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Abstract. Identification is a useful cryptographic tool. Since zero-knowledge theory
appeared [3], several interactive identification schemes have been proposed (in particu-
lar Fiat-Shamir [2] and its variants [4, 6, 5], Schnorr [9]). These identifications are based
on number theoretical problems. More recently, new schemes appeared with the pecu-
liarity that they are more efficient from the computational point of view and that their
security is based on NP-complete problems: PKP (Permuted Kernels Problem) [10],
SD (Syndrome Decoding) [12] and CLE (Constrained Linear Equations) [13].
We present a new NP-complete linear problem which comes from learning machines:
the Perceptrons Problem. We have some constraints, m vectors X i of {−1, +1}n, and
we want to find a vector V of {−1, +1}n such that Xi · V ≥ 0 for all i.
Next, we provide some zero-knowledge interactive identification protocols based on this
problem, with an evaluation of their security. Eventually, those protocols are well suited
for smart card applications.

1 Introduction

An interactive identification protocol involves two persons Alice and Bob. Alice
wants to prove interactively that she is really Alice. She has a public key which
everybody knows, and a secret key associated to her public key. She is the only
one who knows the secret key, and nobody can compute it. To prove her identity,
Alice proves that she knows a secret key associated to her public key. In general,
the public key is a problem, a difficult problem, and the secret key is a solution
of this problem.

Recently, the zero-knowledge theory showed that we can prove the knowledge
of a solution of a problem without revealing anything about this solution. The
verifier learns nothing but the conviction that the prover knows a solution.

The first efficient zero-knowledge protocols were based on number theoretical
problems (Fiat-Shamir [2] and its variants [4, 6, 5], Schnorr [9]). They have two
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major disadvantages:

– The hardness of the problems used (factorization and discrete logarithm) is
not proved. Moreover, efficient algorithms and computers threaten them.

– Arithmetic operations are very expensive (modular multiplications, modular
exponentiations).

Since 1989, new schemes have appeared, which rely on NP-complete prob-
lems, and require only operations over small numbers or even on bits: PKP
(Permuted Kernels Problem) [10], SD (Syndrome Decoding) [12] or CLE (Con-
strained Linear Equations) [13].

This paper introduces another linear scheme based on the Perceptrons Prob-
lem, an NP-complete problem, which seems to be well suited for smart card
applications.

2 Problems

2.1 The Perceptrons Problem

The following problem appears in physics and the study of the Ising’s percep-
trons, and in artificial intelligence with the learning machines. We call it The

Perceptrons Problem.

Definition 1. We call an ε-vector (or matrix) a vector (or matrix) which com-
ponents are either −1 or +1.

Definition 2. The Perceptrons Problem PP:

Input : an ε-matrix A of size m × n.
Problem : find an ε-vector Y of size n such that AY ≥ 0.

It is easy to show that this problem is difficult to solve, even to approximate
in the sense of Papadimitriou and Yannakakis [7]. Proofs can be found in [8].

2.2 The Permuted Perceptrons Problem

It is possible to design a zero-knowledge identification protocol with every NP-
complete problem provided one-way hash functions are granted. But in order to
get one quicker and easier, we will take a variant of this problem:

Definition 3. The Permuted Perceptrons Problem PPP

Input : an ε-matrix A of size m × n,
a multiset S of nonnegative integers, of size m.

Problem : find an ε-vector Y of size n such that
{{(AV )j|j = {1, . . . , m} }} = S.

It is clear that a solution for PPP is a solution for PP. So the Permuted
Perceptrons Problem is more difficult to solve than the original Perceptrons
Problem.
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3 Size of the problem

Secure values of m and n will be precised later with the efficiency of the attacks.
But we will see that efficiency of the attacks will depend on the number of
solutions of the instance.

So we will first evaluate the number of solutions of an average instance (A,
S) of the Permuted Perceptrons Problem of size m × n when we know there
exists at least one solution V .

– On one hand, we can count the solutions for the Perceptrons Problem in-
stance associated. Let PP (m, n) be the average number of solutions for the
Perceptrons Problem instance A of size m × n (it is a big formula).

– On the other hand, we have to evaluate the probability to obtain a given
multiset S with the components of the product of A and a given solution of
PP: Pm,n,S

With every multiset S, this probability is less than the probability to obtain
the multiset Σ which elements have a Gaussian distribution
(i.e. |Σ|j = mpn,j, where pn,j is the probability for two ε-vectors of size n, X

and Y , to be such that |X · Y | = j: pn,j = 2−n+1
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Then the number of solutions for an average instance of PPP is less than
PP (m, n) × Pm,n,Σ.

Against the most efficient attack, we will need the smallest number of solu-
tions. Then we will choose m and n such that PP (m, n) × Pm,n,Σ ≤ 1

As a consequence, we see that for interesting sizes (100 < m < 200), we can
approximatively take n ≈ m + 16.

4 Making the problem practical

4.1 How to get the keys ?

For cryptographic purposes, we only use instances with a known solution. We
also want all instances with at least one solution may appear. To get such an
instance, we firstly choose an arbitrary ε-vector V , of size n, which will be the
solution of the future instance, and an ε-matrix A of size m×n. We next modify
it in the following way:

– If (AV )i < 0, we replace the ith row of A by its opposite value.
– If (AV )i ≥ 0, then we don’t change this row.

Then, we compute S = {{(AV )i|i = 1, . . . , m}}. Consequently, (A, S) is an
instance of the Permuted Perceptrons Problem, with V as a solution. In addition,
with this method, all the “good instances” may appear, with a probability which
is proportional to the number of solutions of the PP instance.
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4.2 Finite field

Also for cryptographic use, we need to bound the size of the numbers used
in order to store them on a constant number of bits. So we will work in the
finite field with p elements. If we bound the components of the product by a
nonnegative odd integer t (i.e. if T ∈ {1, 3, . . . , t}m), we can prove that if n, p
and t are such that 2p > n + t we have:

AV = T ⇐⇒ AV = T mod p

5 Possible attacks

We tried several attacks against PP and PPP in order to evaluate the security
of a possible protocol. But since there is no algebraic structure in those problems,
no manipulation of the matrix will leave the problem unchanged (manipulation
like Gaussian elimination, used in the past against PKP, CLE or any problem
based on error correcting codes will not help here). So, it seems that only (more
or less intelligent) exhaustive search or probabilistic attacks would succeed.

5.1 The majority vector

The first attack against PPP which comes to mind is the majority vector M :

for all j,

{

Mj = +1 if #{i|Ai,j = +1} > n
2

Mj = −1 otherwise

Theorem 4. For an m × n-instance constructed as shown below, with solution

V and m ≤ n, the average Hamming distance between V and M , is roughly

n · (
1

2
−

1

π

√

m

n
) ≈ 0.2n.

Firstly, we can change 20% of the components of M , and trying the products,

but there are
(

n

0.20n

)

such possibilities.

We can already fix a bound for n (and m) to overtake the usual work factor
of 264: n ≥ 95.

To improve this attack, we could arrange these changes beginning with com-

ponents of M which values are litigious (i.e. #{i|Ai,j = +1} near
n

2
). But

surprisingly enough, some components which seem to be very good are false: on
average, 80% of the components will have to be handled. So, this improvement
doesn’t modify the bound on n.

5.2 Simulated annealing

Because of the inefficiency of the previous attack, we tried the well-known prob-
abilistic algorithm that comes from artificial intelligence, known as simulated

annealing [11]. This attack tries to minimize a function, Energy, defined on a
finite metric space, in a probabilistic way. Simulated annealing algorithms are
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an improvement of gradient descent algorithms. Whereas gradient descent al-
gorithms can converge to a local minimum and stay there, simulated annealing
algorithms try to go away with some small random perturbations. These per-
turbations which may be important at the beginning have to decrease to zero.

Such an algorithm can be efficient only if the Energy function is roughly
“continuous” (the difference between the images of two neighbors is bounded by
a small number). For this reason, simulated annealing doesn’t seem to be well
suited for PPP because of the multiset, but it should be perfect for PP with

E(V ) =
1

2

m
∑

i=1

(|(AV )i| − (AV )i)

This algorithm turned out to be the most efficient. We have carried out many
tests on square matrices (m = n), and on some other sizes, and during a day,
we can find a solution for any instance of PP which size is less than about 200.

Those attacks have been running for a few months and we never find a
solution for PPP for sizes greater than 71.

If we suppose that each of those solutions can appear with the same proba-
bility, we have to repeat this attack about 0.7× #{solutions of PP} rounds, in
order to find the good solution with probability 0.5.

Then, we can evaluate the work factor of such an attack with probability of
success equal to 0.5:

size number time time Work factor?

of for a Solution
solutions solution Pr = 1/2 2n elementary

PP (seconds) (seconds) operations
101 × 117 4.7 109 85 399.109 64
121 × 137 8.7 1010 130 11.1012 68
151 × 167 3.7 1012 180 666.1012 74

? work factor estimated using a 60-70 MIPS processor speed

Then, we can say that even small sizes are secure enough. In addition, what-
ever the probabilistic attack, it will not be able to differentiate the good solution
of PPP from any solution of PP. So, even if we supposed a quick attack for PP
(an NP-complete problem) which would need only 1 second to find a solution
for a 141 × 157-sized instance, the work factor would remain above 264.

6 Practical values

With those results, we can suggest m = 101 and n = 117 as a secure size of the
problem. So, in the average instance, |S|1 = 15, |S|3 = 14, etc.

Pr
Instances

[Max S > 33] < .3

Then we can suppose that there is no greater number than 33, (i.e. t = 33). We
must take p > 75, and then we take p = 127 (it will optimize the probability
from a cheater to be rejected).
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7 Protocols

Common data: some integers p, n, t such that 2p > t + n and a collision-free,
random hash function H.

Let A be a matrix of size m × n, a Perceptrons Problem instance, with V as a
solution. Let S be the multiset of the components of AV .
Public key : (A, S)
Secret key : V

The prover selects
• a random permutation P over {0, . . . , m − 1} (to mix the rows of A.)
• a random signed permutation Q over {0, . . . , n − 1}

(to mix the columns of A, and to multiply them randomly by +1 or −1.)
• a random vector W of

�
n
p

7.1 Three pass identification protocol (3p zk)

1. The prover computes A′ = PAQ, V ′ = Q−1V , R = W + V ′

and h0 = H(P |Q), h1 = H(W ), h2 = H(R), h3 = H(A′W ), h4 = H(A′R)
and sends (h0, h1, h2, h3, h4) to the verifier.

2. The verifier randomly selects c in {0, . . . , 3} and sends c to the prover.

3. The prover sends: 4. The verifier checks:

if c = 0 : (P, Q, W ) h0 = H(P |Q), h1 = H(W ), h3 = H(PAQW ).

if c = 1 : (P, Q, R) h0 = H(P |Q), h2 = H(R), h4 = H(PAQR).

if c = 2 : (A′W, A′V ′) h3 = H(A′W ), h4 = H(A′W + A′V ′)
and {{(A′V ′)i}} = S.

if c = 3 : (W, V ′) h1 = H(W ), h2 = H(W + V ′)
and V ′ ∈ {−1, +1}n.

7.2 Properties

Theorem 5. The 3p zk protocol is an Interactive Proof System for PPP.

Lemma 6. Assume that some probabilistic polynomial-time adversary is ac-

cepted with probability greater than

(

3

4

)r

+ ε after r rounds, then there exists a

polynomial-time probabilistic machine which extracts the secret key S from the

public data or outputs collisions for the commitment function, with overwhelming

probability.

Proof. Consider the tree T (ω) of all 4k executions corresponding to all possible
questions of the verifier over k rounds when the adversary has a fixed random
tape ω.

α = Pr
ω

[T (ω) has a vertex with 4 sons]

It is clear that α ≥ ε, and by resetting the adversary 1
ε

times, one finds, with
constant probability, an execution tree with a vertex having 4 sons. Repeating
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again, this probability can be made very close to one.
A vertex with 4 sons corresponds to a situation where 5 commitments h0, h1,
h2, h3 and h4 have been made and where the adversary can provide answers to
the 4 possible queries of the verifier.
Consider answers :

H(P0|Q0) = h0 = H(P1|Q1)
H(W0) = h1 = H(W3)
H(R1) = h2 = H(W3 + V ′

3)

H(P0AQ0W0) = h3 = H(Y2)
H(P1AQ1R1) = h4 = H(Y2 + Z2)

Unless we have found a collision for the hash function H, we can consider

P = P0 = P1

Q = Q0 = Q1

W = W0 = W3

R = R1 = W3 + V ′

3 = W + V ′

Y = Y2 = P0AQ0W0 = PAQW
Y + Z = Y2 + Z2 = P1AQ1R1 = PAQR

such that V ′ ∈ {−1, +1}n and {{Zi}} = S.
so Y + Z = PAQR = PAQW + Z = PAQW + PAQV ′, then Z = PAQV ′.
Let V = QV ′ (V ∈ {−1, +1}n), then Z = PAV , Consequently {{(AV )i}} = S.

7.3 Five pass identification protocol (5p zk)

1. The prover computes A′ = PAQ, V ′ = Q−1V
and h0 = H(P |Q), h1 = H(W |V ′), h2 = H(A′W |A′V ′)
and sends (h0, h1, h2) to the verifier.

2. The verifier randomly selects k in
�

?
p and sends k to the prover.

3. The prover computes R = kW + V ′ and h3 = H(R), h4 = H(A′R)
and sends (h3, h4) to the verifier.

4. The verifier randomly selects c in {0, 1, 2} and sends c to the prover.

5. The prover sends: 6. The verifier checks:

if c = 0 : (P, Q, R) h0 = H(P |Q), h3 = H(R), h4 = H(PAQR)

if c = 1 : (A′W, A′V ′) h2 = H(A′W |A′V ′), h4 = H(kA′W + A′V ′)
and {{(A′V ′)i}} = S.

if c = 2 : (W, V ′) h1 = H(W |V ′), h3 = H(kW + V ′)
and V ′ ∈ {−1, +1}n

7.4 Properties

Theorem 7. The 5p zk protocol is an Interactive Proof System for PPP.

Lemma 8. Assume that some probabilistic polynomial-time adversary is ac-

cepted with probability greater than

(

2p − 1

3(p − 1)

)r

+ ε after r rounds, then there

exists a polynomial-time probabilistic machine which extracts the secret key S
from the public data or outputs collisions for the commitment function, with

overwhelming probability.

Using the idea of resettable simulation [3], in the random oracle model [1],
it can be shown that both protocols are zero-knowledge. Alternatively, one has
to assume specific statistical independance properties for the hash function.
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7.5 Light versions

A light version (3p light and 5p light) of those protocols, which reduces the
number of required rounds, can be designed.

Five pass identification protocol (5p light)
The initialization is the same as in the previous schemes.

1. The prover computes A′ = PAQ, V ′ = Q−1V
and h0 = H(P |Q), h1 = H(W |A′W |V ′|A′V ′)
and sends (h0, h1) to the verifier.

2. The verifier randomly selects k in
�

?
p and sends k to the prover.

3. The prover computes R = kW + V ′ and h2 = H(R|A′R)
and sends h2 to the verifier.

4. The verifier randomly selects c in {0, 1} and sends c to the prover.

5. The prover sends: 6. The verifier checks:

if c = 0 : (P, Q, R) h0 = H(P |Q), h2 = H(R|PAQR)

if c = 1 : (W, V ′, A′W, A′V ′) {{(A′V ′)i}} = S,
V ′ ∈ {−1, +1}n

h2 = H(X|Y ) with
X = kW + V ′

Y = kA′W + 2T + U
These light protocols are no longer zero-knowledge. However, the information

released appears quite small. In fact, in the case c = 1, the verifier learns two
vectors and their images by A′, then he can deduce something about A′, and
then about P and Q. As he knows V ′, he theoretically learns a fraction of bit
of V . Since the permutations P and Q are different at each round, the given
information seems unusable.

8 Performances

The performances of this scheme are similar to those of the already existing
linear ones:

SD CLE PKP PPP PPP
Stern Stern Shamir 3p ZK 5p ZK

matrix size 256 × 512 24 × 24 37 × 64 101 × 117
over the field

�
2

�
16

�
251

�
2

best known attack
complexity 268 252 > 2100 264

Number of rounds 35 20 20 48 35
public key (bits) 256 80 296 144
secret key (bits) 512 80 384 117

bits sent by round 954 824 832 896 1040
global transmission

rate (kbytes) 4.08 2.01 2.03 5.25 4.44
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– As we can see in the figure, with a secret key more secure than in some other
schemes (work factor of the attack greater than 264), and with a probability
of 10−6 for a cheater to be accepted, an identification requires less than
4.5 kbytes of communication between the prover and the verifier (to be
compared with the 2 kbytes for PKP and CLE, and the 4 kbytes for SD).
And we can improve them by the use of hash trees.

– Moreover, all the operations are no more than additions and subtractions
between small integers (less than one byte) even modulo 2. They are well
suited to a very minimal environment of 8-bit processors.

– If we use a common matrix M , stored in the seed of a pseudo-random gen-
erator, and if the keys are:
secret key : a random ε-vector V of size n (less than 15 bytes)
public key : the ε-vector L such that Li(MV )i ≥ 0

and the multiset S = {{Li(MV )i}}
(18 bytes)

It is very few bytes if we compare them with PKP or SD. But we should not
forget that as for PKP, SD and CLE, this scheme is not identity based. It
means that public keys have to be certified by an authority.

– They require only simple operations so the program is very small. Moreover,
the size of the data (common data and keys) are tiny. As a consequence,
little EEPROM is needed.

– Very few temporary computations have to be stored so they require very
little RAM.

9 Conclusion

We have defined a new identification scheme which is very easy to implement
on every kind of smart card because of its very simple operations and the small
size of the data. We welcome attacks from readers.
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