pick ui to be y, she
would have a negligible probability of setting vi to be FK(y). In the worst case this event could
happen with probability at most |z| · [δq(k) + ν(k)].

The bound of δq(k) + ν(k) mentioned above is justified using the assumed security of F as a
pseudorandom function family. If the event in question had a higher probability, we would be
able to construct a distinguisher between F and the family of random functions. This distinguisher
would get an oracle g for some function and has to tell whether g is from F k or is a random function
of k bits to k bits. It would itself pick the secret keys underlying Experiment1 or Experiment2 and
run the adversaries A or B. It can test whether or not the event happens because it knows all
decryption keys. If it happens it bets that g is pseudorandom, because the chance under a random
function is at most 2−k + ν(k). Since this kind of argument is standard, we omit the details. 2

Lemma 4: p(1, 3) = p(2, 3) = 0.

Proof: When event E3 happens in Experiment1, one of the ciphertexts y[i] that A2 outputs equals
y and hence there is no contribution to the success probability. When event E3 happens in
Experiment2, the definition of D′

sk ‖K says that the decryption of some z[i] is ⊥ and hence again
there is no contribution to the success probability. In other words, in both cases, there is no success
in either the “real” or the “random” experiment. 2

From Lemmas 1,2,3,4 we get

Advnm-cca1
B,Π′ (k) =

∣

∣

∣

∑3
j=1 p(2, j) · Pr1[Ej ]

∣

∣

∣

≤ ν(k) + | p(1, 1) · Pr1[E1 ] + p(2, 2) · Pr1[E2 ] + p(1, 3) · Pr1[E3 ] |

≤ ν(k) + | p(1, 1) · Pr1[E1 ] + p(1, 2) · Pr1[E2 ] + p(1, 3) · Pr1[E3 ] |

+ | p(2, 2) − p(1, 2) | · Pr1[E2 ]

≤ ν(k) +
∣

∣

∣

∑3
j=1 p(1, j) · Pr1[Ej ]

∣

∣

∣ + Pr1[E2 ]

≤ ν(k) + q(k) · [δq(k) + ν(k)] + Adv
nm-cpa
A,Π (k) .

Since δq(k) and ν(k) are negligible quantities, the assumption that Π is secure in the sense of
NM-CCA1 implies that Advnm-cca1

A,Π (·) is negligible, and hence it follows that Advnm-cca1
B,Π′ (·) is negli-

gible.
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4 Results on PA

In this section we define plaintext awareness and prove that it implies the random-oracle version
of IND-CCA2, but is not implied by it.

Throughout this section we shall be working exclusively in the RO model. As such, all notions
of security defined earlier refer, in this section, to their RO counterparts. These are obtained in a
simple manner. To modify Definitions 2.1 and 2.2, begin the specified experiment (the experiment
which defines advantage) by choosing a random function H from the set of all functions from some
appropriate domain to appropriate range. (These sets might change from scheme to scheme.) Then
provide an H-oracle to A1 and A2, and allow that Epk and Dsk may depend on H (which we write
as EH

pk and DH
sk).

4.1 Definition

Our definition of PA is from [6], except that we make one important refinement. An adversary B
for plaintext awareness is given a public key pk and access to the random oracle H. We also
provide B with an oracle for EH

pk . (This is our refinement, and its purpose is explained later.)
The adversary outputs a ciphertext y. To be plaintext aware the adversary B should necessarily
“know” the decryption x of its output. To formalize this it is demanded there exist some (universal)
algorithm K (the “plaintext extractor”) that could have output x just by looking at the public
key, B’s H-queries and the answers to them, and the answers to B’s queries to EH

pk . Let us now
summarize the formal definition and then discuss it.

By (hH ,C , y)← run BH,EH

pk (pk) we mean the following. Run B on input pk and oracles H and
EH

pk , recording B’s interaction with its oracles. Form into a list hH = ((h1,H1), . . . , (hqH
,HqH

)) all
of B’s H-oracle queries, h1, . . . , hqH

, and the corresponding answers, H1, . . . ,HqH
. Form into a list

C = (y1, . . . , yqE
) the answers (ciphertexts) received as a result of EH

pk-queries. (The messages that
formed the actual queries are not recorded.) Finally, record B’s output, y.

Definition 4.1 [Plaintext Awareness – PA] Let Π = (K, E ,D) be an encryption scheme, let B
be an adversary, and let K be an algorithm (the “knowledge extractor”). For any k ∈ N define

Succ
pa
K,B,Π(k)

def
= Pr

[

H ← Hash ; (pk, sk)← K(1k) ; (hH ,C , y)← run BH,EH

pk (pk) :

K(hH ,C , y,pk) = DH
sk(y)

]

.

We insist that y 6∈ C ; that is, B never outputs a string y which coincides with the value returned
from some EH

pk-query. We say that K is a λ(k)-extractor if K has running time polynomial in the
length of its inputs and for every adversary B, Succ

pa
K,B,Π(k) ≥ λ(k). We say that Π is secure in

the sense of PA if Π is secure in the sense of IND-CPA and there exists a λ(k)-extractor K where
1− λ(k) is negligible.

Let us now discuss this notion with particular attention to our refinement, which, as we said,
consists of providing the adversary with the oracle for EH

pk . At first glance this may seem redundant:
since B has the public key, can it not encrypt on its own? It can. But, in the random-oracle
model, encrypting such points oneself involves making H-queries (remember that EH

pk itself makes

H queries), meaning B knows the oracle queries used by EH
pk to produce the ciphertext. (Formally,

they become part of the transcript run BH,EH

pk .) This does not accurately model the real world,
where B may have access to ciphertexts via eavesdropping, where B’s state of knowledge does not
include the underlying oracle queries. By giving B an encryption oracle EH

pk whose H-queries (if
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any) are not made a part of B’s transcript we get a stronger definition. Intuitively, should you
learn a ciphertext y1 for which you do not know the plaintext, still you should be unable to produce
a ciphertext (other than y1) whose plaintext you know. Thus the EH

pk oracle models the possibility
that B may obtain ciphertexts in ways other than encrypting them herself.

We comment that plaintext awareness, as we have defined it, is only achievable in the random-
oracle model. (It is easy to see that if there is a scheme not using the random oracle for which an
extractor as above exists then the extractor is essentially a decryption box. This can be formalized
to a statement that an IND-CPA scheme cannot be plaintext aware in the above sense without using
the random oracle.) It remains an interesting open question to find an analogous but achievable
formulation of plaintext awareness for the standard model.

One might imagine that plaintext awareness coincides with semantic security coupled with a
(non-interactive) zero-knowledge proof of knowledge [12] of the plaintext. But this is not valid.
The reason is the way the extractor operates in the notion and scheme of [12]: the common random
string (even if viewed as part of the public key) is under the extractor’s control. In the PA notion,
pk is an input to the extractor and it cannot play with any of it. Indeed, note that if one could
indeed achieve PA via a standard proof of knowledge, then it would be achievable in the standard
(as opposed to random-oracle) model, and we just observed above that this is not possible with the
current definition.

4.2 Results

The proof of the following is in Section 4.3.

Theorem 4.2 [PA⇒ IND-CCA2] If encryption scheme Π is secure in the sense of PA then it is
secure in the RO sense of IND-CCA2.

Corollary 4.3 [PA ⇒ NM-CCA2] If encryption scheme Π is secure in the sense of PA then Π is
secure in the RO sense of NM-CCA2.

Proof: Follows from Theorems 4.2 and the RO-version of Theorem 3.3.

The above results say that PA ⇒ IND-CCA2 ⇒ NM-CCA2. In the other direction, we have the
following, whose proof is in Section 4.4.

Theorem 4.4 [IND-CCA26⇒PA] If there exists an encryption scheme Π which is secure in the
RO sense of IND-CCA2, then there exists an encryption scheme Π′ which is secure in the RO sense
of IND-CCA2 but which is not secure in the sense of PA.

4.3 Proof of Theorem 4.2: PA⇒ IND-CCA2

Intuition. The basic idea for proving chosen-ciphertext security in the presence of some kind
of proof of knowledge goes back to [16, 17, 9, 12]. Let us begin by recalling it. Assume there is
some adversary A = (A1, A2) that breaks Π in the IND-CCA2 sense. We construct an adversary
A′ = (A′

1, A
′
2) that breaks Π in the IND-CPA sense. The idea is that A′ will run A and use the

extractor to simulate the decryption oracle. At first glance it may seem that the same can be done
here, making this proof rather obvious. That is not quite true. Although we can follow the same
paradigm, there are some important new issues that arise and must be dealt with. Let us discuss
them.

The first is that the extractor cannot just run on any old ciphertext. (Indeed, if it could, it would
be able to decrypt, and we know that it cannot.) The extractor can only be run on transcripts that
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originate from adversaries B in the form of Definition 4.1. Thus to reason about the effectiveness
of A′ we must present adversaries who output as ciphertext the same strings that A ′ would ask
of its decryption oracle. This is easy enough for the first ciphertext output by A, but not after
that, because we did not allow our Bs to have decryption oracles. The strategy will be to define a
sequence of adversaries B1, . . . , Bq so that Bi uses the knowledge extractor K for answering the first
i− 1 decryption queries, and then Bi outputs what would have been its i-th decryption query. In
fact this adversary A′ might not succeed as often as A, but we will show that the loss in advantage
is still tolerable.

Yet, that is not the main problem. The more subtle issue is how the encryption oracle given to
the adversary comes into the picture.

Adversary Bi will have to call its encryption oracle to “simulate” production of the challenge
ciphertext received by A2. It cannot create this ciphertext on its own, because to do so would
incorrectly augment its transcript by the ensuing H-query. Thus, in fact, only one call to the
encryption oracle will be required — yet this call is crucial.

Construction. For contradiction we begin with an IND-CCA2-adversary A = (A1, A2) with a
non-negligible advantage, Advind-cca2

A,Π (k) against Π. In addition, we know there exists a plaintext
extractor, K, with high probability of success, Succ

pa
K,B,Π(k), for any adversary B. Using A and K

we construct an IND-CPA-adversary A′ = (A′
1, A

′
2) with a non-negligible advantage, Adv

ind-cpa
A′,Π (k)

against Π. Think of A′ as the adversary A with access only to a simulated decryption oracle rather
than the real thing. If A(·, ·, · · ·) is any probabilistic algorithm then A(x, y, · · · ;R) means we run
it with coin tosses fixed to R. Let ε denote the empty list. The adversary is defined as follows:

Algorithm A′
1
(pk; R)

hH ← ε
Take R1 from R
Run A1(pk; R1), wherein

When A1 makes a query, h, to H :
A′

1
asks its H-oracle h, obtaining H(h)

Put (h, H(h)) at end of hH
Answer A1 with H(h)

When A1 makes its jth query, y, to DH
sk :

x← K(hH , ε, y, pk)
Answer A1 with x

Finally A1 halts, outputting (x0, x1, s)
return (x0, x1, (s, hH , pk))

Algorithm A′
2
(x0, x1, (s, hH , pk), y; R)

Take R2 from R
Run A2(x0, x1, s, y; R2), wherein

When A2 makes a query, h, to H :
A′

2
asks its H-oracle h, obtaining H(h)

Put (h, H(h)) at end of hH
Answer A2 with H(h)

When A2 makes its jth query, y′, to DH
sk :

x← K(hH , (y), y′, pk)
Answer A2 with x

Finally A2 halts, outputting bit, d
return d

Analysis. To reason about the behavior of A′ we describe adversaries B1, . . . , Bq, where q is the
number of decryption queries made by A.

Adversary B1 runs A)1, answeriing A1’s H-oracle queries using its own H-oracle, being careful
to collect up the questions and their answers, forming a list of these, hH . When A1 finally makes
its first decryption query, y1, algorithm B1 halts, outputting y1.

Algorithm B2 likewise runs A1. As before, H-queries (and their answers) are recorded in hH .
When the first query y1 to DH

sk is made, B2 passes y1 to K along with the transcript hH and pk.
Since A1 does not have access to an encryption oracle, the ciphertext list C that K expects will
be empty (C = ε). Algorithm B2 then passes on K’s answer to A1 and continues running A1,
appropriately updating hH , until the second query, y2, is made to DH

sk . Then B2 outputs y2.
This process continues in this way to construct each Bi for i ∈ {1, . . . , q1}, where q1 is the

number of DH
sk-queries made by A1. This is described by the left-hand column below.
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Algorithm B
H,EH

pk

i (pk; R) // i ∈ {1, . . . , q}
hH ← ε
Let R1, R2 be taken from R.
Run A1(pk; R1), wherein

When A1 makes a query, h, to H :
Bi asks its H-oracle h, obtaining H(h)
Put (h, H(h)) at end of hH
Answer A1 with H(h)

When A1 makes its jth query, y, to DH
sk :

if j = i then return y and halt

else x← K(hH , ε, y, pk)
Answer A1 with x

Finally, A1 halts, outputting (x0, x1, s)

// Algorithm Bi, continued
d← {0, 1}
Using Bi’s encryption oracle, let y ← EH

pk(xd)

Run A2(x0, x1, s, y; R2), wherein
When A2 makes a query, h, to H :

Bi asks its H-oracle h, obtaining H(h)
Put (h, H(h)) at end of hH
Answer A2 with H(h)

When A2 makes its j-th query, y′, to DH
sk :

if i = j + q1 then return y′ and halt

else x← K(hH , (y), y′, pk)
Answer A2 with x

Having defined adversaries corresponding to each decryption query made by A1, we now need to do
this for A2. Recall that adversary A2 gets as input (x0, x1, s, y) where, in the experiment defining
advantage, y is selected according to y ← EH

pk(xd) for a random bit d. Remember that A2 is

prohibited from asking DH
sk(y), although A2 may make other (possibly related) decryption queries.

How then can we pass y to our decryption simulation mechanism? This is where the encryption
oracle and the ciphertext list C come in. We define adversaries Bq1+1, . . . , Bq just like we defined
B1, . . . , Bq1

, except that this time C = (y) rather than being empty. This is shown above in the
righ-hand column.

Let us now see how good a simulation A′
1 is for A

DH

sk

1 . Note that the values (x0, x1, s) produced
by A′

1 are not necessarily the same as what A1 would have output after the analagous interactions
with DH

sk , since one of K’s answers may not be the correct plaintext. Let D be the event that
at least one of K’s answers to A1’s decryption queries was not the correct plaintext. Using the
existence of B1, B2, . . . we can lower bound the probability of the correctness of K’s answers in A ′

1

by

Pr[A′
1(pk) = A

DH

sk

1 (pk)] ≥ 1− Pr[D] ≥ 1− q1 · (1− λ(k)) .

Letting q2 be the number of decryption oracle queries made by A2, we similarly have for A′
2 that

and that

Pr[A′
2(x0, x1, (s,hH ), y) = A

DH

sk

2 (x0, x1, s, y) |A′
1(pk) = A

DH

sk

1 (pk)] ≥ 1− q2 · (1− λ(k)) .

Now using the above, one can see that

Adv
ind-cpa
A′,Π (k) ≥ Advind-cca2

A,Π (k)− 2q · (1− λ(k)),

where q = q1 + q2 and represents the total number of decryption oracle queries made by the adver-
sary A. A′

1 runs A1, asking for q1 executions of K. Similarly A′
2 runs A2, asking for q2 executions

of K. Hence the running time of our new adversary A′ is equal to tA + q · tK , where tA and tK are
the running times of A and K respectively, which is polynomial if A and K are polynomial time.
Under our assumptions Advind-cca2

A,Π (k) is non-negligible and 1 − λ(k) is negligible, so Adv
ind-cpa
A′,Π (k)

is non-negligible, and Π is not secure in the sense of IND-CPA security.
In concrete security terms, the advantage drops linearly in q while the running time grows

linearly in q. Note that it was important in the proof that K almost always succeeded; it would
not have worked with λ(k) = 0.5, say.

26



4.4 Proof of Theorem 4.4: IND-CCA2 6⇒PA

Assume there exists some IND-CCA2 secure encryption scheme Π = (K, E ,D), since otherwise the
theorem is vacuously true. We now modify Π to a new encryption scheme Π′ = (K′, E ′,D′) which
is also IND-CCA2 secure but not secure in the PA sense. This will prove the theorem. The new
encryption scheme Π′ = (K′, E ′,D′) is defined as follows:

Algorithm K′(1k)
(pk, sk)← K(1k)
b← {0, 1}k ; a← EH

pk(b)

pk′ ← pk ‖ a ; sk ′ ← sk ‖ b
return (pk ′, sk ′)

Algorithm E ′H
pk ‖ a(x)

return EH
pk(x)

Algorithm D′H
sk ‖ b(y)

return DH
sk(y)

In other words, the only difference is that in the new scheme, the public key contains a random
ciphertext a whose decryption is in the secret key. Our two claims are that Π ′ remains IND-CCA2
secure, but is not PA. This will complete the proof.

Claim 4.5 Π′ is secure in the sense of IND-CCA2.

Proof: Recall our assumption is that Π is IND-CCA2 secure. To prove the claim we consider
a polynomial time adversary B attacking Π′ in the IND-CCA2 sense. We want to show that
Advind-cca2

B,Π′ (·) is negligible. To do this, we consider the following adversary A = (A1, A2) attacking
Π in the IND-CCA2 sense. The idea is that A can simulate the choosing of a by the key generation
algorithm K′ for B, and thus has access to the corresponding secret b. Note that having an oracle
for DH

sk , it is indeed possible for A to reply to any queries to the D ′H
sk ‖ b oracle made by B: to query y

it simply returns DH
sk(y).

Algorithm A
DH

sk

1 (pk)
b← {0, 1}k ; a← EH

pk(b)

pk′ ← pk ‖ a

(x0, x1, s)← B
D′H

sk ‖ b

1 (pk ‖ a)
s′ ← (s, a, b)
return (x0, x1, s

′)

Algorithm ADsk

2 (x0, x1, s
′, y) where s′ = (s, a, b)

pk′ ← pk ‖ a

d← B
D′

sk ‖ b

2 (x0, x1, s, y)
return d

It is clear that A is polynomial time and that Advind-cca2
A,Π (k) = Advind-cca2

B,Π′ (k). The assumption that

Π is secure in the sense of IND-CCA2 implies that Advind-cca2
A,Π (k) is negligible, and hence it follows

that Advind-cca2
B,Π′ (k) is negligible.

Claim 4.6 Π′ is not plaintext-aware.

Proof: We consider the following specific adversary B that outputs as her ciphertext the value a
in her public key:

Algorithm B
H,EH

pk′ (pk ′) where pk ′ = pk ‖ a
return a

Intuitively, this adversary defeats any aspiring plaintext extractor: It will not be possible to con-
struct a plaintext extractor for this B as long as Π′ is secure in the sense of IND-CPA. Hence there
does not exist a plaintext extractor for Π′.
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The formal proof is by contradiction. Assume Π′ is PA. Then there exists a plaintext-extractor K ′

for Π′. We now define an adversary A = (A1, A2) that attacks Π in the sense of IND-CPA. the
empty list.

Algorithm A1(pk)
x0 ← {0, 1}

k

x1 ← {0, 1}
k

return (x0, x1,pk)

Algorithm A2(x0, x1,pk, y)
pk′ ← (pk, y)
x′ ← K ′(ε, ε, y,pk ′)
if x′ = x0 then d← 0

else if x′ = x1 then d← 1
else d← {0, 1}

return d

Consider the experiment defining the success of (A1, A2) in attacking Π in the sense of IND-CPA.
In this experiment, y is the encryption of a random k-bit string. This means that in the input
(ε, ε, y,pk ′) given to K, the distribution of (ε, ε, y) is exactly that of runBEpk′ (pk′). This is because
B, the adversary we defined above, has no interaction with its oracles, and the value a in the public
key pk′ is itself the encryption of a random k-bit string. Thus, our assumption that K ′ works
means that the extraction is successful with probability Succ

pa
K′,B,Π′(k). Thus

Adv
ind-cpa
A,Π (k) ≥ Succ

pa
K′,B,Π′(k)−

1

2k
−

1− Succ
pa
K′,B,Π′(k)

2
.

The first term is a lower bound on the probability that A2 outputs 0 when the message was x0.
The second term is an upper bound on the probability that it outputs 1 when the message was x0.
Now since K ′ is assumed to be a good extractor we know that Succ

pa
K′,B,Π′(k) = 1− λ(k) for some

negligible function λ(·) and hence Adv
ind-cpa
A,Π (k) is not negligible. (In fact is of the form 1 − λ′(k)

for some negligible function λ′(·).) This contradicts the indistinguishability of Π, as desired.
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