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Abstract. In this paper, we give a provably secure design for blind signatures, the most
important ingredient for anonymity in off-line electronic cash systems. Previous exam-
ples of blind signature schemes were constructed from traditional signature schemes
with only the additional proof of blindness. The design of some of the underlying signa-
ture schemes can be validated by a proof in the so-called random oracle model, but the
security of the original signature scheme does not, by itself, imply the security of the
blind version. In this paper, we first propose a definition of security for blind signatures,
with application to electronic cash. Next, we focus on a specific example which can be
successfully transformed in a provably secure blind signature scheme.

1 Introduction

1.1 Electronic Cash

With the growing importance of the Internet and trade, electronic cash has
become a very active research area. Basic cryptographic notions that lay a firm
foundation for E-cash were introduced by David Chaum [6–8]. His aim was to
produce an electronic version of money which retains the same properties as
paper cash, primarily anonymity and control by the Bank. He claimed that the
way to ensure anonymity went through the use of coins together with the notion
of blind signatures. When a user withdraws money from the Bank, the Bank

Bank

User Shop

withdrawal deposit

spending

Fig. 1. Coin life

returns electronic coins which have been “blindly” signed. The user can then
spend them at designated shops. Finally, the shops deposit the coins at the
Bank (see figure 1). Blind signatures, on which this paper focus, will be defined
below. They provide the tool by which the user gets a signature of a coin so
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that the Bank is unable to later recognize it. This technique is efficient in an
one-line scenario. But if payment is off-line, there is no direct way to prevent a
user to copy a coin and use it twice. This forgery is called “double spending”.
As a second step in the E-cash research, Chaum, Fiat and Naor [10] introduced
the identity in the coin in such a way that the identity remains concealed, unless
double spending happens, in which case it is revealed. This imposes a special
format for the coin. Since it is created by the user, the Bank has to verify
whether this format has been respected. Chaum, Fiat and Naor applied the
“cut-and-choose” technique. The Bank signs many more coins than useful and,
by random choice, requests the user to disclose the structure of some of them.
The drawback of this technique is that this increases the communication load
between the Bank and the user and the space needed to store coins. There were
several improvements [9, 20], and in 1993, appeared schemes without the “cut-
and-choose” methodology [4, 3, 14, 13]. More recently, unconditional anonymity
has been criticized because of money laundering or other possible crimes [26], and
escrow-based schemes were put forward as a new direction of the research [18].

1.2 Blind Signatures

Since the beginning of E-cash, blind signature has been the most important tool.
It is an interactive protocol which involves two entities, a Bank and a user. It
allows a user to get a message signed by the Bank without revealing this message.
The message–signature pair received by the user is statistically uncorrelated to
the view obtained by the Bank during the execution of the protocol.

Several signature schemes have been turned into blind signature schemes.
Here are the most well-known. In what follows, H is a hash function.

The Blind RSA Signature We first present a blind signature which is a transfor-
mation of the RSA signature scheme [23]. It was used by Chaum [6–8] for the
withdrawal protocols of his first electronic cash system.

In the RSA context, we have a large composite number n, a public key e,
and a secret key d. The signature of a message m is the eth root of H(m),
σ = H(m)1/e = H(m)d mod n.

Now, in order to obtain the signature of a secret message m, the user blinds
it with a random value re mod n, and sends m′ = H(m)re mod n to the signer.
The latter returns a signature σ′ of m′ such that σ′e = m′ = reH(m) mod n.
Then, it is easy to remark that σ = σ′r−1 mod n is a valid signature of m.

The Blind Schnorr Signature The Schnorr signature scheme [24] can also be
turned into a blind signature scheme. The transformation was used in the first
electronic cash systems without “cut-and-choose”.

We have two large prime integers p and q, such that q | p − 1. They are
published together with an element g of (ZZ/pZZ)⋆ of order q. The signer cre-
ates a pair of keys, x ∈ ZZ/qZZ and y = g−x mod p. He publishes y. A user
wants a blind signature of a message m. In order to issue this signature, the
signer chooses a random k ∈ ZZ/qZZ, computes and sends the “commitment”
r = gk mod p. The user blinds it with two random elements α, β ∈ ZZ/qZZ, into
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r′ = rg−αy−β mod p, and computes the value e′ = H(m, r′) mod q. He sends the
“challenge” e = e′ + β mod q to the signer who returns the value s such that
gsye = r mod p. One can easily verify that, with s′ = s − α mod q, (e′, s′) is a
valid Schnorr signature of m since it satisfies e′ = H(m, gs′ye′ mod p).

2 Security Proofs

2.1 The Random Oracle Model

In 1993, Bellare and Rogaway [1] formalized a model which allows proofs of
security for various cryptographic schemes. Many of these algorithms use hash
functions and cannot be proved secure from basic properties like one-wayness or
collision freeness. Thus, hash functions are often an obstacle for proofs. In the
random oracle model, hash functions are assumed to be really random functions
and used as an oracle who answers a random value for each new query. Thus the
obstacle disappears. The price to pay is the replacement of the hash function by
some “ideal” object. Nevertheless, we feel that the resulting proof is a way to
validate the design of a cryptographic scheme and to eliminate “poor” designs.

For example, in their paper [22], Pointcheval and Stern suggested that the
original El Gamal’s signature scheme [11] and DSS [19] did not follow a “good”
design principle. This is in contrast with the Schnorr’s signature scheme or,
more generally, any transformation of a fair verifier zero-knowledge identification
scheme, which are validated by a proof in the random oracle model. For the DSS
design, Vaudenay [25] later showed a weakness which opens the way to a possible
misuse of this scheme by the authority.

2.2 The Security of Signature Schemes

In recent years, general techniques for proving the security of signature schemes
have been proposed. We refer the reader to [16] for the various definitions of
security. The most general one is the “no-existential forgery under adaptively
chosen-message attacks”. It corresponds to a scenario where an attacker can
ask the signature of new messages at any step of his computation and, still, is
not be able to forge a new valid message–signature pair at the end. Both the
RSA [23] and the Schnorr [24] signature schemes have been proved secure in
the random oracle model. Proofs were given in the asymptotic framework of
complexity theory. More recently, Bellare and Rogaway [2] modified the original
RSA scheme in order to obtain an exact security result. At the same time,
Pointcheval and Stern [22] obtained a proof of security for any signature scheme
which comes from a fair verifier zero-knowledge identification scheme and also
for a slight modification of El Gamal [11]. In these proofs, all entities are seen as
probabilistic polynomial time Turing machines. Assuming that the attack exists,
a collusion between the signer, the attacker and the random oracle, allows to
construct a new Turing machine which solves a difficult problem (RSA or the
discrete logarithm).
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2.3 The Security of Blind Signatures

As far as we know, no formal notion of security has ever been studied, nor
proved, in the context of blind signatures. However, it is a critical point in E-cash
systems. In the context of blind signatures, the previous definitions of security are
no longer significant. In fact, the existential forgery under an adaptively chosen-
message is somehow the basis for blind signatures. Nevertheless, a fundamental
property for E-cash systems is the guaranty that a user cannot forge more coins
than the Bank gives him. In other words, after ℓ blind signatures of the Bank,
the user must not be able to create more than ℓ coins. This form of security
was more or less informally assumed in connection with several schemes, for
example [5].

Definition 1 (The “one-more” forgery). For any integer ℓ, an (ℓ, ℓ + 1)-
forgery comes from a probabilistic polynomial time Turing machine A that can
compute, after ℓ interactions with the signer Σ, ℓ + 1 signatures with non-
negligible probability. The “one-more forgery” is an (ℓ, ℓ + 1)-forgery for some
integer ℓ.

As usual, an attacker has several methods to achieve this forgery. We will focus
on two kinds of attacks :

– the sequential attack: the attacker interacts sequentially with the signer.
– the parallel attack: the attacker interacts ℓ times in parallel with the signer.

This attack is stronger. Indeed, the attacker can initiate new interactions
with the signer before previous ones have been computed.

Previous methods of proofs used to establish the security of signature schemes no
longer work since, during the collusion between the signer, the attacker and the
random oracle, we loose control over the message that the signer receives since
it comes from the attacker. As a consequence, the signer cannot be simulated
without the secret key.

3 The Proposed Blind Signature Scheme

3.1 Witness Indistinguishability

In the following, we will focus on a specific three-pass “witness indistinguishable”
identification scheme, and its transformation into a blind signature scheme. The
notion of “witness indistinguishability” was defined by Feige and Shamir in [12]
for the purpose of identification. In such a scheme, many secret keys are asso-
ciated to a same public key. Furthermore, the views of two identifications using
two distinct secret keys associated to a same public key are indistinguishable.
For example, in the Fiat-Shamir protocol [15], the verifier cannot distinguish
which square root the prover uses. Okamoto, in [21], proposed a witness indis-
tinguishable adaptation of both the Schnorr [24] and the Guillou-Quisquater [17]
identification schemes.
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3.2 Provably Secure Blind Signature Schemes

As was already remarked, the technical difficulty to overcome comes from the
fact that, in the colluding step, we no longer can simulate the signer without
the secret key. We will use a scheme which admits more than one secret key for
a given public key. This will make the collusion possible and we will constrain
the attacker to output a different secret key.

Our candidate scheme is one of the schemes designed by Okamoto in [21]. For
the reader’s convenience, the adaptation of the Schnorr’s scheme is on figure 2
and its blind version is on figure 3.

Prover Verifier

p and q are prime integers such that q|(p− 1)
g and h are some elements of (ZZ/pZZ)⋆ of order q

secrets : r, s ∈ ZZ/qZZ
public : y = g−rh−s mod p

t, u ∈ ZZ/qZZ
a = gthu mod p

a
−−−−−−−−−−−−−−→

c
←−−−−−−−−−−−−−− c ∈ ZZ/2t

ZZ

R = t + cr mod q
S = u + cs mod q

R, S
−−−−−−−−−−−−−−→

a
?
= gRhSyc mod p

Fig. 2. Witness indistinguishable adaptation of the Schnorr’s identification

Authority User

p and q are prime integers such that q|(p− 1)
g and h are some elements of (ZZ/pZZ)⋆ of order q

secrets : r, s ∈ ZZ/qZZ
public : y = g−rh−s mod p

t, u ∈ ZZ/qZZ
a = gthu mod p

a
−−−−−−−−−−−−−−→

e
←−−−−−−−−−−−−−−

β, γ, δ ∈ ZZ/qZZ
α = agβhγyδ mod p

ε = H(m, α)
e = ε− δ mod q

R = t + er mod q
S = u + es mod q

R, S
−−−−−−−−−−−−−−→

a
?
= gRhSye mod p

ρ = R + β mod q
σ = S + γ mod q

Then α = gρhσyε mod p

Fig. 3. Okamoto-Schnorr blind signature
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3.3 Okamoto-Schnorr Blind Signature Scheme

The scheme uses two large primes p and q such that q | (p − 1), and two elements
g, h ∈ (ZZ/pZZ)⋆ of order q. The Bank chooses a secret key (r, s) ∈ ((ZZ/qZZ)⋆)2

and publishes the public key, y = g−rh−s mod p. The protocol by which the user
obtains a blind signature of the message m is as follows.

– the Bank chooses (t, u) ∈ ((ZZ/tZZ)⋆)2, computes and sends a = gthu mod p;
– the user chooses β, γ, δ ∈ ZZ/qZZ to blind a into α = agβhγyδ mod p. He com-

putes the challenge ε = H(m, α) and sends e = ε − δ mod q to the Bank;
– the Bank computes R = t + er mod q and S = u + es mod q, and sends a

pair (R, S) which satisfies a = gRhSye mod p;
– the user computes ρ = R + β mod q and σ = S + γ mod q.

Straightforward computations show that α = gρhσyε mod p, with ε = H(m, α).
A security proof for this scheme will be given below. It can be easily modified

so as to cover other schemes that come from witness indistinguishable protocols.
Especially, the blind Okamoto-Guillou-Quisquater signature scheme can be pro-
posed (see figure 4) and proven relatively to the security of RSA.

Authority User

N = pq and λ prime and prime with ϕ(N)
a ∈ (ZZ/NZZ)⋆ of order greater than λ

secrets r ∈ {0, . . . , λ− 1}
s ∈ (ZZ/NZZ)⋆

public v = a−rs−λ mod N
t ∈ {0, . . . , λ− 1}

u ∈ (ZZ/NZZ)⋆

x = atuλ mod N
x

−−−−−−−−−−−−−−→

c
←−−−−−−−−−−−−−−

α, γ ∈ {0, . . . , λ− 1}
β ∈ (ZZ/NZZ)⋆

x′ = xaαβλvγ mod N
c′ = H(m, x′) ∈ {0, . . . , λ− 1}

c = c′ − γ mod λ
y = t + cr mod λ
w = t + cr ÷ λ

z = awusc mod N
y, z

−−−−−−−−−−−−−−→
y′ = y + α mod λ
w′ = y + α÷ λ
w′′ = c′ − c÷ λ

z′ = aw′

v−w′′

zβ mod N

Then x′ = ay′

z′λvc′ mod N

Fig. 4. Okamoto-Guillou-Quisquater blind Signature

4 The Main Result

Theorem 2. Consider the Okamoto-Schnorr blind signature scheme in the ran-
dom oracle model. If there exists a probabilistic polynomial time Turing machine
which can perform a “one-more” forgery, with non-negligible probability, even
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under a parallel attack, then the discrete logarithm can be solved in polynomial
time.

Proof. Before we prove this result, we state a well-known probabilistic lemma:

Lemma 3 (The probabilistic lemma). Let A be a subset of X × Y such that
Pr[A(x, y)] ≥ ε, then there exists Ω ⊂ X such that
i) Pr[x ∈ Ω] ≥ ε/2
ii) whenever a ∈ Ω, Pr[A(a, y)] ≥ ε/2.

With this lemma, we can split the set X in two subsets, a non-negligible
subset Ω consisting of “good” x’s which provide a non-negligible probability of
success over y, and its complement, consisting of “bad” x’s.

We will first outline the proof, then, since the technicalities are a bit intricate,
we will simplify notations. Finally, we will complete the proof.

Outline of the Proof Let A be the “attacker”. It is a probabilistic polyno-
mial time Turing machine which succeeds, in its “one-more forgery”, with non-
negligible probability ε. Thus, there exists an integer ℓ such that after ℓ inter-
actions with the authority, (ai, ei, Ri, Si) for i ∈ {1, . . . , ℓ}, and a polynomial
number Q of queries asked to the random oracle, Q1, . . . , QQ, A returns ℓ + 1
valid signatures, (mi, αi, εi, ρi, σi) for i = 1, . . . , ℓ + 1. These signatures verify the
required equations with εi = H(mi, αi).

The public data consist of two large primes p and q such that q | (p − 1)
and two elements, g and h, of (ZZ/pZZ)⋆ of order q. The authority (or the Bank)
possesses a secret key (r, s) associated to public key y = g−rh−s, and a random
tape Ω. Formally, the secret key (r, s) is stored in a specific part of the machine
called the knowledge tape.

Through a collusion of the authority and the attacker, we want to compute
the discrete logarithm of h relatively to g. We will use the technique of oracle
replay formalized in [22]. We first run the attack with random keys, tapes and
oracle f . We randomly choose an index j. We then replay with the same keys
and random tapes, but a different oracle f ′ such that the j − 1 first answers
are unchanged. We expect that, with non-negligible probability, both executions
output a common αi coming from the jth oracle query having two distinct repre-
sentations relatively to g and h. In fact, αi = grhs = gr′hs′, with r′ 6= r, implies
logg h = (r − r′)(s′ − s)−1 mod q. This collusion is represented on figure 5. Thus,
the following lemma proves the theorem 2.

Lemma 4 (The forking lemma). Randomly choose an index j, the keys and
the random tapes. Run the attack twice with the same random tapes and two
different random oracles, f and f ′, providing identical answers to the j − 1 first
queries. With non-negligible probability, the different outputs reveal two different
representations of some αi, relatively to g and h.

Cleaning up Notations We now clear up notational difficulties. Firstly, without
loss of generality, we can assume that all the (mi, αi) are queries which have
been asked during the attack. Otherwise, the probability of success would be
negligible because of the randomness of the random oracle outputs. Secondly,
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• • • • •

•

Auth. (r, s), Ω

A ω

Oracle f

Oracle f ′

a1 . . . aℓ

Q1 R1 Q2 Qj Rj

R′

j

QQ RQ

Q′

Q R
′

Q

e1 R1, S1 . . . eℓ Rℓ, Sℓ

e′
ℓ

R′

ℓ
, S′

ℓ















m1, α1, ρ1, σ1

. . .
Qj = (mi, αi)
. . .
mℓ+1, αℓ+1, ρℓ+1, σℓ+1















m1, α1, ρ1, σ1

. . .
Qj = (mi, αi)
. . .
m′

ℓ+1, α′

ℓ+1, ρ′
ℓ+1, σ′

ℓ+1

Fig. 5. Forking lemma

we can assume that the indexes, (Ind1, . . . , Indℓ+1), of (m1, α1), . . . , (mℓ+1, αℓ+1)
in the list of queries are constant. As a result, the probability of success decreases
from ε to ρ ≈ ε/Qℓ+1. The collusion is represented on figure 6, where the pair

• • • • • • • • • •A ω

Auth. (r, s), Ω

a1 . . . aℓ

α1 ε1 . . . αℓ+1 εℓ+1

εj = f(QIndj
) = f(mj , αj)

e1 R1, S1 . . . eℓ Rℓ, Sℓ {

ρ1, σ1

. . .
ρℓ+1, σℓ+1

Fig. 6. General model

(r, s) is the secret key used by the authority, and where the random tape Ω of
the authority determines the pairs (ti, ui) such that ai = gtihui for i = 1, . . . , ℓ.
The distribution of (r, s, y) where r and s are random and y = g−rh−s is the
same as the distribution of (r, s, y) where r, y are random and s is the unique
element in (ZZ/qZZ)⋆ such that y = g−rh−s. Accordingly, we will replace (r, s) by
(r, y) and, similarly, each (ti, ui) by (ti, ai).

In the following, we will group (ω, y, a1, . . . , aℓ) under variable ν, and τ
will represent the ℓ-tuple (t1, . . . , tℓ). We will denote by S the set of all suc-
cessful data, i.e. quadruples (ν, r, τ, f) such that the attack succeeds. Then,
Prν,r,τ,f [(ν, r, τ, f) ∈ S] ≥ ρ.

Proof of the Forking Lemma We want to prove that after a replay, we can obtain
a common output αi such that

αi = gρihσiyεi = gρi−rεihσi−sεi

= gρ′ihσ′

iyε′i = gρ′i−rε′ihσ′

i−sε′i
with ρi − rεi 6= ρ′i − rε′i.

We can remark that, for each i, αi only depends on ν, r, τ and the first Indi − 1
answers of f . The main question we have to study is whether or not the random
variable χi = ρi − rεi is sensitive to queries asked at steps Indi, Indi + 1, etc.
We expect that the answer is yes. A way to grasp the question is to consider the



9

most likely value taken by this random variable when (ν, r, τ) and the Indi − 1
first answers of f are fixed. We are thus led to consider a function ci(ν, r, τ, fi),
where fi ranges over the set of answers to the first Indi − 1 possible queries. Set

λi(ν, r, τ, fi, c) = Pr
f

[(

χi(ν, r, τ, f) = c
)

&
(

(ν, r, τ, f) ∈ S
)

f extends fi

]

.

We define ci(ν, r, τ, fi) as any value c such that λi(ν, r, τ, fi, c) is maximal.
We then define the “good” subset G of S whose elements satisfy, for all i,
χi(ν, r, τ, f) = ci(ν, r, τ, fi), where fi denotes the restriction of f to queries of
index strictly less than Indi, and the “bad” B its complement in S.

Definition 5. We denote by Φ the transformation which maps any quadruple
(ν, r, τ, f) to (ν, r + 1, τ − e, f), where τ − e = (t1 − e1, . . . , tℓ − eℓ).

This transformation has useful properties (see figure 7).

S

G

B

Φ

Φ

r

r + 1

r′

r′ + 1

Fig. 7. Properties of Φ

Lemma 6. Both executions corresponding to (ν, r, τ, f) and Φ(ν, r, τ, f) are to-
tally identical w.r.t. the view of the attacker. Especially, outputs are the same.

Proof. Let (ν, r, τ, f) be an input for the collusion. Replay with r′ = r + 1 and
τ ′ = τ − e, the same ν and the same oracle f . The answers of the oracle are
unchanged and the interactions with the authority become

R′i(r
′, t′i, ei) = t′i + r′ei = (ti − ei) + (r + 1)ei = ti + rei = Ri(r, ti, ei).

Thus, everything remains the same.

Corollary 7. Φ is a one-to-one mapping from S onto S.

The following lemma shows that Φ sends the set G into B, except for a negligible
part.

Lemma 8. For fixed (ν, r, τ), the probability

Pr
f

[((ν, r, τ, f) ∈ G) & (Φ(ν, r, τ, f) ∈ G)]

is bounded by 1/q.
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Proof. Assume that Prf [(ν, r, τ, f) ∈ ∪e1,...,eℓ
Y (e1, . . . , eℓ)] > 1/q, where the set

Y (e1, . . . , eℓ) is defined by the conditions (ν, r, τ, f) ∈ G, Φ(ν, r, τ, f) ∈ G and
(e1, . . . , eℓ) are the successive questions asked to the authority. Then, there ex-
ists a ℓ-tuple (e1, . . . , eℓ) such that Prf [Y (e1, . . . , eℓ)] > 1

qℓ+1 . Thus, there exist

two oracles f and f ′ in Y (e1, . . . , eℓ) which provide distinct answers for some
queries QIndj

= (mj , αj) to the oracle, for some j ∈ {1, . . . , ℓ + 1}, and are such
that answers to queries not of the form QIndj

are similar. We will denote by
i the smallest such index j. Then fi = f ′i and εi 6= ε′i. Furthermore, we have
(ν, r, τ, f) ∈ G, Φ(ν, r, τ, f) ∈ G and similarly (ν, r, τ, f ′) ∈ G, Φ(ν, r, τ, f ′) ∈ G.
Because of the property of Φ (see lemma 6), and by definition of G,

ci(ν, r, τ, fi) = ρi(ν, r, τ, f) − rεi

= ρi(Φ(ν, r, τ, f)) − rεi = ci(ν, r+1, τ -e, fi) + ((r+1) − r)εi

ci(ν, r, τ, f
′
i)= ρi(ν, r, τ, f

′) − rε′i
= ρi(Φ(ν, r, τ, f ′)) − rε′i = ci(ν, r+1, τ -e′, f ′i) + ((r+1) − r)ε′i

The equality fi = f ′i implies ci(ν, r, τ, fi) = ci(ν, r, τ, f
′
i). Since we have assume

(e1, . . . , eℓ) = (e′1, . . . , e
′
ℓ), then ci(ν, r + 1, τ − e, fi)) = ci(ν, r + 1, τ − e′, f ′i)).

Thus εi = ε′i, which contradicts the hypothesis.

Lemma 8 says that for any (ν, r, τ),

Pr
f

[(

(ν, r, τ, f) ∈ G
)

&
(

Φ(ν, r, τ, f) ∈ G
)]

≤ 1/q.

By making the sum over all triplets (ν, r, τ), and using the bijectivity of Φ
(corollary 7), we obtain

Pr[G] = Pr
ν,r,τ,f

[(

(ν, r, τ, f) ∈ G
)

&
(

Φ(ν, r, τ, f) ∈ G
)]

+ Pr
ν,r,τ,f

[(

(ν, r, τ, f) ∈ G
)

&
(

Φ(ν, r, τ, f) ∈ B
)]

≤
1

q
+ Pr

ν,r,τ,f
[Φ(ν, r, τ, f) ∈ B] ≤

1

q
+ Pr[B]

Then, Pr[B] ≥ (Pr[S] − 1/q)/2. Since 1/q is negligible w.r.t. Pr[S], for enough
large keys, we have, Pr[B] ≥ Pr[S]/3 ≥ ρ/3.

Conclusion We will use this probability to show the success of forking.
ρ

3
≤ Pr[B] = Pr

ν,r,τ,f

[

S &
(

(∃i) χi(ν, r, τ, f) 6= ci(ν, r, τ, fi)
)]

≤
ℓ+1
∑

i=1

Pr
ν,r,τ,f

[

S &
(

χi(ν, r, τ, f) 6= ci(ν, r, τ, fi)
)]

.

There exists k such that Pr
[

S &
(

χk(ν, r, τ, f) 6= ck(ν, r, τ, fk)
)]

≥ ρ/3(ℓ + 1).
Let us randomly choose the forking index i. With probability greater than
1/(ℓ + 1), we have guessed i = k. The probabilistic lemma 3 ensures that there
exists a set X such that
i) Pr

ν,r,τ,f
[(ν, r, τ, fi) ∈ X] ≥ ρ/6(ℓ + 1);

ii) for all (ν, r, τ, fi) ∈ X,

Prf

[

(ν, r, τ, f) ∈ S &
(

χi 6= ci

)

f extends fi

]

≥ ρ/6(ℓ + 1).
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Let us choose a random quadruple (ν, r, τ, f). With probability greater than
(

ρ/6(ℓ + 1)
)2

, (ν, r, τ, f) ∈ S, (ν, r, τ, fi) ∈ X and χi(ν, r, τ, f) 6= ci(ν, r, τ, fi). We

will denote by d the value χi(ν, r, τ, f) and by c the value ci(ν, r, τ, fi).
Then, two cases appear relatively to λi(ν, r, τ, fi, d):
– if λi(ν, r, τ, fi, d) ≥ ρ/12(ℓ + 1), then, by definition of ci, we know that

λi(ν, r, τ, fi, c) ≥ ρ/12(ℓ + 1).
– otherwise,

λi(ν, r, τ, fi, d) + Prf ′

[

S &
(

χi(ν, r, τ, f
′) 6= d

)

f ′ extends fi

]

= Prf ′ [S | f ′ extends fi]

≥ Prf ′

[

S &
(

χi(ν, r, τ, f
′) 6= c

)

f ′ extends fi

]

≥ ρ/6(ℓ + 1).

Both cases lead to Prf ′

[

S &
(

χi(ν, r, τ, f
′) 6= d

)

f ′ extends fi

]

≥ ρ/12(ℓ + 1).
Thus, if we replay with the same keys and random tapes but another random
oracle f ′ such that f ′i = fi, we obtain, with probability at least ρ/12(ℓ + 1), a
new success with χi(ν, r, τ, f

′) 6= d. Then, both executions provide two different
representations of αi relatively to g and h.

Global Complexity of the Reduction By using a replay oracle technique with a
random forking index, the probability of success is greater than

1

ℓ + 1
×

(

ρ

6(ℓ + 1)

)2

×
ρ

12(ℓ + 1)
=

1

2(ℓ + 1)
×

(

1

6(ℓ + 1)
×

ε

Qℓ+1

)3

where ε is the probability of success of an (ℓ, ℓ + 1)-forgery and Q the number
of queries asked to the random oracle.

5 Conclusion

Our result appears to be the first security result which opens a way towards
provably secure E-cash systems by providing candidates for secure blind signa-
tures. However, an open problem still remains: the complexity of the reduction is
polynomial in the size of the keys but exponential in ℓ. We do not know whether
it is possible to achieve polynomial time both in ℓ and the size of the keys.
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