
FINDING CYCLES WITH TOPOLOGICAL PROPERTIES

IN EMBEDDED GRAPHS∗

SERGIO CABELLO† , ÉRIC COLIN DE VERDIÈRE‡ , AND FRANCIS LAZARUS§

Abstract. Let G be a graph cellularly embedded on a surface S. We consider the problem of
determining whether G contains a cycle (i.e., a closed walk without repeated vertices) of a certain
topological type in S. We show that the problem can be answered in linear time when the topological
type is one of the following: contractible, non-contractible, or non-separating. In each case, we obtain
the same time complexity if we require the cycle to contain a given vertex. On the other hand, we
prove that the problem is NP-complete when considering separating or splitting cycles. We also show
that deciding the existence of a separating or a splitting cycle of length at most k is fixed-parameter
tractable with respect to k plus the genus of the surface.

Key words. topological graph theory, algorithm, graph, cellular embedding, cycle, contractible,
separating

AMS subject classifications. 05C10, 05C85, 57M15, 68Q17, 68R10, 68W05

1. Introduction. Topological graph theory studies combinatorial embeddings of
graphs on surfaces. This includes the design of efficient algorithms for finding optimal
cycles with prescribed topological properties. This last subject has received much
attention since Thomassen’s seminal work [21] (see also Mohar and Thomassen [20,
Chapter 4]) to compute a shortest cycle that is non-contractible (cannot be deformed
continuously on the surface to a point) or non-separating (whose removal leaves the
surface connected). Since then, more efficient algorithms have been proposed, also in
the context of weighted graphs [3,7,18]. As it turns out, the shortest non-contractible
or non-separating closed walk is automatically a cycle; this follows from Thomassen’s
3-path condition [21], a structural property that is heavily used in the aforementioned
algorithms.

However, for other topological properties, shortest closed walks are not necessarily
cycles, and thus different tools are needed to compute them. For instance, Cabello [2]
has given a polynomial-time algorithm to find a shortest contractible cycle in a surface-
embedded graph, and has proven that it is NP-hard to compute a shortest contractible
cycle through a given vertex, or a shortest separating cycle.

In many similar problems, one usually relaxes the condition that the output be
a cycle—without repeated vertices—and instead only requires a shortest closed walk
with the given topological property. For example, it is known how to compute in
(small) polynomial time a shortest non-contractible or non-separating closed walk
passing through a given vertex [13], possibly in directed graphs [4], a shortest essential
closed walk [16], a closed walk in a non-trivial homotopy class that is as short as

∗Research partially supported by the Slovenian Research Agency, program P1-0297 and project
BI-FR/09-10-PROTEUS-014, and by the French Ministry of Foreign and European Affairs.

†Department of Mathematics, IMFM, and Department of Mathematics, FMF, University of Ljubl-
jana, Slovenia; sergio.cabello@fmf.uni-lj.si; http://www.fmf.uni-lj.si/~cabello/.

‡Laboratoire d’informatique, École normale supérieure, CNRS, Paris, France; Eric.Colin.de.

Verdiere@ens.fr; http://www.di.ens.fr/~colin/.
§GIPSA-Lab, CNRS, Grenoble, France; Francis.Lazarus@gipsa-lab.grenoble-inp.fr; http:

//www.gipsa-lab.inpg.fr/~francis.lazarus/.

c© 2011, SIAM. This paper appeared in SIAM Journal on Dis-
crete Mathematics, 25(1600–1614), 2011.

1

2 SERGIO CABELLO, ÉRIC COLIN DE VERDIÈRE, AND FRANCIS LAZARUS

possible within that homotopy class [6], or a shortest closed walk homotopic to a given
walk [9]. In contrast, finding a shortest splitting (separating but non-contractible)
closed walk is NP-hard [8].1

In this article, we consider the problem of deciding whether there exists a cycle
of a certain topological type in a given surface-embedded graph. In other words, we
drop the optimization objective, but insist in having a cycle without repeated vertices.
(Removing this latter constraint would make the problem trivial.) We emphasize that
we consider cellular graph embeddings, where each face is an open disk. Nevertheless,
a given edge may have the same face on both of its sides.

We exhibit a strong dichotomy in the complexity of these problems, depending
on the topological property required. As it turns out, there are linear-time algo-
rithms when the corresponding optimization problem (even for closed walks) has a
polynomial-time algorithm. This is the case for contractible, non-contractible, or
non-separating cycles. On the other hand, we again obtain NP-hardness results for
splitting or separating cycles, as in the optimization version of these problems. For
those cases, we also propose algorithms to decide the existence of a separating or split-
ting cycle of length at most k, whose complexities are near-linear or near-quadratic
when k and the genus g of the surface are fixed (these algorithms are thus fixed-
parameter tractable with respect to k + g). We emphasize that our arguments quite
differ from the ones used in the above cited papers and are more inclined towards
basic graph theory.

We now describe precisely our results. Throughout this article, G = (V,E) de-
notes a graph cellularly embedded on a surface S with genus g (the surface may be
orientable or not, but may not have boundary; we discuss extensions to surfaces with
boundary in Section 7.1).

Theorem 1.1. We can determine in O(|E|) time if G admits:
1. a contractible cycle on S,
2. a contractible cycle on S passing through a given vertex,
3. a non-contractible cycle on S passing through a given vertex,
4. a non-separating cycle on S passing through a given vertex,

and return one such cycle if it exists.
Note that the last two problems become rather trivial if we do not enforce the

cycle to contain a given vertex. Indeed, if S is not a sphere, then any cycle in a cut
graph (see the next section for a definition) is non-separating, hence non-contractible.

Theorem 1.2. Deciding the existence of a cycle in G of any of the following type
is NP-complete:

1. separating on S,
2. splitting on S,
3. separating on S and passing through a given vertex of G,
4. splitting on S and passing through a given vertex of G.
We mention that (1) answers negatively to an open problem raised by Mohar and

Thomassen [20, Problem 4.3.3(b)]. As a side note, (1) reduces to (3) (and similarly (2)
reduces to (4)) using Cook reductions : to solve (1), simply solve problem (3), taking
each vertex of G in turn, and similarly for (2) with (4). However, NP-completeness
is defined in terms of Karp reductions, which are more restrictive. It is not clear a
priori that (1) reduces to (3) by Karp reductions, namely, whether an instance of (1)

1In several variants of these problems, it is required that the closed walk be “non-self-crossing”,
namely, that it can be slightly deformed on the surface to remove all its self-intersections. This
technicality is taken care of using the notion of combinatorial or cross-metric surface [9, 10].

FINDING CYCLES WITH TOPOLOGICAL PROPERTIES IN EMBEDDED GRAPHS 3

can be transformed to an instance of (3) such that the answer is the same on both
instances. Therefore, (3) and (4) do not follow trivially from (1) and (2).

We finally propose algorithms for parameterized versions of those NP-complete
problems relying on the color-coding approach of Alon et al. [1].

Theorem 1.3. Let k ≥ 1 be an integer, and let s be a vertex of G. There is an
algorithm that in 2O(g+k)|E| log |V | time decides if G has a separating, respectively
splitting, cycle on S through s of length at most k and reports one, if one exists.

For the same problem, there is a randomized algorithm with running time 2O(g+k) ×
|E|: the only case where the algorithm errs, with probability at most 1/2 (or any con-
stant strictly smaller than 1), is when there exists a cycle of the desired type, but the
answer of the algorithm is negative.

By running this algorithm once for every choice of s, we can of course drop the
basepoint condition:

Corollary 1.4. We can decide if G has a separating, respectively splitting, cycle
on S of length at most k and report one, if one exists, in 2O(g+k)|E||V | log |V | time.
As in Theorem 1.3, there is also a randomized algorithm, faster by a Θ(log |V |) factor,
with one-sided error allowed with constant positive probability.

2. Background. We review some basic terminology and properties of graphs
and their embedding on surfaces. We follow standard graph theory terminology, as in
the book by West [22]. All the considered graphs may have loops and multiple edges.
A cycle in a graph is a closed walk without repeated vertices. A loop is a closed walk
with one distinguished vertex, its basepoint. All walks are oriented; given a walk w,
we denote by w−1 the same walk with the opposite orientation.

2.1. Blocks. Let G = (V,E) be a graph. The blocks of G are its subgraphs
induced by the classes of the following equivalence relation on its set E of edges:
e ∼ e′ if e = e′ or if there is a cycle in G that contains both e and e′. The blocks of
G can be determined in O(|E|) time using depth-first search. (See West [22, p. 157].)

2.2. T -Loops, T -Cycles, and Cycle Group. Let T be a spanning tree in G
and s be a vertex of G. To every edge e of G, we can associate the loop τ(T, s, e)
composed of the path in T joining s to an endpoint of e, the edge e, and the path in
T joining the other endpoint of e to s. We call τ(T, s, e) the T -loop associated to e;
the vertex s is the basepoint of the T -loop.

We can also associate to e the closed walk τ(T, e) composed of e and the path in
T joining the endpoints of e. If e is not an edge of T , τ(T, e) is a cycle, called the
T -cycle associated to e.

An even subgraph is a subgraph of G, each vertex of which has even degree. The
set of even subgraphs form an Abelian group, where the sum corresponds to the
symmetric difference of the even subgraphs. This group is called the cycle group of G.
When G is connected, it is again part of the folklore that the set of T -cycles associated
to the set of chords E(G) \ E(T) form a basis of the cycle group of G.

2.3. Surfaces. We only consider surfaces without boundary. A surface (or 2-
manifold) S is a compact, connected, topological space where each point has a neigh-
borhood homeomorphic to the plane. Every surface is homeomorphic to a sphere
where:

• either the interiors of 2g ≥ 0 disjoint closed disks are removed and g cylinders
are attached to connect the resulting circles by pairs, or

• the interiors of g ≥ 1 disjoint closed disks are removed and a Möbius band is
attached to each resulting circle.

4 SERGIO CABELLO, ÉRIC COLIN DE VERDIÈRE, AND FRANCIS LAZARUS

The surface is called orientable in the former case and non-orientable in the latter
case. In both cases, g is the genus of the surface.

2.4. Cellular Graph Embeddings. A graph G is cellularly embedded on a
surface S if every open face of (the embedding of) G on S is a disk. As it is customary,
we will assume that the input graphs are cellularly embedded. (At some intermediary
steps we may have graphs that are not cellularly embedded.) Following Mohar and
Thomassen [20], the embedding of G can be encoded by adjoining to the data of G
a rotation system and a signature. The rotation system provides for every vertex in
V a cyclic permutation of its incident edges and the signature assigns a sign to every
edge to indicate whether the rotation systems of its endpoints are compatible or not.
Storing a cellular embedding takes a space linear in the total number of its vertices,
edges, and faces. We note that, by Euler’s formula, this number is linear in the sole
number of edges of G.

From a rotation system, one can deduce the facial walks of G, i.e., the closed
walks obtained by following the boundary of an open face of G (see [20, p. 93] for a
detailed description). Every face corresponds to two opposite facial walks. We will
not differentiate these two opposite facial walks and will refer to the facial walk of a
face as any one of its two facial walks.

An edge e of an embedded graph G may be incident to two distinct faces or to a
single face. In the former case, e is called regular and singular in the latter. Note that
a regular edge appears exactly once in each facial walk of its incident faces, while a
singular edge appears twice, with or without the same orientation, in the facial walk
of its incident face.

There are data structures to maintain and operate efficiently with embedded
graphs, like for example the gem representation [12, 19]. With such data structures
we can traverse the neighbors of a vertex in time proportional to its degree, obtain a
facial walk in time proportional to its length, or cut the surface along a path or cycle
in time proportional to its length.

2.5. Duality. LetG be a graph embedded on a surface S. Its dual graph, denoted
by G∗, has for vertices the set of faces of G and for edges the set of edges (dual
to) E(G): two faces are adjacent if they share an edge of G. The edge dual to e is
denoted by e∗, and it connects the two faces adjacent to e in the embedding. An
edge dual to a singular edge is a loop edge. For a set of edges A ⊆ E(G), we use the
notation A∗ = {e∗ | e ∈ A}.

2.6. Homotopy and Homology. Let G be a graph embedded in an ambient
space X (for example, a surface). Let s be a vertex of G. Two loops in G with
basepoint s are homotopic in X if one can be deformed continuously to the other
within X , keeping the basepoint s fixed during the deformation. (The loops may
have self-intersections.) The equivalence classes of homotopic loops are called homo-
topy classes, and we use 〈α〉 to denote the homotopy class containing the loop α. The
homotopy classes form a group, where the multiplication in the group corresponds to
the concatenation of the loops. Its unit is the set of contractible loops, i.e., the set
of loops that are homotopic to the constant loop. When the ambient space X is a
surface S where the graph is cellularly embedded, we denote this group by π1(S, s).
Indeed, the fact that G is cellularly embedded implies that this group, called the
fundamental group of S, depends only on the surface S. When we regard G as a
1-dimensional complex and take G itself as the ambient space, we obtain the funda-
mental group of G, denoted by π1(G, s). If G is connected and T is a spanning tree

FINDING CYCLES WITH TOPOLOGICAL PROPERTIES IN EMBEDDED GRAPHS 5

of G, it is a well-known fact that the set of T -loops with basepoint s associated to the
set of chords E(G) \ E(T) form a basis of π1(G, s).

Let G be a graph cellularly embedded in a surface S. The boundary graph of a
face f of G is the even subgraph of G induced by the union of edges of the facial
walk of f occurring exactly once in this facial walk (in other words, by the regular
edges of G belonging to this facial walk). Two even subgraphs are said homologous
if their sum in the cycle group of G is equal to the sum of the boundary graphs of
some faces. The equivalence classes of homologous even subgraphs, called homology
classes, form an Abelian group under the symmetric difference. Equivalently, this
group, called the homology group, can be defined as the quotient of the cycle group of
G by the subgroup of even subgraphs homologous to the empty graph. In particular,
a generating family for the homology group can be obtained by taking the homology
classes of a basis of the cycle group of G. It can actually be shown that the homology
group depends only on the surface S and not on the embedded graph G; we therefore
denote this homology group by H1(S). (This is known as Z2-homology in algebraic
topology, but it is the only homology we will deal with.)

2.7. Topological Types of Embedded Cycles. Every loop in G without re-
peated vertices forms a cycle in G. It turns out that such a loop is contractible if
and only if the corresponding cycle bounds a disk in S. In this case, we say that
the cycle is contractible. A cycle in G is separating if the surface is disconnected by
cutting it along that cycle. It is a well-known fact that a cycle separates a surface
if and only if its homology class is trivial. A cycle is splitting if it cuts the surface
into two components, neither of which is a disk. In other words, a splitting cycle is a
separating and non-contractible cycle.

2.8. Cut Graphs and Homology Bases. If H is a subgraph of G, we will
denote by S\\H the topological space obtained after cutting S along H (this is a
surface with boundary). The dual graph of S\\H has for vertices the set of faces of G
and for edges the (dual) set of edges E(G)\E(H): two faces are adjacent if they share
an edge that is not in H . If S\\H is a closed disk (equivalently, H is cellular and has
a single face), then H is called a cut graph. A cut graph is spanning if it contains
all the vertices of G. In this case, the dual graph of S\\H is a tree. A spanning cut
graph can be computed in time linear in the number of edges of G [5, 12].

A homology basis ofH1(S) can be computed as follows. Let H be a subgraph of G
that is a cut graph, and let T be a spanning tree of H . The set of T -cycles associated
to the set of chords E(H) \ E(T) form a homology basis for S. Said differently, a
basis of H1(S) can be obtained from a homology basis of a cut graph. From Euler’s
formula, it is easily derived that a homology basis of S has 2g (respectively g) cycles
if S is an orientable (respectively non-orientable) surface of genus g. A homology
class can thus be represented by a vector of O(g) bits, where each bit stands for the
occurrence of a basis cycle in this sum [15, Section 4]. We will use [α] to denote the
bit vector of the homology class of an even subgraph α, and use ⊕ to make the bitwise
sum between classes. Thus, if an even subgraph β is the symmetric difference of two
even subgraphs α and α′, then [β] = [α]⊕ [α′].

Suppose H is a spanning cut graph. Let T be a spanning tree of H , hence of G.
We can compute the bit vectors of the homology classes of the T -cycles associated to
the edges of G as follows. The bit vector of the T -cycle associated to an edge of T is
obviously the zero vector. The homology class of the T -cycle associated to an edge
in E(H) \ E(T) has one non-zero bit for this T -cycle. Now, cutting S along the cut
graphH yields a closed diskD. Since H is spanning, every edge uv in E(G)\E(H) has

6 SERGIO CABELLO, ÉRIC COLIN DE VERDIÈRE, AND FRANCIS LAZARUS

Fig. 3.1. A cellular embedding of a graph without contractible cycle.

its endpoints u and v on the boundary of D; therefore, the homology class of τ(T, uv)
is the mod 2 sum of the bit vectors of the walk connecting u and v on the boundary
of the disk D (both possible choices will give the same result). Assume one of the two
pieces of D cut along e = uv is a single face f of G; we may compute the bit vector
of e as indicated above, by running along the boundary of f . Then we remove f and
recurse on the disk D \ f . Therefore, the following lemma holds.

Lemma 2.1 (See also [14, Lemma 3.1]). We can compute the homology class of
all the T -cycles associated to the edges of G in O(g|E|) time.

3. Contractible Cycles. In this section we prove points (1) and (2) of Theo-
rem 1.1: we can determine in O(|E|) time if G contains a contractible cycle2. The
same is true if we impose the contractible cycle to contain a given vertex of G. Fig-
ure 3.1 shows a simple example of cellular graph embedding without contractible cycle.
Recall that an edge is regular if it is incident to two distinct faces. The edges of G can
be classified as regular or singular in a simple traversal of all the facial walks: edges
appearing once (respectively twice) in a facial walk can be marked regular (respec-
tively singular). This clearly takes linear time by assumption on the data structure
for storing the embedded graph G.

Lemma 3.1. Let e be a regular edge of a face F of G. Then e belongs to a cycle of
G whose edges appear in the facial walk of F . Moreover, such a cycle can be extracted
in time proportional to the length of the facial walk of F .

Proof. Consider the subgraph GF of G induced by the edges of the facial walk of
F . Since e is regular, the complementary walk of e in this facial walk does not use
e. Hence, the graph GF − e is connected and we can extract from this graph a path
between the endpoints of e to form a cycle with e.

We denote by c(F, e) the cycle extracted by the above procedure. The following
lemma is a direct consequence of the Jordan curve theorem [20, p. 25].

Lemma 3.2. Let e be a regular edge incident to a face F . Assume that F is
contained in a closed disk of S bounded by a cycle of G. Then, the cycle c(F, e)
bounds a closed disk in S.

Given a vertex s, we construct a set of cycles C(s) as follows. For every face F
incident to at least one regular edge e having s as an endpoint, we add to C(s) the
cycle c(F, e). Clearly, C(s) can be constructed in time proportional to the complexity
of G. Also, since every edge of c(F, e) is incident to F , we remark that any edge of G
may appear in at most two cycles in C(s).

The set C is defined similarly, dropping the condition on s: For every face F
incident to at least one regular edge, we add to C the cycle c(F, e), where e is such an
edge. Again, C can be constructed in time proportional to the complexity of G.

2Note that the problem becomes trivial for a graph embedded with face-width at least two since,
in this case, all the facial walks are cycles. See [20, Proposition 5.5.11].

FINDING CYCLES WITH TOPOLOGICAL PROPERTIES IN EMBEDDED GRAPHS 7

Lemma 3.3. G contains a contractible cycle through s if and only if some cycle
in C(s) is contractible. Similarly, G contains a contractible cycle if and only if some
cycle in C is contractible.

Proof. Since every cycle in C(s) contains s, the “if” condition of the first equiv-
alence is trivial. On the other hand, suppose G has a contractible cycle c through s.
Let e be an edge of c incident to s. Since c bounds some closed disk D in S, the
edge e must be regular and must have an incident face F in D. By construction, C(s)
contains a cycle c(F, e′) for some regular edge e′ incident to s. This cycle contains s,
and, by Lemma 3.2, it is contractible. The proof for the second part of the lemma is
entirely similar, dropping the condition on s and replacing C(s) by C.

Lemma 3.4. C(s) contains a contractible cycle if and only if there is a closed disk
in S whose boundary is a cycle of C(s) and whose interior is disjoint from the cycles
in C(s). The same is true if we replace everywhere C(s) by C.

Proof. The “if” part is obvious. For the reverse implication, consider a con-
tractible cycle c(F, e) ∈ C(s). It bounds a closed disk D on S. We choose this cycle so
as to minimize the number of faces of G in D. Consider another cycle c(F ′, e′) ∈ C(s).
We claim that c(F ′, e′) does not cross the interior of D. Indeed, suppose for the sake
of contradiction that an edge a of c(F ′, e′) is interior to D. Then the faces incident to
a, one of which is F ′, must be contained in D. So c(F ′, e′) would also be contained
in D. By Lemma 3.2, this would be in contradiction with the minimality of D. A
formal substitution of C for C(s) proves the second part of the lemma.

Proof of points (1) and (2) of Theorem 1.1. We prove (2). Again, a proof of (1)
can be obtained by a formal substitution of C for C(s).

By Lemma 3.3, it suffices to test if one of the cycles in C(s) is contractible. By
Lemma 3.4, this happens if and only if one component of the surface S cut through
∪C(s)—the set of edges in at least one cycle in C(s)—is a closed disk whose boundary
is a cycle of C(s). This can be checked in linear time as follows. First label each edge
of G with the cycles of C(s) that contain this edge. As remarked above, an edge can
get at most two labels. Cutting S through the edges of the cycles in C(s) takes linear
time and we can extract the components that are disks by looking at their Euler
characteristic. For each disk component, we can easily check in constant time per
edge if all the boundary edges share a same label, i.e., if this component is bounded
by a cycle in C(s).

4. Non-Contractible and Non-Separating Cycles. In this section we prove
points (3) and (4) of Theorem 1.1: we can determine in linear time if G contains a
non-contractible cycle or a non-separating cycle through a given vertex s.

Let T be a spanning tree of G. Denote by C∗ the subgraph of the dual graph G∗

with the same vertex set as G∗ and edge set E(G∗) \ E(T)∗. The following lemma
appears in [5, Corollary 2].

Lemma 4.1. Let e ∈ E(G) \ E(T). The T -cycle τ(T, e) is separating on S if
and only if C∗ − e∗ is not connected. The T -cycle τ(T, e) is contractible if and only if
C∗−e∗ has a connected component that is a tree (possibly reduced to a single vertex).

Proof of point (3) in Theorem 1.1. Remark that, by definition of a block, any
cycle in G through the given vertex s is contained in a single block of G. We can
thus restrict the search of a non-contractible cycle to the union of the blocks of G
incident to s. Call H this union. Next we will see that the following two statements
are equivalent:

• there exists a non-contractible cycle through s in H ;
• there exists a non-contractible cycle in H .

8 SERGIO CABELLO, ÉRIC COLIN DE VERDIÈRE, AND FRANCIS LAZARUS

Indeed, suppose γ is a non-contractible cycle in H that does not contain s. We exhibit
a non-contractible cycle through s in H . As remarked above, γ is contained in a single
block B ⊆ H . Still by definition of a block, there exists a cycle c ∈ B through s and
some edge of γ. Let p be the subpath of c between s and the first encountered vertex
x of c in γ. Similarly, let q be the subpath of c−1 between s and the first encountered
vertex y of c−1 in γ. The vertices x and y cut γ into two paths α and β. The two
cycles p · α · q−1 and p · β · q−1 contain s and one of them must be non-contractible,
since otherwise γ = β · α−1 would also be contractible.

In order to test if H has a non-contractible cycle, we compute a spanning tree
T of G that extends a spanning tree of H . Since the fundamental group π1(H, s) is
generated by the loops τ(T, s, e), for e ∈ H \ T , the graph H contains a cycle that
is non-contractible in S if and only if one of these T -loops is non-contractible in S.
Equivalently, one of the corresponding T -cycles should be non-contractible. From
Lemma 4.1, τ(T, e) is contractible if and only if C∗ − e∗ has a connected component
that is a tree. The dual edges e∗ satisfying this condition are exactly those that are
removed when “pruning” the graph C∗, by iteratively removing degree-one vertices
with their incident edge. Therefore, we can test in linear time whether there is an
edge e ∈ H \ T satisfying this condition.

Proof of point (4) in Theorem 1.1. Our proof starts literally as the proof of point
(3) in Theorem 1.1, replacing non-contractible with non-separating. In particular,
there exists a non-separating cycle through s in G if and only if there exists a non-
separating cycle in H , the union of blocks incident to s. In order to test this last
condition, we first compute a spanning tree T of G that extends a spanning tree of H .
As recalled in Section 2, the T -cycles associated to the set of chords of T in H form
a basis of the cycle space of H . Hence, H has a non-separating cycle if an only if
one of these chords has an associated T -cycle that is non-zero-homologous, i.e., non-
separating. From Lemma 4.1, this holds if and only if the corresponding dual edge
does not separate C∗, i.e., is not a bridge in C∗. This can be tested for all the chordal
edges in linear time by first marking the bridges of C∗. Recall that the bridges of a
graph are its one-edge blocks and can thus be determined in linear time.

5. Separating and Splitting Cycles. In this section we show Theorem 1.2: It
is NP-hard to decide if G contains separating and splitting cycles. Our NP-hardness
proof is inspired by a former article [8], but is more complicated. It proceeds by
reduction from the following NP-complete problem: determine whether a given planar
bipartite graph H with maximum degree 3 has a Hamiltonian cycle [17, Lemma 2.1].
(Actually, we will not use the fact that H is bipartite.) See Figure 5.1 for an overview
of the reduction.

Let s be an arbitrary vertex of H of degree 3. In H , we replace s with a triangle,
as shown in Figure 5.2(a-b), obtaining a graph H1. Let one of the three new edges be
called e. We mark all vertices of H1 except the three new vertices as required. The
following lemma is easy.

Lemma 5.1. H has a Hamiltonian cycle if and only if H1 has a cycle using e
and all required vertices.

It is convenient, at this point, to fix an embedding of H1 on the sphere. Note
that e has two different incident faces in H1. We color one of them in black and the
other one in white. We surround every required vertex of H1 with a ring, as shown
in Figure 5.3. This creates two or three new faces per required vertex of H1; we
color exactly one of them (chosen arbitrarily) in black and another one in white; the
last one, if present, is not colored. Label each of the k uncolored faces with distinct

FINDING CYCLES WITH TOPOLOGICAL PROPERTIES IN EMBEDDED GRAPHS 9

s

(a)

e′

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

(b)

(c)

Fig. 5.1. Overview of the reduction from Hamiltonian cycle in planar graphs with maximum
degree 3. (a) An original instance H with a solution. (b) The corresponding graph H2. The disks
inside the faces indicate their color. (c) A part of the corresponding surface (only a part of the
middle gray area is shown; it was initially a sphere).

s

(a)

e

(b)

e′

(c)

Fig. 5.2. (a) A degree-3 vertex s of H. (b) Replacement of s by a triangle to obtain H1.
(c) Insertion of the grid on edge e to obtain H2.

integers between 1 and k. Split e into three subedges; call one of the extremal subedges
e′; replace the middle subedge with a ((k + 1) × 2)-grid, as shown in Figure 5.2(c),
creating k grid faces ; these grid faces are also labeled with distinct integers between
1 and k. We have obtained a new graph H2 with a planar embedding, where every
face got either a color (black or white) or a label between 1 and k. Moreover, every
label is represented by exactly one grid face and exactly one non-grid face.

Now we build the surface S; see Figure 5.1. First, we remove a disk from every

10 SERGIO CABELLO, ÉRIC COLIN DE VERDIÈRE, AND FRANCIS LAZARUS

(a) (b)

Fig. 5.3. Creation of the rings in H1: (a) for a degree-3 vertex; (b) for a degree-2 vertex. (We
may clearly assume that H has no vertex of degree one.)

labeled face, and attach k cylinders to these 2k punctures to connect the pairs of faces
with corresponding labels. Second, we remove disks from every white face, and we
attach a single sphere with boundaries to them. We similarly attach another sphere
with boundaries to the black faces.

Lemma 5.2. H1 has a cycle using e and all required vertices if and only if H2

contains a separating (or splitting) cycle in S.
Proof. Note that a cycle γ in H2 separates S if and only if, when we consider γ

in the planar embedding H2:

• the black faces are on the same side of γ,
• the white faces are on the same side of γ, and
• for each label, the two faces with this label are on the same side of γ.

If H1 has a cycle using e and all required vertices, assume without loss of generality
that it uses e by leaving the black face incident with e to its left. We transform it
to a cycle in H2 as follows: within each ring, modify the cycle so as it still passes
through each central vertex at most once, and leaves the black face of the ring to the
left and the white face of the ring to the right (this is always possible). Within the
grid, modify the cycle so that it leaves a grid face with label i to its left if and only
if it leaves the non-grid face labeled i to its left. This yields a separating (and even
splitting) cycle.

Conversely, consider a separating cycle γ on H2. It must use edge e′: otherwise
it uses (1) only grid edges, in which case only grid faces (at least one) are on one of
its sides, or (2) only non-grid edges, in which case the black and white faces incident
with e′ and all grid faces are on the same side of γ, though all faces cannot be on this
side. In both cases it contradicts the fact that γ is separating. Since γ separates the
black faces from the white faces, γ must use a part of all rings of required vertices
of H1. Since every ring is separated from the rest of H2 by three edges, it is used at
most once. Finally, this yields a cycle in H1 using e and all required vertices.

H2 is not cellular on S. We now augment it to a graph H3 that is cellular on S
as follows. Every face f in H2 that is not cellular is a punctured sphere. Put a
new vertex inside f , and connect it with one vertex per boundary component of f
(Figure 5.4).

Lemma 5.3. Any separating (or, in particular, splitting) cycle in H3 belongs
to H2.

Proof. Let a be an edge added to H2 to form H3; that edge a has the same face
of H3 to its left and to its right, and therefore there is a simple closed curve γa on the
surface that crosses a exactly once and crosses no other edge ofH3. A separating cycle
crosses any closed curve on the surface an even number of times; hence γa cannot be
crossed by a separating cycle; consequently, a cannot be used by a separating cycle.

FINDING CYCLES WITH TOPOLOGICAL PROPERTIES IN EMBEDDED GRAPHS 11

aγa

Fig. 5.4. Extension of H2 to a cellular graph H3.

Proof of Theorem 1.2. These problems are clearly in NP. Statements (1) and (2)
follow directly from Lemmas 5.1, 5.2, and 5.3. Furthermore, every separating cycle
in H3 uses edge e′ and its incident vertices; this proves (3) and (4).

6. Computing Separating and Splitting Cycles Anyway. We now discuss
a parameterized version of the last NP-hard problems. Given an integer k, decide
whether G contains a separating, respectively splitting, cycle of length at most k—
and report such a cycle in case of positive answer. These problems again admit two
variants depending on whether or not we force the cycle to pass through a given vertex.
Using the color-coding approach of Alon et al. [1], we propose randomized algorithms
for these problems. Henceforth, T will designate a spanning tree of the graph G. In
order to test if a cycle is separating, we shall use the equivalence with zero-homologous
cycles. To this end, we precompute the O(g)-bit vectors of the T -cycles associated to
the edges of G. By Lemma 2.1, this takes O(g|E|) time.

6.1. Separating Cycles. Choose a random k-coloring κ : V → {1, . . . , k} of
the vertices of G. Hence, each vertex gets a color independently drawn from a bag
of k colors, where each color has probability 1/k of occurrence. Suppose G has a
separating cycle of length at most k through a given vertex s. With probability at
least k!/kk = 2−Θ(k), the vertices of that cycle get different colors. More generally, a
path or cycle in G is said colorful if all its vertices get a different color.

Following Alon et al. [1] we use a dynamic programming approach to search for
a colorful separating cycle. For this, we consider the following directed graph H with
arcs labelled by edges of G. We refer to the nodes and arcs of H in order to avoid
confusion with the vertices and edges of G. The graphH has nodes of the form (v, c, h)
where v ∈ V is a vertex of G, c ⊆ {1, . . . , k} is a subset of colors, and h ∈ H1(S) is a
homology class. Two nodes (v, c, h) and (v′, c′, h′) are linked by an arc labelled with
edge e if and only if the following conditions are satisfied:

C1. the endpoints of e are v and v′,
C2. κ(v′) 6∈ c and c′ = c ∪ {κ(v′)}, and
C3. h′ = h⊕ [τ(T, e)]. (Recall that T is an arbitrary spanning tree of G, chosen

at the beginning of the algorithm, and that [τ(T, e)] is the homology class in
H1(S) of the T -cycle τ(T, e).)

The graph H has 2k2O(g)|V | nodes since a homology class is represented by an O(g)-
bit vector. The number of arcs of H is at most 2k2O(g)|E| since, for c and h fixed,
the total number of arcs outgoing from the set of nodes {(v, c, h)}v∈V is at most∑

v∈V (degree of v in G).

Lemma 6.1. Let ℓ be an integer, 1 ≤ ℓ ≤ k. There is a separating colorful cycle

12 SERGIO CABELLO, ÉRIC COLIN DE VERDIÈRE, AND FRANCIS LAZARUS

in G through s that has length ℓ if and only if there is a directed path of length ℓ in
H from (s, ∅, 0) to a node (s, c, 0) for some c ⊆ {1, . . . , k}.

Proof. If there is a directed path in H from (s, ∅, 0) to a node (s, c, h), then,
projecting onto the first coordinate of the nodes, we obtain a loop w in G with
basepoint s, of the same length. Furthermore, the homology class [w] is precisely h.
By the way how we defined arcs in H, all the vertices of w have different colors, so
w is actually a cycle. This proves the “if” part. The converse is shown analogously:
every colorful path cycle in G “lifts” to a path of the same length in H.

Lemma 6.2. Given a k-coloring of G, we can decide if G contains a colorful sep-
arating cycle through s of length at most k and report one, if one exists, in 2O(g+k)|E|
time.

Proof. We use the above color-coding schema. We thus have to traverse H from
the node (s, ∅, 0) and test the conditions of Lemma 6.1. Exploring H from a node
(v, c, h) takes O(k + g) time per incident outgoing arc. Indeed, for an edge e with
endpoints v and v′ we have to check that κ(v′) 6∈ c and to compute the homology class
h⊕[τ(T, e)]. (Recall that the bit vectors [τ(T, e)] have been precomputed.) Traversing
H from (s, ∅, 0) thus takes overall O(

∑
v,c,h (k + g)d(v)) = 2O(g)2O(k)|E| time.

Note that, for any traversed node (v, c, h), the concatenation of the arc labels on
its search path is a c-colored path p in G such that, if T (v, s) denotes the path in T
from v to s, we have [p · T (v, s)] = h. This allows to backtrack a separating cycle of
length |c| in case of success of the previous test.

The homology cover used very recently by Erickson and Nayyeri in [14] leads
to an alternative to the above construction of H. Indeed, G has a separating cycle
through s if and only if the homology cover SH of S has a cycle through a lift of s that
projects to a cycle in G. The lift GH of G in the cover has 2O(g)|E| edges. Therefore,
a simple application of the color-coding approach of Alon et al. to GH would also lead
to an algorithm of complexity 2O(k)2O(g)|E| (see [14, Section 4]).

6.2. Splitting Cycles. Our method to search for a splitting cycle through a
given vertex s uses basically the same coloring schema as for a separating cycle. This
time, however, we also need to check that the separating cycle is non-contractible.
For this, we consider the graph H′ with nodes of the type (v, c, h, α), where v ∈ V ,
c ⊆ {1, . . . , k}, h ∈ H1(S) as before, and α is a homotopy class in π1(S, s). Two
nodes (v, c, h, α) and (v′, c′, h′, α′) are linked by an arc labelled with edge e if the four
conditions below hold.

C’1. the endpoints of e are v and v′,
C’2. κ(v′) 6∈ c and c′ = c ∪ {κ(v′)},
C’3. h′ = h⊕ [τ(T, e)], and
C’4. α′ = α · 〈τ(T, s, e)〉, where 〈τ(T, s, e)〉 is the homotopy class of the T -loop

τ(T, s, e) oriented so as to traverse e from v to v′.
We then have the following analog of Lemma 6.1.

Lemma 6.3. Let ℓ be an integer, 1 ≤ ℓ ≤ k. There is a splitting colorful cycle
in G through s that has length ℓ if and only if there is a directed path of length ℓ in
H′ from (s, ∅, 0, 1) to a node (s, c, 0, α) for some c ⊆ {1, . . . , k} and some non-trivial
homotopy class α. (Here, 1 denotes the homotopy class of the constant loop.)

As opposed to homology classes, there are usually an infinite number of homotopy
classes. As a consequence, we cannot just traverse H′ as we did with H for separating
cycles. We circumvent this difficulty with the following simple observation. Suppose
that there are two colorful paths from s to v that use the same subset of colors,
are homologous, but are not homotopic. If there is a colorful separating cycle that

FINDING CYCLES WITH TOPOLOGICAL PROPERTIES IN EMBEDDED GRAPHS 13

extends one of these paths, then there is also a splitting cycle that extends one of them.
Indeed, replacing in any cycle one path by the other does not change the homology
class, but does change the homotopy class. This leads to the following algorithm.

We partially traverse H′ from (s, ∅, 0, 1). To explore H′ from a node (v, c, h, α) we
inspect every edge e incident to v and create a new node (v′, c′, h′, α′) if and only if
the following conditions hold: this node was not created before, the above conditions
C’1-C’4 are verified, and there is at most one λ such that the node (v′, c′, h′, λ) was
already created. This last condition can be checked using a counting table with one
entry per triple of the form (v′, c′, h′). We use an implicit trivial encoding of the
homotopy class: the homotopy class α′ in the node (v′, c′, h′, α′) is represented by
the sequence of arc labels on the traversal path from (s, ∅, 0, 1) to (v′, c′, h′, α′). This
indeed gives a path p in G such that α′ = 〈p ·T (v, s)〉, where as before T (v, s) denotes
the path in T from v to s. The path p can be backtracked when needed in O(k) time.
In order to perform the homotopy test between two classes α′ and λ represented by
the two paths p and q respectively, we can test if the loop p · q−1 is contractible
using the contractibility test of Dey and Guha [11] in O(k) time (after O(|E|) time
preprocessing). It follows that the cost for traversing an arc of H′ and visiting a new
node or performing the test of Lemma 6.3 is O(g + k).

Lemma 6.4. Given a k-coloring of G, the above algorithm decides if G has a
colorful splitting cycle through s of length at most k and report one, if one exists, in
2O(g+k)|E| time.

Proof. The partial traversal of H′ in the algorithm visits a subgraph H′′ that is at
most twice as big as H. The fact that we can replace H′ by H′′ in Lemma 6.3 follows
from the above observation. The rest of the analysis is identical to the separating
case as in Lemma 6.2.

6.3. Proof of Theorem 1.3. Suppose G has a separating or a splitting cycle γ
of length at most k. The cycle γ is colorful with probability at least 2−Θ(k). Thus,
if we draw 2O(k) independent random k-colorings of the vertex set of G, then with
probability at least 1/2 (or any arbitrary constant strictly smaller than 1), at least one
of these k-colorings will make γ colorful. Lemmas 6.2 and 6.4 thus lead to algorithms
with 2O(g+k)|E| expected running time for finding γ. This provides a Monte Carlo
linear time algorithm, with fixed parameter k+ g, to decide if G contains such a cycle
(and to find one in the affirmative).

In their color-coding article [1], Alon et al. also show that they can compute
a family of size 2O(k) log |V | of k-colorings with the property that every subset of
k vertices is colorful for at least one of these colorings. In conjunction with the
lemmas, this directly gives deterministic algorithms adding an extra log |V | factor to
the complexity.

7. Concluding Remarks.

7.1. Surfaces with Boundary. We briefly indicate how to extend our linear-
time algorithms to surfaces with boundary. So let S be a surface with boundary, and
let G be a graph cellularly embedded on it. We extend S and G to a surface S̄ and a
graph Ḡ such that Ḡ has a contractible cycle on S̄ if and only if G has a contractible
cycle on S, and similarly for the other topological types.

• For the separating and non-separating cases, we can just attach a disk to each
boundary, since this does not change whether a closed walk is separating or
not.

14 SERGIO CABELLO, ÉRIC COLIN DE VERDIÈRE, AND FRANCIS LAZARUS

• For the contractible case, we attach a once-punctured torus to every boundary
component, and add two loop edges per such torus to make the graph cellular.
Every cycle using a loop edge is non-contractible, and every other cycle in G
is contractible in S if and only if it is contractible in S̄.

• For the non-contractible case, the only interesting case is when we require the
cycle to pass through a given vertex s. We again attach a once-punctured
torus to every boundary component; within each such torus, we put a new
vertex v, connect it to a vertex of G, and add two loop edges based at v
to transform the face of that once-punctured torus into an open disk. Since
v 6= s, no cycle through s uses the new edges, so there is a cycle through s
in G that is non-contractible on S if and only if there is a cycle through s
in Ḡ that is non-contractible on S̄.

• For the splitting case, we consider a cycle to be splitting if it separates S
into two non-zero genus subsurfaces, possibly with boundary. We can pro-
ceed as in the separating case by attaching a disk to each boundary. This
does not change the property of being separating and preserves the genus of
subsurfaces. Note that a splitting cycle in S̄ must cut S̄ into non-zero genus
subsurfaces.

7.2. Shortest ClosedWalks. WhenG contains a separating, respectively split-
ting, cycle, we can compute a shortest cycle of the corresponding type in 2O(g+ℓ)|E| ×
|V | log |V | time, where ℓ is the length of this shortest cycle. Indeed, we can apply
Corollary 1.4 with k = 1, 2, 3, . . . until the algorithm reports the existence of a cycle,
which obviously happens for k = ℓ. The total cost is

ℓ∑

k=1

2O(g+k)|E||V | log |V | = 2O(g+ℓ)|E||V | log |V |.

Chambers et al. [8] have presented an algorithm with complexity gO(g)|E| log |V |
for computing a shortest splitting closed walk onG (the closed walk may have repeated
vertices, but it should be non-self-crossing). In particular, if G has no splitting cycle,
then the output of their algorithm will be a closed walk that is not a cycle. The
problem tackled by Chambers et al. is thus different from the problem treated here.
This difference suggests the following more general question: Given a closed walk in G,
decide if there is a cycle in G of the same topological type, say in the same homotopy or
homology class, and report one if it exists. Chambers et al. were also able to compute a
shortest splitting closed walk that cuts the surface into two subsurfaces with prescribed
topology [8, Section 6], i.e., fixing their genera and number of boundary components.
It is not clear whether our present color coding approach can be extended to handle
this case.

REFERENCES

[1] Noga Alon, Raphael Yuster, and Uri Zwick, Color coding, Journal of the ACM, 42 (1995),
pp. 844–856.

[2] Sergio Cabello, Finding shortest contractible and shortest separating cycles in embedded
graphs, ACM Transactions on Algorithms, 6 (2010), pp. 1–18.

[3] Sergio Cabello and Erin W. Chambers, Multiple source shortest paths in a genus g graph, in
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2007, pp. 89–97.

FINDING CYCLES WITH TOPOLOGICAL PROPERTIES IN EMBEDDED GRAPHS 15

[4] Sergio Cabello, Éric Colin de Verdière, and Francis Lazarus, Finding shortest non-
trivial cycles in directed graphs on surfaces, in Proceedings of the 26th Annual ACM
Symposium on Computational Geometry (SOCG), 2010, pp. 156–165.

[5] , Output-sensitive algorithm for the edge-width of an embedded graph, in Proceedings of
the 26th Annual ACM Symposium on Computational Geometry (SOCG), 2010, pp. 147–
155.

[6] Sergio Cabello, Matt DeVos, Jeff Erickson, and Bojan Mohar, Finding one tight cycle,
ACM Transactions on Algorithms, 6 (2010), p. Article 61.

[7] Sergio Cabello and Bojan Mohar, Finding shortest non-separating and non-contractible
cycles for topologically embedded graphs, Discrete & Computational Geometry, 37 (2007),
pp. 213–235.

[8] Erin W. Chambers, Éric Colin de Verdière, Jeff Erickson, Francis Lazarus, and Kim
Whittlesey, Splitting (complicated) surfaces is hard, Computational Geometry: Theory
and Applications, 41 (2008), pp. 94–110.

[9] Éric Colin de Verdière and Jeff Erickson, Tightening nonsimple paths and cycles on
surfaces, SIAM Journal on Computing, 39 (2010), pp. 3784–3813.

[10] Éric Colin de Verdière and Francis Lazarus, Optimal system of loops on an orientable
surface, Discrete & Computational Geometry, 33 (2005), pp. 507–534.

[11] Tamal K. Dey and Sumanta Guha, Transforming curves on surfaces, Journal of Computer
and System Sciences, 58 (1999), pp. 297–325.

[12] David Eppstein, Dynamic generators of topologically embedded graphs, in Proceedings of the
14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2003, pp. 599–608.

[13] Jeff Erickson and Sariel Har-Peled, Optimally cutting a surface into a disk, Discrete &
Computational Geometry, 31 (2004), pp. 37–59.

[14] Jeff Erickson and Amir Nayyeri, Minimum cuts and shortest non-separating cycles via
homology covers, in Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2011, pp. 1166–1176.

[15] Jeff Erickson and Kim Whittlesey, Greedy optimal homotopy and homology generators, in
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2005, pp. 1038–1046.

[16] Jeff Erickson and Pratik Worah, Computing the shortest essential cycle, Discrete & Com-
putational Geometry, 44 (2010), pp. 912–930.

[17] Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter, Hamilton paths in
grid graphs, SIAM Journal on Computing, 11 (1982), pp. 676–686.

[18] Martin Kutz, Computing shortest non-trivial cycles on orientable surfaces of bounded genus in
almost linear time, in Proceedings of the 22nd Annual ACM Symposium on Computational
Geometry (SOCG), 2006, pp. 430–438.

[19] Sóstenes Lins, Graph-encoded maps, Journal of Combinatorial Theory, Series B, 32 (1982),
pp. 171–181.

[20] Bojan Mohar and Carsten Thomassen, Graphs on surfaces, John Hopkins University Press,
2001.

[21] Carsten Thomassen, Embeddings of graphs with no short noncontractible cycles, Journal of
Combinatorial Theory, Series B, 48 (1990), pp. 155–177.

[22] Douglas B. West, Introduction to Graph Theory, Prentice Hall, second ed., 2001.

