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École normale supérieure, Paris, France

Francis LAZARUS

GIPSA-Lab, Grenoble, France

Abstract

We consider the problem of finding a shortest cycle (freely) homotopic to a given
simple cycle on a compact, orientable surface. For this purpose, we use a pants decom-
position of the surface: a set of disjoint simple cycles that cut the surface into pairs
of pants (spheres with three holes). We solve this problem in a framework where the
cycles are closed walks on the vertex-edge graph of a combinatorial surface that may
overlap but do not cross.

We give an algorithm that transforms an input pants decomposition into another
homotopic pants decomposition that is optimal : each cycle is as short as possible
in its homotopy class. As a consequence, finding a shortest cycle homotopic to a
given simple cycle amounts to extending the cycle into a pants decomposition and
to optimizing it: the resulting pants decomposition contains the desired cycle. We
describe two algorithms for extending a cycle to a pants decomposition. All algorithms
in this paper are polynomial, assuming uniformity of the weights of the vertex-edge
graph of the surface.

1 Introduction

The computation of shortest paths in a geometric domain is one of the fundamental prob-
lems in computational geometry. There are many instances of this task, depending on the
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Paris, France, e-mail: Eric.Colin.de.Verdiere@ens.fr; F. Lazarus, GIPSA-Lab, CNRS, Grenoble, France, e-
mail: Francis.Lazarus@gipsa-lab.inpg.fr. A preliminary version of this paper appeared in Proceedings of the

11th International Symposium on Graph Drawing, 2003. Portions of this work were done while the first
author was visiting CWI Amsterdam.

c© ACM. This paper appeard in Journal of the ACM, vol-
ume 54, issue 4, article 18, July 2007.

1



underlying topological space (2-manifold, 3-manifold, non-manifold, higher-dimensional
space, etc.), the way the lengths are measured in this space (Euclidean distance, Lp dis-
tance, etc.), and the possible additional constraints on the solution path. See [Mit00] for
a recent and comprehensive survey.

A more specific question is to find a shortest path within a given homotopy class: given a
path, find the shortest path that can be obtained from it by continuous deformations, while
keeping its endpoints fixed. This is also relevant for loops (closed paths with basepoint) and
cycles (without basepoint—this is also called free homotopy). In all cases, the underlying
space should not be too complicated: indeed, the problem of determining whether a loop
is contractible (deformable to a point) is undecidable for 2-simplicial complexes and for
4-manifolds, and open for 3-manifolds [Sti93, p. 242–247]. It is thus natural to consider
the class of surfaces, on which the homotopy problem is tractable [DG99]. In this paper,
we study the problem of finding a shortest cycle homotopic to a given cycle on a surface.
Before describing our results in detail, we present related works.

1.1 Previous Works

A few noteworthy facts are known in the case of smooth surfaces. For hyperbolic surfaces,
there is a unique closed geodesic (a cycle that is locally of minimal length) in each homotopy
class, which is also a shortest homotopic cycle [Bus92, Theorem 1.6.6]. Any iterative process
that locally shortens a cycle will converge to this cycle; this provides an elementary (though
non-finite) algorithm [Bus92, Appendix].

For surfaces with a Riemannian metric, [HS94a] analyze a shortening scheme that
produces closed geodesics; but this process is not finite and may fail to converge to the
shortest geodesic. Also in this case, [FHS82] prove a remarkable result: any simple cycle
(a cycle without self-intersection) can be shortened as much as possible in its homotopy
class in such a way that the resulting cycle is also simple. Their proof relies on the ability
to shorten curves with corners by smoothing and on the fact that geodesics can only cross
transversally.

In the case of piecewise-linear surfaces, [HS94b] give an optimal linear-time algorithm
(in the real-RAM model) to compute shortest homotopic paths and cycles on a surface made
of Euclidean triangles, if all the triangle vertices lie on the surface boundary. Algorithms
for the case of the plane minus some obstacles also exist [EKL06, Bes03].

Most of the works that address the computational issues of these problems, however,
consider a combinatorial surface, described in detail in a former paper [CdVL05]: The
surface has a weighted graph embedded on it, so that each face is homeomorphic to an
open disk; disjoint simple curves are walks on the graph that may overlap but do not cross
(equivalently, they may share edges and vertices, but can always be spread apart so as
to become simple and disjoint on the surface); their length is the sum of the weights of
the edges traversed, counted with multiplicity. In the present paper, all our results and
techniques are done in (a model equivalent to) combinatorial surfaces. This notion has
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already been used in the context of non-crossing shortest paths in planar graphs [TSN96];
we describe the works that are more related to our topic.

A series of papers consider topological decompositions of combinatorial surfaces. A cut
graph is a set of curves that cut a surface into a disk; a system of loops is a cut graph made
of simple loops sharing a common basepoint and otherwise disjoint; a canonical system of
loops is a system of loops that meet in a particular cyclic order around the vertex. Based
on an early paper by [VY90], [LPVV01] give two time-optimal algorithms to compute a
canonical system of loops of a combinatorial surface; [EHP04] consider the problem of
finding the shortest cut graph; [EW05] describe an algorithm to compute the shortest
system of loops of a surface in polynomial time.

A related problem is the computation of a shortest non-contractible or non-separating
cycle on a combinatorial surface, which can be seen as an elementary step to build a
topological decomposition of a surface. [EHP04] give algorithms to achieve this task using
a “circular wave expansion”; very recently, [CM07] and [Kut06] give algorithms with better
running-times in some cases. [MT01, Section 4.3, p. 110] describe more general families of
cycles for which a wave expansion process will find the shortest cycle.

In a previous paper [CdVL05], we consider the following problem: given a simple loop
ℓ on a combinatorial surface, compute the shortest loop that is simple and homotopic to
ℓ. We provide an algorithm with polynomial running-time in the case of uniform weights.
Key ingredients are the use of a decomposition of the surface by a system of loops and the
study of the way some specific curves can cross. In the present paper, the general ideas
are similar, but the analysis is more complicated.

1.2 Our Results

In this paper, we consider the problem of finding a shortest cycle homotopic to a given
simple cycle on an orientable combinatorial surface (defined above). For this purpose, we
will actually shorten a pants decomposition [Hat00] of the surface: a set of disjoint simple
cycles that cut the surface into pairs of pants (spheres with three holes); see Figure 1.

We describe a conceptually simple, greedy process that takes a pants decomposition
s = (s1, . . . , sn), where the si are the cycles, and outputs a shorter pants decomposition
r = (r1, . . . , rn), so that si and ri are homotopic for each i. We prove that each cycle
ri is optimal, i.e., as short as possible in its homotopy class. In particular, the result-
ing decomposition is optimal in the sense that it is as short as possible among all pants
decompositions made of homotopic cycles, and any optimal pants decomposition is made
of optimal cycles. Furthermore, this leads to an algorithm with running-time polynomial
in the complexity of the surface and of the input pants decomposition, assuming uniform
weights for the edges of the combinatorial surface. [EHP04, Conclusion] raise the prob-
lem of shortening a pants decomposition of a combinatorial surface; to our knowledge, we
present the first algorithm for this purpose.

Now, if γ is a non-contractible simple cycle on a combinatorial surface, we can compute
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Figure 1: Left: a pair of pants. Right: a pants decomposition of a surface with genus three
and one boundary.

a shortest cycle homotopic to γ that has the property of being simple: it suffices to extend
γ into a pants decomposition and to optimize it; the resulting pants decomposition contains
such a cycle. We provide two methods to extend a simple cycle into a pants decomposition;
this implies that this optimization problem has polynomial complexity (in the case of
uniform weights), which was previously unknown.

The simplicity of a shortest cycle homotopic to a given simple cycle, in our model
as well as in the piecewise-linear case, cannot be proved using the same arguments as
in [FHS82], who heavily rely on differential properties of the surface. A proof for those
cases follows easily from a result in a subsequent paper by [HS85, Theorem 2.7] stating
that a self-intersecting cycle homotopic to a simple cycle must have an embedded 1-gon
or 2-gon. While more of a topological nature, their proof uses a non-trivial transversality
argument from differential topology.

Assuming the simplicity of a shortest cycle homotopic to a simple cycle, the fact that
an optimal pants decomposition is made of optimal cycles can be proved using previous
results. Let (t1, . . . , tn) be shortest (simple) cycles homotopic to (s1, . . . , sn). By [HS85,
Lemma 3.1], if the cycles (t1, . . . , tn) cross, there must be a 2-gon between them, bounded
by two curves that must have equal length and can be uncrossed, decreasing the number
of intersections. This result also follows from [dGS97], who prove that any set of cycles
can be transformed by Reidemeister moves to a set of homotopic cycles with the least
possible number of intersections: if we consider the overlay of the optimal pants decom-
position (r1, . . . , rn) and some (simple) ti, the only possible Reidemeister moves consist of
“uncrossing” two cycles that cross twice, bounding a 2-gon. While the result by [dGS97] is
of a purely topological nature, its proof heavily relies on hyperbolic geometry, in contrast
to our paper.

In the present paper, we do not assume the simplicity of a shortest cycle homotopic to
a simple cycle; rather, we prove it in the case of combinatorial surfaces. Our proofs are
based on the study of crossings between some cycles, though we do not make use of any
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geometrical or differential property. We do indeed essentially use topological arguments,
ultimately relying on the Jordan–Schönflies theorem. In the combinatorial surface model,
the metric properties are easier to deal with than for piecewise-linear surfaces, where the
structure of shortest paths can be complicated (on such a surface, two shortest paths can
overlap for some time without crossing in the topological sense). This allows to point out
the topological difficulties of the problem without entangling another involved formalism
due to the metric. Nevertheless, our proof techniques could allow for similar results in a
more general setting such as cycles drawn on a piecewise-linear surface.

This paper is organized as follows. We review elementary topological notions, describe
our optimization process for pants decompositions, and state the optimality theorem in
Section 2. The proof of this result is given in the next three sections. We then discuss the
computational and complexity issues for optimizing a pants decomposition (Section 6) and
a simple cycle (Section 7).

2 Framework and Result

2.1 Topological Background

We begin with some useful definitions from standard topology [Sti93, Hat02, Mas77].
A surface M (possibly with boundary) is a topological Hausdorff space in which each

point has a neighborhood homeomorphic to either the plane or the closed half-plane. The
points without neighborhood homeomorphic to the plane are the boundary of M. In this
paper, unless otherwise stated, we only consider connected, compact, orientable surfaces,
possibly with boundary ; such a surface is homeomorphic to a sphere with g handles glued
and b boundary disks removed, for some unique integers g ≥ 0 and b ≥ 0; g is called the
genus of M and b its number of boundaries. For example, g = b = 0 for the sphere; g = 0
and b = 1 for the disk; g = 0 and b = 2 for the cylinder; g = 0 and b = 3 for the pair of
pants (see Figure 1, left); g = 1 and b = 0 for the torus.

Let M be a connected, compact, orientable surface, possibly with boundary. A path
on M is a continuous map p : [0, 1] → M; its endpoints are p(0) and p(1). A closed path,
or loop, is a path whose endpoints coincide. An arc is a path intersecting the boundary of
M exactly at its endpoints. A cycle is a continuous map γ : S1 → M, where S1 = R/Z

is the standard circle. A path or cycle is simple if it is one-to-one; a loop is simple if its
restriction to [0, 1) is one-to-one. In this paper, a curve is a path or a cycle.

As usual, the way the curves are parameterized does not really matter (if p is a path
and ϕ : [0, 1] → [0, 1] is an increasing bijection, we could as well consider p ◦ ϕ instead
of p). A subpath of a path p is the restriction of p to some subsegment of [0, 1], and then
reparameterized over [0, 1]. The concatenation of two paths p and q, with p(1) = q(0), is
the path p · q defined by

(p · q)(t) =

{
p(2t) if t ≤ 1/2;
q(2t − 1) if t ≥ 1/2.
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Figure 2: On this double-torus, the two loops with endpoint v are not homotopic; but the
corresponding cycles are freely homotopic.

Let n ∈ Z and let γ be a cycle. The nth power of γ, denoted by γn, is the cycle γ iterated
n times: γn(t) = γ(nt mod 1).

Two paths p and q, both with endpoints a and b, are homotopic if there is a continuous
family of paths with endpoints a and b that joins p and q. More formally, a homotopy
between p and q is a continuous map h : [0, 1]× [0, 1] → M such that h(0, ·) = p, h(1, ·) = q,
h(·, 0) = a, and h(·, 1) = b. A loop is contractible if it is homotopic to the constant
loop. Two cycles γ and δ are (freely) homotopic if there exists a continuous function
h : [0, 1] × S1 → M such that h(0, ·) = γ and h(1, ·) = δ.

Let p : [0, 1] → M be the loop defined by p(t) = γ(t mod 1). Similarly, let q : [0, 1] → M
be defined by q(t) = δ(t mod 1). The cycles γ and δ are homotopic if and only if there
exists a path β joining p(0) to q(0) such that the loop β−1 · p · β · q−1 is contractible.

Homotopy of loops (also called homotopy with basepoint) and homotopy of cycles
(also called free homotopy) are two different equivalence relations: for instance, two cycles
sharing a point v can be freely homotopic, but fail to be homotopic when considered as
loops with fixed basepoint v, see Figure 2. A connected space is simply connected if every
loop in this space is contractible.

A pants decomposition of M is an ordered set of simple, pairwise disjoint cycles that
split M into pairs of pants [Hat00]. Every compact orientable surface, except the sphere,
disk, cylinder, and torus, admits a pants decomposition, obtained for example by cutting
the surface iteratively along an essential cycle (a simple cycle that does not bound a disk
nor a cylinder). Equivalently, a pants decomposition is a maximal ordered set of pairwise
disjoint essential cycles such that any two cycles are not freely homotopic. If M has genus
g and b boundaries, a pants decomposition is made of 3g + b − 3 cycles [Hat00].

Since every cycle is contractible on a sphere or a disk, we exclude these two cases from
our study. Furthermore, if M is a torus or a cylinder, there exists no pants decomposition
of M. All the techniques and results used in this paper apply to these surfaces as well (with
minor changes) if we allow a pants decomposition to decompose the surface into pairs of
pants and/or cylinders. For simplicity, however, we will not describe these two particular
cases in the sequel.

For technical reasons, it will be easier to work with doubled pants decompositions. This
is an ordered set of disjoint simple cycles that split M into cylinders and pairs of pants,
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Figure 3: A doubled pants decomposition corresponding to the pants decomposition of
Figure 1.

such that each cycle is the boundary of exactly one cylinder and exactly one pair of pants
(see Figure 3). Any pants decomposition s of M can be augmented to a doubled pants
decomposition by adding to s a copy of each of its cycles, slightly translated and in the
same homotopy class, and a copy of each of the boundary cycles of M, so that the resulting
cycles are still simple and pairwise disjoint.

A doubled pants decomposition s = (s1, . . . , sN ) is made of N = 6g + 3b − 6 cycles
s1,. . . , sN . Two cycles of s, or a cycle of s and a boundary of M, that bound a cylinder
with no cycle inside it, are called twins. Given j ∈ [1,N ], the component of the surface
obtained by cutting M along s \ sj that contains sj is a pair of pants, denoted by Pj .

2.2 Combinatorial and Cross-Metric Surfaces

Combinatorial surfaces, which we already defined in the introduction, have been used in sev-
eral papers. In this section, we present an equivalent model (also introduced by [CdVE06])
which simplifies the exposition.

A cross-metric surface M is a surface endowed with an embedded graph HM such that
each open face of HM is a disk. Each edge of the graph has a positive, possibly infinite,
weight. Each boundary of M is the union of some edges of HM, each of them having
infinite weight. The sets of curves we consider on M are sets of curves in the usual sense,
except that they must be regular, namely:

• the curves are disjoint from the vertices of HM;

• the set of (self-)intersection points of the curves is finite, disjoint from the edges of
HM, and each of these points is actually a single (self-)crossing;

• the curves intersect the edges of HM at finitely many points and actually cross these
edges at these points (except for endpoints of arcs).
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The length |c| of a curve c is the sum of the weights of the edges of HM crossed by c,
counted with multiplicity.

Let M be a cross-metric surface and C be a set of disjoint simple curves on M. The
surface M cut along C is naturally a cross-metric surface M′: each edge of HM is split by
the curves in C into subedges, forming edges of HM′ with the same weight as the original
edge of HM, and each piece of a curve in C cut by HM corresponds to two boundary edges
of HM′ with infinite weight.

In Section 6, we will compute sets of pairwise disjoint simple curves on cross-metric
surfaces. For a computational purpose, storing the actual position of the curves on a cross-
metric surface M is unnecessary; all we need is to store the way the considered curves cross
the graph HM (in particular, these informations allow to recover the homotopy classes
and lengths of the curves). Said differently, it is sufficient to maintain the combinatorial
properties of the arrangement of the curves and of the graph HM: the vertices, edges,
and faces of the arrangement, and incidence relations between them. The structure of
combinatorial map [Tut01, chap. X] is convenient for this purpose. Since the faces of HM

are open disks, and since we only consider non-contractible curves not contained in a face
of HM, the faces of the arrangement are also open disks. Curves will be introduced in this
arrangement in a regular way: each time a curve crosses an edge e of HM, a vertex of degree
four is created; e is split into two subedges, each inheriting the weight of e. Furthermore, an
endpoint of an arc becomes a vertex of degree three. We can easily compute shortest paths
(using Dijkstra’s algorithm) or perform breadth-first searches in a cross-metric surface,
simply by restating the usual algorithms in the dual graph of HM. In our data structure,
we may also simulate cutting M along some curves by assigning infinite weights to these
edges, thus pretending that the edges of these curves become boundary edges and cannot
be crossed.

The complexity of a cross-metric surface M is the total number of vertices, edges, and
faces of HM. The complexity of a curve on a cross-metric surface M is the number of
crossings of the curve with HM.

Most of the results in this paper will be stated in terms of cross-metric surfaces. But
we now show that a combinatorial surface M with weighted vertex-edge graph GM (as
defined in an earlier paper [CdVL05]) can be viewed as a cross-metric surface, so our results
apply for combinatorial surfaces as well. Define the embedded graph G∗

M
, which is a slight

variant of the dual graph, as follows (see Figure 4):

• in the interior of each face f of GM, there is a vertex f∗ of G∗
M

;

• in the relative interior of each boundary edge e of GM, there is a vertex e∗ of G∗
M

;

• for each non-boundary edge e of GM, with incident faces f1 and f2, there is an edge
e∗ in G∗

M
between f∗

1 and f∗
2 crossing e and no other edge of GM;

• for each boundary edge e, with incident face f , there is an edge e∗ in G∗
M

between
f∗ and e∗ crossing no edge of GM;
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Figure 4: In solid lines: the vertex edge-graph GM of a combinatorial surface M with
boundary. In dashed lines: the graph G∗

M
.

• each pair of consecutive vertices of G∗
M

on a boundary of M is connected by an edge
of G∗

M
on the boundary of M.

Define the weight of e∗ to be the length of e, and the weight of the boundary edges to be
infinite. The surface M, together with the embedded graph HM = G∗

M
, is a cross-metric

surface. Any walk w in GM, with sequence of edges e1, . . . , ek, corresponds to a path p
drawn on M crossing edges e∗1, . . . , e

∗
k of G∗

M
; the length of w (viewed as walk in the graph

GM) is the same as the length of the path p (in the cross-metric surface M). Conversely,
any path on M avoiding the vertices of HM is homotopic to a walk in GM with the same
length. A curve on a combinatorial surface is simple if and only if it can be represented
as a simple curve on the corresponding cross-metric surface. As a result, it is sufficient to
work with cross-metric surfaces.

2.3 Our Result

Let M be a cross-metric surface that is not a sphere, disk, cylinder, or torus. Let g be its
genus and b its number of boundaries; let N = 6g + 3b− 6. For j ∈ [1,N ], we define a map
fj that transforms a doubled pants decomposition s = (s1, . . . , sN ) of M into another one,
r = (r1, . . . , rN ), as follows. If k 6= j, then rj = sj. Furthermore, consider the pair of pants
Pj of M cut along s \ sj that contains sj; then rj is defined to be a shortest cycle, among
all simple cycles homotopic to sj in Pj . The maps fj are called elementary steps. A main
phase is the map f = fN ◦ fN−1 ◦ . . . ◦ f2 ◦ f1.

1

Clearly, these maps transform a doubled pants decomposition into another one. Fur-
thermore, if r = fj(s), then sk and rk are homotopic for each k. Here is our main theorem,
proved in the next three sections:

Theorem 2.1 Let M be a cross-metric surface that is not a sphere, disk, cylinder, or
torus. Let s0 be a doubled pants decomposition of M, and let (sn)n∈N be the sequence
defined by sn+1 = f(sn). For each n, write sn = (sn

1 , . . . , sn
N ).

1The maps f1, . . . , fN could actually be composed in any order.
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For some m ∈ N, sm and sm+1 have the same length. For such a choice of m, sm is
a doubled pants decomposition such that, for each i ∈ [1,N ], sm

i is a shortest cycle among
all (not necessarily simple) cycles (freely) homotopic to s0

i .

In particular, sm is an optimal doubled pants decomposition of M and contains an optimal
pants decomposition.

Moreover, any non-contractible simple cycle is either essential or homotopic to a bound-
ary of M. Such a cycle can be extended to a doubled pants decomposition of M. By
Theorem 2.1, we obtain immediately:

Corollary 2.2 Let M be a cross-metric surface that is not a sphere, disk, cylinder, or
torus; let γ be a non-contractible simple cycle in M. There exists a simple cycle homotopic
to γ and as short as possible among all (not necessarily simple) cycles (freely) homotopic
to γ.

Similar results also hold for the cylinder and the torus: this can be proved using the
same techniques, allowing a pants decomposition to split the surface into pairs of pants
and/or cylinders. We omit the details.

3 Crossing Words

In this section, we introduce the main ingredient of this paper: the crossing word between
a set of disjoint, simple paths or cycles, and a given path or cycle.

3.1 Universal Cover and Lifts

We refer the reader to classical textbooks in algebraic topology [Sti93, Hat02, Mas77] for
the details.

Let M and N be two possibly non-compact surfaces. A continuous function π : N → M
is called a covering map or projection if each point x ∈ M lies in an open connected
neighborhood U such that π−1(U) is a countable union of disjoint open sets U1 ∪ U2 ∪ . . .
and π|Ui : Ui → U is a homeomorphism for each i. If such a map exists, then N is called
a covering space of M, and we say that N covers M. Up to a covering isomorphism
(a homeomorphism that respects projections), every connected surface M has a unique

simply connected covering space, called the universal cover of M and denoted by M̃.
Fix a covering map π : M̃ → M. A translation (or automorphism) of the covering map

is a continuous function τ : M̃ → M̃ such that π ◦ τ = π. A lift of a path p : [0, 1] → M

is a path p̃ : [0, 1] → M̃ such that π ◦ p̃ = p. Similarly, a lift of a cycle γ : S1 → M is

a continuous function γ̃ : R → M̃ such that π(γ̃(t)) = γ(t mod 1) for all t. We use the
following properties of lifts and universal covers.

• The lift property : let p be a path in M with source point x; let x̃ ∈ M̃ be such that
π(x̃) = x. Then there is a unique path p̃ in M̃, starting at x̃, such that π ◦ p̃ = p;
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• the homotopy property : two paths p and q with the same endpoints are homotopic
in M if and only if they have two lifts p̃ and q̃ with the same endpoints in M̃;

• the intersection property : a path p in M self-intersects if and only if either a lift of
p self-intersects, or there exist two lifts of p that intersect each other.

Let c be a simple curve that is either an arc or a non-contractible cycle on M. A
geometric lift of c is a curve that is a connected component of π−1(c) ⊂ M̃. If c is an
arc, the geometric lifts of c are exactly the lifts of c. If c is a non-contractible cycle, each
geometric lift of c corresponds to infinitely many lifts of c: two lifts c̃ and c̃′ of c give rise to
the same geometric lift if and only if the image sets of c̃ and c̃′ are the same; equivalently,
there exists k ∈ Z such that c̃(·) = c̃′(k + ·).

Lemma 3.1 Let M be a surface and c be either a non-contractible simple cycle in the
interior of M or a simple arc in M. Then each geometric lift of c separates M̃ into two
connected components.

This lemma can be proved, in the case where c is a cycle, using hyperbolic geometry [Bus92,
p. 417]. In the case where c is an arc, it follows from the fact that the universal covering
space of M is homeomorphic to the unit disk with some boundary points removed [CdVL05,
Lemma 3].

Until the end of Section 3, we use the following notations. Let M be a cross-metric
surface. Let C be a set of pairwise disjoint simple curves, each of which is either an arc
in M or a non-contractible cycle in the interior of M. For c ∈ C, the geometric lifts of
c are denoted by cα, where α ∈ N.2 The set of all the geometric lifts of the curves in C
is denoted by C̃. By the previous lemma, each geometric lift in C̃ separates M̃ into two
connected components.

3.2 Crossing Words for Paths

We consider words on the alphabet made of letters of the form cα or cα, where cα ∈ C̃.
A word y is a subword of a word w if w can be written as the concatenation of x, y, and
z, where x and z are (possibly empty) words. If a word w contains a subword cαcα or
cαcα, let x be the word resulting from removing this subword from w; we say that x is
deduced from w by an elementary c-reduction. An elementary reduction is an elementary
c-reduction for some c. A word w is (c-)irreducible if no elementary (c-)reduction can
be applied to w. A word w (c-)reduces to x if x can be obtained from w by successive
elementary (c-)reductions. A word is parenthesized if it reduces to the empty word ε.

2A natural index set can be described as follows. Pick a basepoint x for both M and c. Let Γ be the
infinite cyclic group generated by the homotopy class of c considered as a loop with basepoint x. The
geometric lifts of c are indexed by the set of left cosets of Γ in π1(M, x). For our purpose, however, it is
sufficient (and simpler) to choose an indexation with the set of integers.
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Figure 5: The fundamental operation of uncrossing the parts of two curves cα and p̃
between two points a and b corresponding to an elementary reduction on C̃/p̃. The part
of p̃ between a and b is not necessarily simple; also, the part of cα between a and b can
cross other pieces of p̃.

Let p̃ be a path in M̃. Walk along p̃ and, at each crossing encountered with a geometric
lift cα ∈ C̃, write down the symbol cα or cα, according to the orientation of the crossing
(with respect to fixed orientations of M̃ and the cα). Recall that the elements of C̃ are
simple and pairwise disjoint, since the curves in C are simple and pairwise disjoint. The
word we obtain is called the crossing word of p̃ with C̃, and denoted by C̃/p̃.

In all this paper, the following situation will often occur: p̃ is a lift of a path p, and an
elementary reduction is possible on C̃/p̃. This reduction corresponds to two intersection
points, a and b, of some geometric lift cα ∈ C̃ with p̃. The subpaths associated with this
possible elementary reduction are the parts of cα and p̃ that are between a and b. See
Figure 5. We will often replace the part of p̃ between a and b by a path going along the
part of cα between a and b; we obtain a new path q̃, lift of some path q on M, which has
exactly two crossings fewer with cα than p̃ has. Obviously, C̃/q̃ is deduced from C̃/p̃ by
proceeding to the elementary reduction; and the new path q is homotopic to p.

The following result is well-known and is due to the fact that the set of words modulo
elementary reductions is a free group on C̃.

Lemma 3.2 Any word reduces to exactly one irreducible word.

The following lemma, which relies on the fact that each geometric lift in C̃ is separating,
has been proved in a former paper [CdVL05, Lemma 5]; we include the proof here for
completeness.

Lemma 3.3 Let ℓ be a contractible loop on M, and let ℓ̃ be a lift of ℓ in M̃. Then C̃/ℓ̃ is
parenthesized.

Proof. We prove the result by induction on the number of crossings between ℓ̃ and the
geometric lifts in C̃. The lemma is trivial if ℓ̃ crosses no element of C̃. Assume on the
contrary there is at least one crossing between ℓ̃ and a geometric lift cα in C̃.

Since ℓ is contractible, ℓ̃ is a loop in M̃. By Lemma 3.1, ℓ̃ must cross cα once more
with the opposite orientation. We now view ℓ̃ as a cycle γ̃ (i.e., we forget the basepoint
of ℓ̃). The two crossings split γ̃ into two paths p̃ and q̃ (Figure 6). It is possible to
extend p̃ to a loop p̃′ so that C̃/p̃′ = C̃/p̃; similarly, we can extend q̃ to a loop q̃′ so that
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p̃

q̃

cα

Figure 6: The induction step of Lemma 3.3.

C̃/q̃′ = C̃/q̃. By the induction hypothesis, C̃/p̃ and C̃/q̃ are parenthesized. But C̃/ℓ̃ results
from the concatenation of these two words, with two additional symbols corresponding to
the crossings with cα, followed by a cyclic permutation: it is thus parenthesized.

We obtain immediately:

Corollary 3.4 Let p and q be homotopic paths in M, and let p̃ and q̃ be lifts of p and q
in the universal cover of M, sharing the same endpoints. Then C̃/p̃ and C̃/q̃ reduce to the
same irreducible word.

3.3 Crossing Word Sets for Cycles

The goal of this section is to define the analogue of the crossing word for the crossings
between a lift γ̃ of a non-contractible cycle γ and C̃.

Any path ℓ̃ : [0, 1] → M̃ defined by ℓ̃(·) = γ̃(a + ·) for some a ∈ R such that γ̃(a) does
not belong to a curve in C̃ is called a lifted period of γ̃. The crossing word set of γ̃ with
C̃, denoted by [C̃/γ̃], is the set of crossing words C̃/ℓ̃, over all lifted periods ℓ̃ of γ̃. Our
first task will be to show that the crossing word set [C̃/γ̃] is entirely determined once we
know one of its elements.3

We note that γ̃ induces a translation τeγ in M̃, as follows. Let v0 ∈ M̃. Let ℓ̃ be a lifted

period of γ̃; consider a path β0 joining ℓ̃(0) to v0; call β1 the lift of π(β0) starting at ℓ̃(1).
The target v1 of β1 satisfies π(v0) = π(v1); intuitively, γ̃ translates v0 to v1. It is readily
seen that v1 does not depend on the choice of β0 and ℓ̃. We therefore define τeγ(v0) := v1.
In particular, τeγ sends a geometric lift of a curve c ∈ C to a geometric lift of c.

3An alternative definition of the crossing word could use the lift of γ in the covering of M with cyclic
fundamental group generated by this lift. This would avoid the “multiform” of the crossing word but may
not simplify the presentation.
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For any lift γ̃ and any crossing word w, we define a new crossing word ϕeγ(w) as follows:

ϕeγ(w) =





ε if w = ε,
x · τeγ(cα) if w = cα · x for some word x,

x · τeγ(cα) if w = cα · x for some word x.

(Here, x · y denotes the concatenation of words x and y.) Intuitively, if w is the crossing
word C̃/ℓ̃ for some lifted period ℓ̃ of γ̃, then ϕeγ(w) is the crossing word of a lifted period

of γ̃ shifted from ℓ̃ to overpass exactly one crossing. If w is a word, we define 〈w〉eγ to be
the set {ϕn

eγ (w), n ∈ Z}.

Proposition 3.5 For any word w in [C̃/γ̃], we have: [C̃/γ̃] = 〈w〉eγ .

Proof. First, let a, b be two real numbers such that a < b < a+1 and exactly one crossing
occurs between all geometric lifts of C̃ and γ̃|[a,b]. Let w = C̃/γ̃|[a,a+1] and x = C̃/γ̃|[b,b+1].
We have x = ϕeγ(w); indeed,

τeγ(cα ∩ γ̃|[a,b]) = τeγ(cα) ∩ τeγ(γ̃|[a,b])

= τeγ(cα) ∩ γ̃|[a+1,b+1].

From this fact, it is easy to conclude.

The sets of words of the form 〈w〉eγ are called the γ̃-word sets. Note that ϕeγ does
not affect the length of a word, so the length of a γ̃-word set is well-defined. Let W and
X be γ̃-word sets. If, for some words w ∈ W and x ∈ X and for some curve c in C,
w elementarily c-reduces to x, we say that W elementarily c-reduces to X. When an
elementary c-reduction is possible on [C̃/γ̃], exactly the same phenomenon occurs as in
Figure 5 (with γ̃ instead of p̃), and we may also proceed to the reduction by modifying γ,
removing the two crossings.

Lemma 3.6 Any γ̃-word set W c-reduces to exactly one c-irreducible γ̃-word set. Any
γ̃-word set W reduces to exactly one irreducible γ̃-word set.

Proof. The proof is based on a confluence property on reductions of γ̃-word sets. We
prove the result for reductions, the same argument holds for c-reductions. Let w be a word;
a simplification on w consists of either an elementary reduction on w (removal of cαcα or
cαcα), or in the removal of the first and last symbols of w, if the first is of the form cα

or cα and the last of the form τeγ(cα) or τeγ(cα), respectively. It is easily proved that W
elementarily reduces to X if and only if, for any w ∈ W , there exists x ∈ X such that w
simplifies to x.

We say that two words w and x are equivalent if 〈w〉eγ = 〈x〉eγ . Let w be a word; suppose
that w1 and w2 are derived from w by a simplification. It can be shown by an easy case
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analysis that there exist equivalent words x1 and x2 such that, for i = 1, 2, xi is derived
from wi by zero or one simplification.

Let W be any γ̃-word set. Assume that W elementarily reduces to W1 and W2. Let
w ∈ W ; by the first paragraph, there exist w1 and w2 in W1 and W2 such that w simplifies
to w1 and w2. It follows, by the previous paragraph, that there exists X deduced from W1

and W2 by zero or one elementary reduction.
We can now prove the result by induction on the length of γ̃-word sets; the lemma is

trivial if the length is 0 or 1. Assume that the lemma is true for all γ̃-word sets of length
at most n; Let W be a γ̃-word set of length n + 1. If W is reducible, consider any two
γ̃-word sets, W1 and W2, derived from W by an elementary reduction. By the preceding
paragraph, W1 and W2 reduce (with zero or one elementary reduction) to some X. From
our induction hypothesis, each of W1, W2, and X reduces to only one irreducible γ̃-word
set, which must hence be the same. This concludes the proof.

We define geγ
c (W ) to be the unique c-irreducible γ̃-word set to which W c-reduces.

Similarly, geγ(W ) is the unique irreducible γ̃-word set to which W reduces.

Proposition 3.7 Let γ be a cycle homotopic in M to some cycle δ disjoint from C. Let
γ̃ be a lift of γ. Then geγ([C̃/γ̃]) = {ε}.

Proof. Let p : [0, 1] → M be the loop defined by p(t) = γ(t mod 1); similarly, let
q : [0, 1] → M be defined by q(t) = δ(t mod 1). There exists a path β joining p(0) to
q(0) such that the path r := β−1 · p · β · q−1 is contractible in M. Let r̃ be a lift of r,
concatenation of the inverse of β0, p̃, β1, and the inverse of q̃ (respectively lifts of β, p, β,
and q). We choose r̃ so that p̃ is a lifted period of γ̃.

Since q is disjoint from C, the word w := C̃/r̃ is the concatenation of C̃/(β0)−1, C̃/p̃,
and C̃/β1. Furthermore, τeγ(β0) is equal to β1; hence, if the kth symbol of C̃/β0 is equal

to cα (resp. cα), then the kth symbol of C̃/β1 is equal to τeγ(cα) (resp. τeγ(cα)). It follows

that 〈w〉eγ reduces to 〈C̃/p̃〉eγ = [C̃/γ̃]. Now, by Lemma 3.3, w is parenthesized, so 〈w〉eγ

also reduces to {ε}. Lemma 3.6 concludes.

4 Optimal Curves on Pairs of Pants

In this section, we use the crossing word techniques to prove some basic facts regarding
curves on cylinders or pairs of pants.

4.1 Optimal Cycles on Pairs of Pants

Proposition 4.1 Let K be a cross-metric surface that is a cylinder or a pair of pants. Let
ν be a boundary of K. There exists a cycle that is as short as possible among all cycles
homotopic to ν and that has the property of being simple.
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The proof relies on the two following lemmas.

Lemma 4.2 Let P be a cross-metric pair of pants. Let ν be a boundary of P and let γ be
a cycle homotopic to ν. Let q be a shortest path between two points, one on each of the two
boundaries of P different from ν. There exists a cycle δ that is homotopic to γ, no longer
than γ, and that does not cross q.

Proof. Let Q̃ be the set of geometric lifts of q, and let γ̃ be a lift of γ. [Q̃/γ̃] reduces to
{ε} by Proposition 3.7 applied on P. If this crossing word is not empty, let γ1 and q1 be
the homotopic subpaths of γ and q corresponding to an elementary reduction. Since q is a
shortest path, |q1| ≤ |γ1|, and we can, like in Figure 5, proceed to the elementary reduction
by changing γ to another cycle homotopic to and no longer than γ, and having exactly
two crossings fewer than γ with q. The proof is finished by induction on the number of
crossings between γ and q.

Lemma 4.3 Let C be a cross-metric cylinder. Let γ be a cycle homotopic to the boundaries
of C. Let r be a shortest path between two points, one on each of the two boundaries of C.
There exists a cycle δ that is homotopic to γ, no longer than γ, and that crosses r exactly
once.

Proof. Let R̃ be the set of geometric lifts of r, and let γ̃ be a lift of γ. Since γ “winds
around” C exactly once, the γ̃-word set [R̃/γ̃] reduces to a γ̃-word set of length one, hence
has odd length. If γ crosses r at least twice, an elementary reduction is possible on [R̃/γ̃].
Let γ1 and r1 be the homotopic subpaths of γ and r corresponding to an elementary
reduction. Like in Figure 5, we can modify γ to get a no longer, homotopic cycle that has
exactly two fewer crossings with r. We finish by induction on the length of [R̃/γ̃].

Proof of Proposition 4.1. We consider any cycle γ homotopic to ν and prove that
there exists a homotopic cycle that is simple and no longer. Assume first K is a pair of
pants. By Lemma 4.2, there exists a cycle δ, homotopic to γ, no longer than γ, and that
does not cross a shortest path q between the two boundaries of K that are different from ν.
Let C be the cylinder obtained by cutting K along q.

The cycle δ is homotopic in C to the boundaries of C. Indeed, δ is homotopic in K to ν,
and δ is homotopic to some power νk of ν in C, hence also in K. It follows that ν and νk

are homotopic in K, which easily implies that k = 1, whence the result. To conclude this
case, it now suffices to prove that there exists a cycle that is no longer than δ, homotopic
to δ in C, and that is simple; in other words, it suffices to prove our result when K is a
cylinder.

So, let now K be a cylinder. By Lemma 4.3, we may assume that γ crosses a shortest
path r between the boundaries of K exactly once, say at some point a. Cut K along r; γ
becomes a path whose endpoints are the two copies a′ and a′′ of a. Hence, a shortest path
between a′ and a′′ leads, after regluing along r, to a cycle in K that is simple, homotopic
to γ, and no longer than γ.
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In fact, the techniques used in the proof of this proposition yield an algorithm to compute
a shortest cycle homotopic to a given boundary of a cross-metric cylinder or pair of pants;
this will be discussed in more details in Section 6.

4.2 Optimal Paths on Pairs of Pants

Let M be a surface; let γ : S1 → M be a cycle. A path wrapping around γ is any path
p : [0, 1] → M such that p(t) = γ((at + b) mod 1) for some real numbers a and b. A
boundary cycle ν of a cross-metric surface M is not regular with respect to HM; but the
length of ν is naturally defined to be the sum of the lengths of the non-boundary edges of
HM adjacent to ν (counted with multiplicity). Similarly, the length of a path p wrapping
around a boundary cycle ν is the sum of the lengths of the edges of HM adjacent to ν and
intersected by p, counted with multiplicity. In other words, the lengths of ν and p are the
minimal lengths of slightly translated copies of these curves.

Proposition 4.4 Let K be a cross-metric cylinder or a pair of pants; let ν be one boundary
of K. Assume ν is a shortest cycle among the simple cycles homotopic to ν. Then any
path wrapping around ν is as short as possible in its homotopy class.

The proof relies on the following lemma.

Lemma 4.5 Let P be a cross-metric pair of pants. Let p be a path wrapping around a
boundary ν of P and q be a path homotopic to p. Let r be a shortest path between two
points, one on each of the two boundaries of P different from ν. Then there exists a path
q′, homotopic to and no longer than q, that does not cross r.

Proof. Analogous to Lemma 4.2 with crossing words instead of crossing word sets.

Proof of Proposition 4.4. Let p be a path wrapping around ν and let q be homotopic
to p in K; we prove that |p| ≤ |q|.

Assume first that K is a pair of pants. By Lemma 4.5, we may assume (up to changing q)
that q does not cross a shortest path r between the two boundaries of K that are different
from ν. On the cylinder C obtained by cutting K along r, the path q is homotopic to p.
Indeed, on C, q is homotopic to p concatenated with a power νk of ν; so, in K, q−1 · p · νk

is contractible, but also homotopic to νk; hence k = 0. It thus remains to prove the
proposition when K is a cylinder.

So let K be a cylinder. The proof is by induction on the number c(q) of self-crossings of
q. If c(q) = 0, then q is homotopic to a simple subpath of ν, and the result follows since ν
is a shortest simple cycle in its homotopy class. Assume that c(q) > 0 and that the result
is true for all smaller values of c(q). Let c1 be a simple closed subpath of q, and let q1 be
equal to the path q where c1 is removed; c(q1) ≤ c(q) − 1 and the path q1 is homotopic to
a path p1 wrapping around ν.
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The cycle c1 is either contractible or freely homotopic to the boundaries of K [Eps66,
Theorem 4.2]. In the former case, q is homotopic to q1 and we conclude by the induction
hypothesis. Otherwise, q is homotopic to either q1 ·ν or q1 ·ν

−1, so that |p| ≤ |p1|+|ν|; using
the induction hypothesis, this cannot be greater than |q1| + |ν|, and, by the assumption
on ν, this in turn cannot be greater than |q1| + |c1| = |q|.

4.3 Optimal Cycles in (Doubled) Pants Decompositions

Proposition 4.6 Let M be a cross-metric surface that is not a sphere, disk, cylinder, or
torus. Let s be a (doubled) pants decomposition of M and let K be a component of the
surface M cut along s (K is a cylinder or a pair of pants). Assume that a cycle γ inside
K is homotopic in M to a cycle sk. Then γ is homotopic in K to a boundary of K.

We will need the following lemma.

Lemma 4.7 Let M be a cross-metric surface that is not a sphere, disk, cylinder, or torus.
Let s be a (doubled) pants decomposition of M and let K be a component of the surface M
cut along s. Any cycle inside K that is contractible in M is also contractible in K.

Proof. Consider the universal cover (M̃, π) of M; it is sufficient to prove that π−1(K)
is simply connected. If it were not the case, there would exist a simple non-contractible
cycle γ in π−1(K). Such a cycle bounds a disk D in M̃ that is not entirely contained in
π−1(K). Therefore a lift ν̃ of a boundary ν of K is inside D. This is impossible since ν̃
contains infinitely many lifts of some point of M [Eps66, Lemma 4.3].

Proof of Proposition 4.6. Let s̃ be the set of the geometric lifts of the curves in s.
Let δ be a slightly translated copy of sk (a simple cycle, disjoint from all the cycles in s,
homotopic, in M cut along s \ sk, to sk). Let p : [0, 1] → M be the loop defined by
p(t) = γ(t mod 1); similarly, let q : [0, 1] → M be defined by q(t) = δ(t mod 1). There
exists a path β joining p(0) to q(0) such that the path r := β−1 · p · β · q−1 is contractible
in M. Without loss of generality, assume that s̃/β̃ is irreducible for some, hence any, lift
β̃ of β. If this crossing word is empty, then r is contractible in K by Lemma 4.7, hence γ
and δ are homotopic in K; so are γ and sk, and the proof is complete. Therefore, assume
this crossing word is non-empty.

Let r̃ be a lift of r. Since p and q do not cross s, s̃/r̃ is the concatenation of s̃/(β0)−1

and s̃/β1, where β0 is a lift of β and β1 = τeγ(β0). Because s̃/β0 and s̃/β1 are irreducible
and s̃/r̃ can be elementarily reduced, the first geometric lifts of s̃ crossed by β0 and β1

must be the same, say some geometric lift of sj. Let β′ be the beginning of β before its
first crossing with s; we get that β′−1 · p · β′ is homotopic to a power of sj in M, hence
also in K by Lemma 4.7. It is known [Eps66, Theorem 4.2] that the nth power of sj is
homotopic to no simple cycle if |n| ≥ 2. Hence γ is homotopic in K to sj or its reverse.
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5 Proof of Theorem 2.1

Let M be a cross-metric surface that is not a sphere, disk, cylinder, or torus. In this
section, we prove Theorem 2.1: if s is a doubled pants decomposition on M, shortening
the cycles of s using elementary steps provides, in a finite number of steps, a doubled pants
decomposition in which each cycle is as short as possible in its homotopy class.

We fix some notations for this section. Let s be a doubled pants decomposition of M.
Fix i, j ∈ [1, N ]. Let ti be a shortest cycle homotopic to si and t̃i be a lift of ti. Let
r = fj(s) be the doubled pants decomposition obtained from s by applying an elementary
step to sj. Consider M cut along s \ sj = r \ rj ; the pair of pants of this surface that
contains sj and rj is denoted by Pj.

Let s̃ and r̃ be the sets of geometric lifts of the cycles in s and r, respectively. For
k ∈ [1, N ], we choose an arbitrary indexation sα

k , α ∈ N, of the geometric lifts of sk. We
define an indexation of the geometric lifts of rk as follows. If k 6= j, let rα

k = sα
k for each

α ∈ N. Let us consider now the case k = j. Let δ be the twin of sj (as defined at the end of
Section 2.1); it is also the twin of rj . The cycles sj and δ bound a cylinder, which lifts to a

set of disjoint infinite strips in M̃. This provides a correspondence between the geometric
lifts of sj and the geometric lifts of δ. Similarly, the fact that δ and rj bound a cylinder
provides a correspondence between the geometric lifts of δ and the geometric lifts of rj .
By composition, we obtain a correspondence between the geometric lifts of sj and those
of rj ; for each geometric lift sα

j , we define rα
j as the geometric lift of rj in correspondence

with sα
j .

We will consider crossing words between s̃ (or r̃) and t̃i. Henceforth, the words in the
symbols a and a, where a ∈ s̃ (or a ∈ r̃) will be written differently as above: we only write
the subscripts and superscripts corresponding to the geometric lifts (for example, we shall

write 3
1

7
5

4
2 instead of s3

1 s7
5 s4

2). This allows to say, for example, that [r̃/t̃i] = [s̃/t̃i] if ti does
not cross rj nor sj. Similarly, we use the expression j-reduction instead of sj-reduction or
rj-reduction.

If W is a t̃i-word set, recall that g
eti
j (W ) is the unique t̃i-word set to which W j-reduces.

Proposition 5.1 g
eti
j ([r̃/t̃i]) = g

eti
j ([s̃/t̃i]).

We denote by s̃j the set of the geometric lifts of sj, with the indexation inherited from
s̃. We define r̃j analogously. We will use the following lemma.

Lemma 5.2 Let p be an arc in Pj , and let p̃ be a lift of p. Then s̃j/p̃ and r̃j/p̃ reduce to
the same irreducible word.

Proof. We first assume sj and rj are disjoint; they bound a cylinder C inside Pj . The lifts
of C in the universal cover of M are pairwise disjoint infinite strips bounded by rα

j and sα
j ,

for all α (by the choice of the indexation of the geometric lifts of sj and rj). Furthermore,
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p̃ has its endpoints outside these strips. Let us split p̃ into subpaths p̃i, i = 1, . . . , n, each
entering in exactly one strip, and exactly once in this strip, and so that their endpoints are
outside the strips. Clearly, s̃j/p̃i and r̃j/p̃i reduce to the same irreducible word (there are
two cases according to whether p̃i enters and exits the strip through the same boundary or
not); the result follows.

For the general case, let γ be a slightly translated copy of the twin of sj: γ is a simple
cycle homotopic in Pj to rj and sj, and does not cross rj nor sj. We index the geometric
lifts of γ so that γα and rα

j (or sα
j ) bound an infinite strip. Applying the reasoning of the

above paragraph to sj and γ, and then to γ and rj, we get the result.

Proof of Proposition 5.1. Assume first that ti is contained in Pj . By Proposition 3.7,

we have g
eti([r̃/t̃i]) = {ε} = g

eti([s̃/t̃i]). But this also equals g
eti
j ([r̃/t̃i]) and g

eti
j ([s̃/t̃i]), and

this concludes the proof. If ti is not entirely contained in Pj , then let t′i be a maximal
subpath of ti that is inside Pj , and t̃′i be a lift of t′i; it is sufficient to prove that r̃j/t̃

′
i and

s̃j/t̃
′
i reduce to the same irreducible word; but this follows from Lemma 5.2.

The following key proposition states that an elementary step fj on the doubled pants

decomposition s corresponds to a reduction g
eti
j on the crossing word set [s̃/t̃i]. This is not

entirely true, because we may need to replace ti by a cycle t′i that has exactly the same
properties as ti (if there exist several shortest homotopic cycles).

Proposition 5.3 There exists a cycle t′i, homotopic to and no longer than ti, and a lift t̃′i
of t′i, such that τeti

= τet′
i

and [r̃/t̃′i] = g
eti
j ([s̃/t̃i]).

The fact that τeti
= τet′

i

implies in particular that g
eti
k = g

et′
i

k for each k: although we replace

t̃i by t̃′i, the operations g
eti
k remain the same.

Proof. By Proposition 5.1, [r̃/t̃i] j-reduces to g
eti
j ([s̃/t̃i]). If [r̃/t̃i] is j-irreducible, there

is nothing to show. Otherwise, an elementary j-reduction is possible on [r̃/t̃i]. We apply
the uncrossing operation to the subpath p of t̃i corresponding to this j-reduction. By
Proposition 4.4, applied to the component K of M \ r containing the projection of the
subpath p, we obtain a lift t̃′i of a cycle t′i that is homotopic to and no longer than ti.
Clearly, τeti

= τet′
i

. Furthermore, [r̃/t̃′i] results from [r̃/t̃i] by this elementary j-reduction.

By induction, we obtain the desired t′i.

Proposition 5.4 Let k ∈ [1, N ]. Assume that ti is disjoint from s and that ti and sk

are homotopic in the cylinder or pair of pants of the surface M cut along s containing ti.
Then, there exists a cycle t′i, homotopic to and no longer than ti, disjoint from r = fj(s),
and homotopic to rk in the cylinder or pair of pants of M cut along r containing t′i.
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Proof. Let K be the cylinder or pair of pants of the surface M cut along s containing ti.
The proof is trivial if sj is not a boundary of K. If sj is homotopic to ti in K, then either
sj = sk, or K is the cylinder bounded by sj and sk; in both cases it is easy to conclude.
Indeed, ti can be chosen to be simple by Proposition 4.1; it follows that |rj | = |ti|, and we
can take for t′i a slightly translated copy of rj .

There remains the case where sj is not homotopic to ti in K (and thus K is a pair of
pants). Pj contains ti; one boundary of Pj is γ, the twin of rj, and another one is rk = sk.
rj and γ bound a cylinder C in Pj , and rj is optimal in C. Then, using Proposition 4.4, any
component of ti in C can be swapped into the complementary part in Pj, thus removing
the crossings with rj .

We now conclude the proof of our main theorem.

Proof of Theorem 2.1. In the beginning of this section, we explained how, given an
arbitrary indexation of the geometric lifts of a doubled pants decomposition s, we deduce an
indexation of the geometric lifts of r = fj(s). Now, starting with an arbitrary indexation of
the geometric lifts of s0, we can proceed recursively to define an indexation of the geometric
lifts of all the doubled pants decompositions occurring during the algorithm (deduced from
s0 by successive applications of elementary steps). Let s̃n denote the geometric lifts of the
curves in sn with this particular indexation.

Let i ∈ [1, N ] and let t̃0i be a lift of a shortest cycle t0i homotopic to s0
i in M. By

Proposition 3.7, [s̃0/t̃0i ] reduces to {ε}. By Proposition 5.3, we can construct a sequence
(t̃ni )n∈N of lifts of shortest homotopic cycles such that the length of [s̃n/t̃ni ] strictly decreases
until it becomes empty at some stage n. By Proposition 4.6, tni and a cycle sn

k are homotopic
in the cylinder or pair of pants of the surface M cut along sn containing tni . By k − 1
applications of Proposition 5.4, and then using Proposition 4.1, |sn+1

k | = |tni |. The cycle
sn+1
k is either sn+1

i or its twin; in the latter case, since sn+1
i and sn+1

k bound a cylinder,
|sn+2

i | = |sn+2
k | = |tni |. From this discussion, it follows that the length of (sn

i )n∈N becomes
stationary and that, when it is the case, each cycle is as short as possible in its homotopy
class. It remains to prove that all lengths remain unchanged once sn and sn+1 have the
same total length. Assume s and s′ = f(s) have the same length, and let i ∈ [1,N ]; we
shall prove that si has the same length as ti (a shortest cycle homotopic to si).

[s̃/t̃i] reduces to the empty word set; assume that an elementary j-reduction is possible.
Let ti and sj be the associated subpaths of t̃i and of the lift of sj. We will prove that both
subpaths have the same length. It will follow that we can modify ti without changing its
length nor its homotopy class to proceed to the j-reduction in [s̃/t̃i]; hence by induction
we will be able to assume that [s̃/t̃i] = {ε}.

If j 6= 1, only lifts of the first cycle in f1(s) appear in the word f̃1(s)/ti; by Corollary 3.4,
this word is parenthesized. By Proposition 4.4, we can iteratively remove all the crossings
between ti and the lifts of f1(s). The path ti is replaced this way by a no longer, homotopic
path t

′

i that does not cross the lifts of f1(s). Iterating the process, we get the existence

21



of a path t
′′

i , no longer than and homotopic to ti, crossing no lift of any cycle in s′′ :=
fj−1 ◦ . . . ◦ f1(s). Furthermore, s′′j = sj is as short as possible in its homotopy class in the
cylinder and in the pair of pants it bounds, because s′′ has the same length as fj(s

′′). It
follows, by Proposition 4.4, that sj cannot be longer than t

′′

i . Hence |sj | = |t
′′

i | = |ti|.
We can thus assume (up to a change of ti) that [s̃/t̃i] = ε. By Proposition 4.6, ti and

a cycle sk are homotopic in the cylinder or pair of pants of the surface M cut along s
containing ti. By k − 1 applications of Proposition 5.4, and then by Proposition 4.1, we
may assume that ti and sk bound a cylinder whose interior is disjoint from the cycles of
fk−1 ◦ . . . ◦ f1(s). This implies |sk| = |ti|, which finishes the proof if k = i. If k 6= i, sk is
the twin of si; sk and si bound a cylinder whose interior is disjoint from s; then we must
have |sk| = |si| (otherwise, the length of the longest cycle would decrease by applying f to
s). This concludes the proof.

6 Computational Issues

This section explains how Theorem 2.1 can be turned into a practical algorithm for op-
timizing (doubled) pants decompositions. Recall that, as explained in Section 2.2, we
perform all our operations using merely the combinatorial properties of the arrangement
of the graph HM and of the curves.

6.1 Computation of an Elementary Step

The algorithm is a succession of elementary steps; each of them amounts to computing, in
a cross-metric pair of pants, a shortest simple cycle homotopic to one of its boundaries.
The following proposition explains how to perform these steps.

Proposition 6.1 Let P be a cross-metric pair of pants of complexity n, and let γ be a
boundary cycle of P. We can compute a shortest cycle homotopic to γ in P in O(n log n)
time, with the additional property that this cycle is simple.

We will rely on the following lemma.

Lemma 6.2 Let C be a cross-metric cylinder of complexity n. A shortest cycle homotopic
to the boundaries of C, with the additional property that it is a simple cycle, can be computed
in O(n log n) time.

Proof. Let γ be a shortest cycle homotopic to the boundaries of C. By proposition 4.1 we
may assume γ is simple. We claim that γ crosses each edge of HC at most once. Suppose
on the contrary that γ crosses some edge e at least twice and consider two consecutive
crossings a and b of γ along e. Then, using paths joining a and b along e we may split γ
into two simple cycles shorter than γ. One of these two cycles must be homotopic to γ, a
contradiction.
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So the problem amounts to computing a minimal cut in HC separating the two bound-
aries of C [Rei83, Propositions 1 and 2]. Since HC is a planar graph, this can be done in
O(n log n) time using an algorithm by [Fre87, Theorem 7].

Proof of Proposition 6.1. By the proof of Proposition 4.1, this can be done as follows:

• Compute a shortest path p between the two boundaries of P that are not homotopic
to γ in P;

• compute a shortest simple cycle homotopic to the boundaries of the cylinder C ob-
tained by cutting P along p.

Recall that, on any cross-metric surface M, we can compute shortest paths between two
points by considering any shortest-path algorithm in the dual of the graph HM; we can
also (temporarily) cut M along a specified set of curves by declaring that the correspond-
ing edges cannot be crossed. Since both operations described above boil down to the
computation of shortest paths and cutting along some curves, we can achieve this task in
cross-metric surfaces.

More precisely, the first step can be done using Dijkstra’s algorithm in O(n log n) time,
where n is the complexity of P. Lemma 6.2 states that the second step can also be done
in O(n log n) time. This concludes the proof.

6.2 Complexity Analysis

We give an analysis of the running-time of our algorithm.

Theorem 6.3 Let M be a cross-metric surface that is not a sphere, disk, cylinder, or
torus. Assume M has complexity n, genus g, and number of boundaries b. Let α be the
ratio between the largest and smallest weight of M. Let s = (s1, . . . , sN ) be a doubled pants
decomposition of M where each cycle has complexity O(m).

We can compute a doubled pants decomposition u = (u1, . . . , uN ) of M such that, for
each i, ui is a shortest cycle among all (not necessarily simple) cycles homotopic to si, in
O((g + b)2αm2(αm + n) log (αm + n)) time.

We note that the time complexity of this algorithm is polynomial in its input and in α.
In particular, if the weights are uniform, then this algorithm has a running-time that is
polynomial in the size of the input.4

4Very recently, [CdVE06] prove, using so-called tight octagonal decompositions or tight systems of arcs of
the surface, that this algorithm has actually polynomial running-time in the size of its input, independently
from α. As a consequence, the algorithm for computing shortest homotopic cycles (Theorem 7.2) also has
polynomial running-time.

23



Proof. Let i ∈ [1, N ]. Let ti be a shortest cycle homotopic to si. We can choose ti so
that, inside each face f of HM, it crosses each maximal subpath of the cycles in s entering
f at most once; hence the number of crossings of ti with s is at most the complexity of ti
times the complexity of s. Since ti is no longer than si, its complexity cannot be larger
than α times the complexity of si; so the complexity of ti is O(αm). Thus the crossing
word set [s̃/t̃i] has length at most O((g + b)αm2) since there are O(g + b) cycles. The
number of elementary steps is O(g + b) times the length of the longest crossing word set
[s̃/t̃i] over all i; this is thus O((g + b)2αm2).

Since the length of the doubled pants decomposition does not increase during the course
of the algorithm, the complexity of each of its cycles is bounded, at each step, by O(αm).
It follows that Pj , bounded by three such cycles, has complexity O(αm + n). The cost
of each elementary step is thus O((αm + n) log(αm + n)) by Proposition 6.1. The result
follows.

7 Computing a Shortest Homotopic Cycle

In this section, we focus on the following problem: given a simple cycle s1 on a cross-metric
surface M, compute a simple cycle among the shortest cycles in its homotopy class.

The following proposition will be proved by two different methods in Sections 7.1
and 7.2. The analysis of the second algorithm gives an extra O(n log n) term in the time
complexity, but the method has a more geometric flavor and might be interesting for design
purposes.

Proposition 7.1 Let M be a cross-metric surface of complexity n, genus g, and b bound-
aries that is not a sphere, disk, cylinder, or torus. We can compute a pants decomposition
of M where each cycle has complexity O(n), in O((g + b)n) time.

Admitting temporarily this result, we obtain:

Theorem 7.2 Let M be a cross-metric surface that is not a sphere, disk, cylinder, or
torus. Assume M has complexity n, genus g, and number of boundaries b. Let α be
the ratio between the largest and smallest weight of M. Let s1 be a simple cycle on M
with complexity k. We can compute a shortest cycle homotopic to s1, with the additional
property that it is simple, in O((g + b)2α2(k + n)3 log (α(k + n))) time.

Proof. We cut M along s1 in O(k) time, obtaining one surface M1 or two surfaces M1

and M2. We can test in O(n + k) time whether one of these surfaces is a disk, which
happens if and only if s1 is contractible; in this case the problem is trivial. We compute
pants decompositions of the Mi’s that are not cylinders in time O((g + b)(k + n)) using
Proposition 7.1; each cycle has complexity O(k + n).

On M, the union of s1 and of these cycles is a decomposition of M into cylinders and
pairs of pants. Appending slightly translated copies of some cycles, we obtain a doubled
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pants decomposition of M. We can then apply our iterative algorithm for shortening a
doubled pants decomposition; by Theorem 2.1, the cycle of the resulting doubled pants
decomposition that corresponds to s1 has the desired properties; by Theorem 6.3, this
process has the indicated running-time.

Again, this result also holds if M is a cylinder or a torus; we omit the details.
We define the edge multiplicity of a cycle on a cross-metric surface M as the maximum,

over all edges e of HM, of the number of crossings of this cycle with e.

7.1 Pants Decomposition I

Proof of Proposition 7.1. We say that a set of cycles s is good if the cycles are simple
and pairwise disjoint and if, for each connected component M′ of the surface M cut along
the cycles in s:

1. M′ has at least one boundary, and is not a disk nor a cylinder;

2. if M′ is a pair of pants, each edge e of HM not on the boundary of M crosses the
boundary of M′ at most four times;

3. if M′ is not a pair of pants, each edge e of HM not on the boundary of M crosses
the boundary of M′ at most twice.

If M has at least one boundary, s = ∅ is a good set of cycles. If M has no boundary, any
non-contractible cycle γ with edge multiplicity one constitutes itself a good set of cycles.
We can compute such a γ in O(n) time, using the technique by [EHP04, Corollary 5.3]
with unit weights and breadth-first search instead of Dijkstra’s algorithm. Or, alternately,
such a γ can be obtained by considering a spanning tree of HM; any simple cycle in the
dual graph restricted to the duals of the non-tree edges will do.

By Condition 1, every good set of cycles can be extended to a pants decomposition
of M. Given a good set of cycles s that is not a pants decomposition, we will see how to
append to s one or two cycles, so that the resulting set of cycles is still good. We finally
obtain a pants decomposition made of O(g + b) cycles, each of multiplicity at most four,
hence each of complexity O(n). The assertion on the running-time is easy and follows from
Conditions 2 and 3.

Let s be a good set of cycles that is not a pants decomposition. We distinguish between
two cases.

First case. Assume that there exists a connected component M′ of the surface M cut
along s such that its number of boundaries b′ and its genus g′ satisfy b′ ≥ 4 and/or (g′ ≥ 1
and b′ ≥ 2). We will append to s a cycle “merging” two boundaries of M′ (Figure 7): the
new cycle will thus split M′ into a pair of pants and a surface with b′ − 1 boundaries and
of genus g′.
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cp

Figure 7: In this figure, curves that run along close together are assumed to be crossed by
the same edges of HM′ . Top: cutting M′ with a path p joining two boundaries of M′.
Bottom: several edges of HM′ are crossed by two boundaries of M′; in that case, p has
length zero.

Choose a boundary B1 of M′; let B2 be the union of the other boundaries of M′.
Using breadth-first search, we compute a shortest path p (for uniform weights) with edge
multiplicity one on M′ between B1 and B2. We then “merge” the two boundaries of M′

joined by p with a cycle c that goes once around each of the two boundaries and twice
along p. Appending c to s, we obtain a set of cycles s′.

We claim that s′ is good. First note that p crosses no edge of HM′ incident to a
boundary of M′, for otherwise it would not be a shortest path between B1 and B2. So
the edges of HM crossed by p and those crossed by a boundary of M′ are disjoint. It also
follows that p crosses each edge of HM at most once.

The cycle c separates M′ into two connected components:

• a pair of pants, whose boundary crosses the following two sets of edges of HM; these
sets are disjoint by the above remark:

– twice each edge of HM crossed by b, for each boundary b of M′ containing
an endpoint of p. By the induction hypothesis, an edge of HM crosses the
boundaries of M′ at most twice, so each edge of HM crosses the boundary of
this pair of pants at most four times;

– twice each edge of HM crossed by p (recall that p crosses a given edge of HM

at most once);

• the complementary part of this pair of pants. The edges of HM crossed by its
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C D

Figure 8: Cutting a double-torus with one boundary M′ along an essential cycle. A:
the surface M′. B: Creation of an essential cycle (here, non-separating) adjacent to the
boundary. C: Cutting the surface along this cycle. D: Creation of a new cycle enclosing
the two adjacent boundaries.

boundaries consist of the following two disjoint sets of edges:

– those that are crossed by the boundaries of M′: by the induction hypothesis,
each edge of HM crosses these boundaries at most twice;

– the edges of HM crossed by p; each such edge is crossed twice by the boundary
of this surface.

These remarks imply that s is good.

Second case. A connected component M′ of M cut along s has exactly one boundary,
denoted by b, and has non-zero genus. The idea is to cut M′ along an essential cycle and
then along another cycle to enforce that the set of cycles is good (Figure 8).

Let M
′
be the cross-metric surface obtained from M′ by closing the boundary b with

an extra face f and assigning unit weights to all edges. Using the technique by [EHP04,
Lemma 5.2], with a breadth-first search instead of Dijkstra’s algorithm, we obtain, in time

linear in the complexity of M
′
, a shortest non-contractible loop ℓ based at a point inside f

that crosses each edge of M
′
at most twice and crosses b exactly twice. Observe that ℓ

does not cross any edge of H
M

′ incident to b: otherwise, one could built two loops ℓ1 and
ℓ2 based inside f , whose concatenation is homotopic to ℓ and shorter than ℓ; then at least
one of ℓ1 or ℓ2 would be non-contractible and shorter than ℓ. We eventually form a cycle
c in M′ from ℓ by replacing the part of ℓ inside f by a simple path that “runs along” b
outside f . See Figure 8B. The cycle c is essential in M′, because ℓ is non-contractible in
M

′
. We append c to s.
The set of cycles s may fail to be good because of the edges of HM crossed by both b

and c (Figure 8C). But we can easily remedy this problem by enclosing b and c with a new
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cycle d (Figure 8D) that separates the surface into two surfaces:

• a pair of pants, whose boundary crosses each edge of HM at most four times (as in
the first case),

• and a surface with one or two boundaries, according to whether c is non-separating
or not. Assume c is non-separating (the case where it is separating is simpler). The
surface is made of two boundaries: a copy of d and a copy of c. Recall that b crosses
each edge of HM at most twice by the induction hypothesis; so on the present surface,
each edge of HM is crossed at most twice by its boundaries as well.

It follows that the current set of cycles is good.

7.2 Pants Decomposition II

Given a cross-metric surface M of complexity n, we now outline a second method to
compute a pants decomposition of M where each cycle has edge multiplicity bounded by
a constant. The idea is to mimic the procedure of [Hat00] in the differentiable case to
compute a pants decomposition from the level sets of a piecewise-linear (PL) function on
M. We assume familiarity with the basic notion of simplicial complex [Hat02, Section 2.1].
Again, we emphasize that we prove here Proposition 7.1 with an additional O(n log n) term
in the time complexity.

Proof of Proposition 7.1, with a weaker complexity. We first identify each bound-
ary component of M to a single vertex by contracting the boundary edges. We obtain a
surface M′ without boundary. We call β-vertices the vertices of M′ corresponding to the
boundaries of M.

We then turn M′ into a simplicial complex by applying two consecutives “barycentric
subdivisions”. For this, we view M′ as a gluing of k-gons, k ≥ 1, where a k-gon is a
topological disk bounded by k simple curves, called sides, and k vertices. Because of
1-gons and because of the identification of sides by the gluing, there might be multi-
incidences between vertices, edges, and faces of M′. A barycentric subdivision is obtained
by subdividing each face before the gluing. This subdivision adds a vertex in the interior
of each face (a face-vertex) and splits each side of a face with an interior vertex; it then
joins each face-vertex to all the vertices on the boundary of its face with new edges. Call
sd M′ the surface obtained from M′ after a barycentric subdivision. The faces of sd M′

are 3-gons and sd M′ has no multi-incidence; but two distinct edges or two distinct faces
of sd M′ may still share the same set of vertices. A second barycentric subdivision solves
this problem and yields a surface sd2M′ that is an abstract simplicial complex. Note that
two β-vertices of M′ cannot be adjacent on sd2M′.

The next step is to construct a PL function on sd2M′ with the requirement that the
β-vertices are local minima and that the function has only simple singularities (see Tarasov
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and Vyalyi [TV98] or [CSA03] for the relevant definitions). We assign a different scalar
value to each vertex of sd2M′, giving smaller values to β-vertices. Extending this scalar
field by linearity, we get a PL function which may have non-simple singularities. But, up
to refining sd2M′ at most twice, we obtain a surface N and a PL function f on N with
simple singularities only [TV98, CSA03].5

Following [Hat00], we finally construct a pants decomposition of N (punctured at the
β-vertices) with the help of the contour graph Γ(f) of f . Because f has simple singularities,
Γ(f) has vertices of degree one or three only. We recursively remove the degree one vertices
of Γ(f) except those corresponding to β-vertices. Next, we merge the arcs of the resulting
graph now sharing a degree two vertex. This way, we get a cubic graph with dangling arcs
“incident” to β-vertices. The pants decomposition is obtained by picking a point in the
interior of each non-dangling arc and considering the associated contours. Since a contour
can cross an edge of N at most once, and since the edges of M′ have been subdivided O(1)
times, we eventually get the result by considering the contours on the original surface M
instead of M′.

Since we only use a finite number of barycentric or similar subdivisions, the surface N
has complexity O(n) and can be constructed in time proportional to its complexity. It is
known [CMEH+04] that Γ(f) can be constructed in O(n log n) time. Each of the O(g + b)
contour cycles can be obtained by a simple traversal in time proportional to its size O(n).
This gives a total complexity of O((g + b)n + n log n) for the construction of the pants
decomposition.
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