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Abstract

This paper provides a simple proof of Tutte’s
barycentric embedding theorem [38]; a counterex-
ample showing that Tutte’s theorem does not hold
in dimensions higher than 3; and the description
and analysis of a method to build isotopies of tri-
angulations in the plane, based on Tutte’s theo-
rem and the computation of equilibrium stresses
of graphs by Maxwell-Cremona’s theorem.

1 Introduction

Tutte’s theorem. In 1963, Tutte [38] gave a way
to build embeddings of any planar, 3-connected
graph G = (V, E). Let C be a cycle whose ver-
tices are the vertices of a face of G in some (not
necessarily straight-line) embedding IV of G. Let
I" be a straight-line mapping of G into the plane,
satisfying the conditions:

i. the set V. of the vertices of the cycle C is
mapped to the vertices of a strictly convex
polygon @, in such a way that the order of
the points is respected;

ii. each vertex in V; = V \ V, is a barycen-
ter with positive coefficients of its adjacent
vertices (Tutte assumed all coefficients to be
equal to 1, but the proof extends without
changes to this case). In other words, the
images v of the vertices v under I' are the
solution of a linear system (S): for each u €
Vi, thweE Aup (T —0) = 0, where the A\, are
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positive reals. It can be shown that the sys-
tem (S) admits a unique solution.

Theorem 1 (Tutte’s Theorem) I' is an embed-
ding of G into the plane, with strictly convez inte-
rior faces.

Several theorems for embedding graphs exist in
the literature. Early works by Fary [18] (resp.
Stein [33]) show that any planar graph admits a
straight-line (resp. straight-line, with convex faces
under some conditions) embedding. More recent
works focus on finding embeddings of graphs so
that the coordinates of the vertices are integers
with absolute value as small as possible; there is
an algorithm [29] to embed graphs with n + 2 ver-
tices on the n x n grid. Other criteria are also de-
sirable, such as the convexity of the faces and/or
minimizing the area of the embedding if a min-
imum distance between two vertices, or between
a vertex and a non-incident edge, is imposed [10];
Tutte’s method with unit coefficients can yield em-
beddings with exponential area under such a re-
striction [15]. A topic of interest is also to realize
3-connected, planar graphs as the 1-skeleton of a
3D polytope: this can be done on the cubic grid
of size 2n1%9"" [27]. For a survey on algorithms
for graph drawing, see [14]. Tutte’s method is of-
ten used in graphics applications related to surface
parametrization in multiresolution problems [16]
and geometric modeling [19], texture mapping [25],
and morphing [23, 20, 21].

In his paper [38], in addition to showing The-
orem 1, Tutte simultaneously proves again Kura-
towski’s planarity criterion [24] of 1930: a graph is
planar unless it contains a subdivision of one of the
two Kuratowski graphs K5 and K3 3. The proofs of
both results are entangled together in Tutte’s pa-
per; the consequence is that proving Theorem 1 by
his method is long and involves quite a lot of graph
theory terminology. Later, short proofs of Kura-
towski’s criterion were given by Thomassen [35],



making Tutte’s graph-theoretic viewpoint less at-
tractive and unnecessarily complicated if the goal
is to show Theorem 1. As we will see, starting with
the topological fact that C is a facial cycle of some
embedding of G and using Euler’s Formula yields
a readable, short proof.

Other proofs of this theorem exist in the litera-
ture, using a more geometric viewpoint, but they
are not completely satisfying. Becker and Hotz [2]
use the notion of “quasi-planarity” as limit case of
a planar situation, which yields to complicated no-
tations and tedious case analyses; the structure of
their paper is non-obvious and the proof is really
long. Y. Colin de Verdiére [13] shows the result,
only for triangulated graphs, on arbitrary surfaces
of non-positive curvature using the Gauss-Bonnet
formula; the same technique does not seem to ex-
tend to 3-connected graphs [12].

In the same spirit as Thomassen [34, 35, 36,
who gave simple proofs of basic theorems in graph
theory, we provide a short, self-contained proof of
Tutte’s theorem. Its attractive points are its short-
ness and its simplicity (very few graph theory is
required, the geometric aspects are emphasized).
The proof is transparent and progressive; it con-
sists of two clearly delimited stages. First, we show
Tutte’s result without effort under two additional
restrictions:

iii. the graph G is triangulated: every face of I,
except possibly the face corresponding to the
cycle C, is a triangle;

iv. the images of these triangles under the map-
ping I' are non-degenerate, i.e., their interior
is non-empty.

After that, we deal with the degeneracies, which
are the core of the problem (in our paper as well
as in other proofs): we show that under hypothe-
ses (i) and (ii), three vertices belonging to a face
are not on the same line. This step uses the non-
planarity of K33 together with simple geometric
ideas. Then, the generalization to arbitrary 3-
connected graphs comes easily.

Isotopies. Tutte’s theorem yields a method, de-
scribed by Floater and Gotsman [20] and Gotsman
and Surazhsky [21], to morph two triangulations,
the boundary being the same convex polygon in
both embeddings. One can compute coefficients

Aup > 0, for each interior vertex u and each neigh-
bor v of u, so that u is the barycenter with co-
efficients (Ayy)y of its neighbors in the initial em-
bedding. Doing the same for the final embedding
and interpolating linearly the coefficients yields an
isotopy (a continuous family of embeddings) by
Tutte’s theorem. This method lets some freedom
for the computation of the barycentric coefficients
of the vertices in both embeddings. Hence, we
study the following natural question: is it possi-
ble to apply the same technique, with the addi-
tional restriction that the coefficients are symmet-
ric (Ayy = Apw)? The interest is that this has a
clear and appealing physical interpretation: fix the
exterior vertices and edges and replace each inte-
rior edge joining two vertices v and v by a spring
with rigidity Ay,; then the equilibrium state of this
physical system is the solution of the system (S).
The problem of computing such symmetric coeffi-
cients is solved with Maxwell-Cremona’s theorem
from rigidity theory. The drawback of our method
is that these coefficients are not always positive,
hence Tutte’s theorem does not apply in all cases.
After small experiments (with 20 vertices or so),
we thought that our method always yielded an iso-
topy, even if some weights were negative. This is
not the case, and we have small examples refut-
ing this conjecture. However, our method gives
positive coefficients if both embeddings are in the
rather general class of regular triangulations (re-
call that a regular subdivision is the projection of
the lower faces of a polytope generated by a family
of points, see [42]). This idea of replacing edges of
a graph by springs has been used in several other
contexts: in mechanics [40], for graph connectiv-
ity computation [26], in an algorithmic study of
operations on polyhedra [22].

Generalization to 3D space. The last part of this
paper is devoted to the study of the extension of
Tutte’s theorem to three dimensions. It presents
an overview of the proof that there exist two tri-
angulations of a tetrahedron which are combina-
torially equivalent but for which there is yet no
linear isotopy from one to the other, a fact which
is specific to spaces of dimension > 3. This result
has been shown by Starbird in [30]; we give an
outline of the proof and explain parts of the proof
not written in his paper and required to show this
theorem. Then we show that the natural general-



ization of Tutte’s barycentric embedding theorem
is false in 3D. The translation of Tutte’s hypothe-
ses (in the triangulated case) from 2D to 3D is
as follows: consider an embedding of a simplicial
3-complex K into R3, the boundary being a con-
vex polyhedron. If a mapping of K into R3, with
the same boundary, is so that each interior ver-
tex is barycenter with positive coefficients of its
neighbors, then we would expect that it is an em-
bedding. It turns out that this fact is false. To
our knowledge, this attempt of generalizing Tutte’s
theorem for 3D complexes is new, and our refuta-
tion of this extension raises interesting open ques-
tions, in the context of isotopies as well as in view
of embedding 3-complexes.

2 Proof of Tutte’s theorem

We prove here Tutte’s theorem ([38], relying on
[37]). For basic graph theory definitions, see for
example [6]. A mapping T' of G into the plane is
an application I' : V U E — P(R?) which maps a
vertex v € V to a point in R? and an edge e =
uv € E to the straight line segment joining I'(u)
and I'(v). An embedding T of G is a mapping of
G so that distinct vertices are mapped to distinct
points, and the images of distinct edges can only
meet at their endpoints.

We first rephrase condition (ii) in more com-
pact terms. Define the strict convex hull of a set
of points to be the interior, in the space affinely
generated by these points, of the convex hull of
these points. It is then easy to see that condition
(ii) is equivalent to the following:

ii’. each v € V; lies in the strict convex hull of its

adjacent vertices.

A proof of this equivalence is provided for com-
pleteness in Appendix A. We thus need not use
System (S) anymore; the proof of its invertibility
is easy and not necessary for the proof of Tutte’s
theorem, we defer it to Appendix B.

Recall that IV is a (not necessarily straight-line)
embedding of G with facial cycle C. In the sequel,
I is our reference embedding, and we shall call the
faces of G (or triangles if (iii) is satisfied) the faces
of the embedding IV except the face bounded by
C. We first state a preliminary lemma, assuming
the hypotheses of Theorem 1:

Lemma 2 Fach v € V; is mapped by T' into the
interior of the polygon Q.

Proof. First, each vertex in V; is mapped, by T,
into the interior or the boundary of the polygon Q.
For if this is not the case, by convexity of (), there
is a vertex v € V; so that ) and ¥ are separated by
a line D. Among the vertices whose images under
I" lie on the same side of D as v, consider those
which are the farthest from D. Obviously, at least
one of these vertices cannot be in the strict convex
hull of its adjacent vertices.

Suppose that a vertex v € V; is mapped into
the boundary of @, on a line D which contains
an edge of ). Because the image of any vertex
lies in the same (closed) half-plane bounded by D,
and by condition (ii’), the vertices in V; which are
adjacent to v are also contained in D. Thus, all
vertices of the connected component of v in G-V,
lie on D. This contradicts the 3-connectivity of G,
because removing the two vertices of V, which are
on D destroys the connectivity of G. O

Our intermediate goal is now to prove the the-
orem under additional assumptions (iii) and (iv).
We first show a local planarity property for I'.

Lemma 3 Under assumptions (iii) and (iv), the
interiors of the images of two distinct triangles of
G which share a common vertex do not overlap.

2

Figure 1: The triangles with v as a vertex, involved
in the computation of o(v).

Proof. By (iv), the angles of a triangle are well-
defined and positive. We first introduce some ter-
minology. For each vertex v, let a(v) be equal to
27 if v € V;, and to the angle of the polygon @)
at v if v € Vg; let o(v) be the sum, over all the
triangles incident to v, of the angle of the image
of such a triangle at v under the mapping I' (Fig-
ure 1). Our aim is to show that, for each vertex v,



o(v) = a(v), that is, there is no “folding” at v in
the mapping I'. Because all faces of G are trian-
gles, the structure of G in the neighborhood of a
vertex v is quite simple: the vertices adjacent to v
form a cycle (if v € V;) or a path (if v € V¢). Let
us call vy, ..., v, the neighbors of v in the order of
this cycle (or path).

A key ingredient of the proof of Lemma 3 is the
following fact: o(v) > a(v), with equality if and
only if the triangles incident to v do not overlap.
To prove this, let 8(uvw) be the geometric angle
(between 0 and 7) of the triangle uvw at v in the
mapping I', and assume v to be in V; (the proof
is easier for v in V;). By (ii’) and (iv), 7 lies in
the interior of the convex hull of vy,...,v,. It
is then easy to see that there exist i, 7 and k so
that 1 <4 < 7 < k < p and that the sum of the
angles 0(v;vv;), 0(vjvvg) and O(vivv;) equals 2.
We have Zg;; O(vqvvg+1) > O(v;vv;), and simi-
lar relations between 7 and k£ and between k£ and
i. Adding these three inequalities, we obtain that
o(v) > 2m. Moreover, equality holds if and only
if there is equality in all previous sums, that is,
the ordering of the vertices v1,...,v, around v is
preserved in I', which is also equivalent to the fact
that the triangles incident to v do not overlap.

Now, let ¢ be the total number of triangles. We
have:

@Vil+Vel-2)m = 3 alv) < 3 ov) = . (1)

veV vEV

The first equality is a consequence of the fact
that the sum of the angles of the polygon @ is
(|Ve| — 2)m, the inequality has been shown above,
and the second equality is true because the sum
of the angles of a triangle in the plane equals 7.
But on the other hand, the leftmost and rightmost
members of (1) are equal. Indeed, Euler’s formula,
applied to the planar graph G, yields (if e is the
number of interior edges):

Vil + [Vel) = ([Vel +€) + (E+1) = 2. (2)

The fact that every face of G has three edges is
expressed by:

3t =2e+ |Ve|. (3)

Combining equations (2) and (3) to eliminate e
leads to equality of the extreme members of (1), as

claimed. Since also o(v) > «a(v), we get: for each
v € V,o(v) = a(v). Using then the equality case in
the fact given above, we obtain that the triangles
incident to v do not overlap, which concludes the
proof. O

We now show global planarity, that is, I' is an
embedding.

Lemma 4 Under restricting assumptions (iii)
and (w), Theorem 1 holds.

Proof. First note that the vertices, edges and tri-
angles of G define an (abstract) 2-dimensional sim-
plicial complex K. In fact, one can view K as a
2-manifold with boundary: each point of this man-
ifold is defined by its barycentric coordinates in a
triangle of G, with the obvious identifications of
points on edges or vertices. I' induces a map from
this manifold K into Q: for each point p in K,
determined by its barycentric coordinates in a tri-
angle uvw, its image I'(p) is the point in the tri-
angle wovw with the same barycentric coordinates.
In this setting, I' is clearly continuous and even a
local homeomorphism: each point p has a neigh-
borhood N (p) so that I'|y(,) is a homeomorphism
on its image set. This is clear for points p in the
interior of a triangle and Lemma 3 proves this fact
if p belongs to an edge or is a vertex of a triangle.
For a € Q, n(a) = |T"!(a)| is finite; for other-
wise, by compactuness, there would be an accumu-
lation point of the set I'"!(a), contradicting the
local homeomorphism property.

Let a € @Q and p = n(a) > 0; we show that
n(b) = p for b sufficiently close to a (that is, the
function n is locally constant). Let Ni,..., N, be
disjoint open neighborhoods of each of the points
in I'"(a), chosen small enough so that |y, is a
homeomorphism for each i. Let N =T(N7)N---N
I'(Np) is a neighborhood of a; F = I'(K \ (N; U
---UNp)) is a compact set which does not contain
a; hence N' = N \ F is a neighborhood of a. Each
b € N’ has exactly p preimages in Ny U---UN,
because b € N and no preimage outside this set
because b ¢ F. Thus, by connectivity of @, n is
constant; its value is 1 on the boundary of ) by
Lemma 2, hence I is a homeomorphism. The proof
is complete. [

This proves the theorem in a particular case;
we will use this result in the sequel. From this



point, unless stated otherwise, we do not assume
conditions (iii) and (iv) anymore, but only the hy-
potheses of Theorem 1. The goal is to show that
some degenerate cases cannot occur, using the 3-
connectivity of G. We first state a quite general
lemma, inspired by Tutte [38], which we call the
Y-lemma in view of the geometry of the problem.
The situation is depicted in Figure 2. Note that,
in this paper, any path in a graph is supposed to
be simple and non-degenerate.

Lemma 5 (Y-lemma) Let vy, ve, vs and v be
pairwise distinct vertices of a graph H. Assume,
for i = 1,2,3, that there is a path P; from v; to
v which avoids the v;’s (for j # i). Then there
ezist three paths P], from v; to a common vertex
v', which are pairwise disjoint (except at v').

(4 1
e
o'
U3 U3

Figure 2: The situation in the Y-lemma.

Proof. First, using P; and P,, we easily get a
(simple) path R from v; to vy, so that R and P
have the same first edge v1z. Then we consider
the path P;. If this path P; intersects R, let v’
be the first vertex of intersection on P3. v’ splits
R in two parts, which we call P| (from v; to v')
and Py (from vy to v'); P§ is the part of Ps going
from v3 to v', with loops removed (if any). The
P’s satisfy the property stated in the lemma. If
P3 does not intersect R, we call v’ the last vertex
on P; (when going from v; to v) which is also on
R. Such a vertex exists and is different from v
because v;z is the first edge of R and P;. Let P4
be the path defined by P3 followed by the part
of the path P; which goes from v to v', with loops
removed (if any). v’ splits R in two parts, which we
call P{ and P;. The paths P)’s satisfy the desired
property. [

We now come back to the situation of Theo-
rem 1, and we introduce some geometric defini-
tions, partially taken from [38]. We will represent

a line in the plane by the zero set of a non-constant
affine form. Henceforth, ¢ is such an affine form.
A vertex v of G is called p-active if there is a vertex
v' adjacent to v so that ¢(v) # ¢(@'), p-inactive
otherwise. The ¢, -poles are the vertices v € V
so that ¢(v) is maximal; the definition for the ¢_-
poles is analogous. The @-poles are the ¢ -poles
and the ¢_-poles. By Lemma 2, a ¢-pole must be
in V,. Tt is then clear that there are exactly one or
two @p4-poles and that, in the latter case, they are
connected by an edge of Q. If U1, ..., vy lie on the
line ¢ =0, G(p4,v1,...,vx) is the graph induced
by the vertices lying in the half-plane ¢ > 0, to
which we add the vertices vy, ...,v; and all edges
from one of these vertices to a vertex in ¢ > 0. Let
G(y) be the subgraph of G induced by the vertices
v lying on the line ¢ = 0. The following lemma
was also shown in [38].

Lemma 6 Let v be a @-active vertex so that
©(v) = 0; assume that v is not a 4 -pole. Then

there exists a path in G(p4,v) from v to a @ -pole
of G.

Proof. The problem boils down to this: given a
p-active vertex w, which is not a ¢ -pole, prove
that it is possible to find a neighbor of w which
has a greater value of ¢ and is also p-active. If
w € Ve, clearly, there exists in V. a vertex adja-
cent to w which has a greater value of ¢; this vertex
is also @-active. If w € V;, then w has neighbors
in both increasing and decreasing directions of ¢,
because a vertex is in the strict convex hull of its
adjacent vertices (hypothesis (ii’)) and because w
is @-active. It is therefore possible to find an adja-
cent vertex with a greater value of . This vertex
is also p-active. O

The two following lemmas show that some de-
generate cases cannot occur. The first one is along
the lines of [38], contrary to the second one which
uses another argument.

Lemma 7 For any ¢, G has no p-inactive vertex.

Proof. Suppose that there is a ¢-inactive ver-
tex v. Figure 3 summarizes the proof: we show
that the planar graph G contains a subdivision
of the bipartite graph K33, which is impossible



Figure 3: A summary of the proof of Lemma 7.

(see for example [36]). Using the fact that G is
3-connected, we can see the existence, in G(y), of
three distinct @-active vertices v;,7 = 1,2,3, and
three paths P; joining v to v;, so that, for any ¢, the
path P; does not contain any vertex v; for j # i.
Indeed, let w be a vertex of G so that ¢(w) # 0.
By connectivity of G, take a path from v to w and,
on this path, take the first p-active vertex and call
it v1. Do the same in G — {v1} and choose v, (use
2-connectivity). Finally, use 3-connectivity to se-
lect v3 in G — {v1,v2}-

Applying then the Y-lemma in G(p), we get
the existence of a vertex v’ in G(yp), together with
three distinct paths (except at v') P; from v; to v’
in G(¢). We now use Lemma 6. We have the exis-
tence, in G(p4, v1,v2,v3), of three paths @Q; joining
v; to a vertex z so that ¢(Z) > 0. Then, the Y-
lemma allows us to assume, by changing  and the
Q;’s if necessary, that these three paths are dis-
joint (except at z). Similarly, in G(¢_,v1,v2,v3),
we have three disjoint paths R; joining v; to a ver-
tex y so that ¢(y) < 0. Using the paths P;, @; and
R;, which are all pairwise disjoint except at their
endpoints, and the vertices z,v',y and vy, vs,v3,
we get a subdivision of the graph K3 3. This con-
tradicts the planarity of G. O

Lemma 8 Let v;, ©: = 1,2,3, be three wvertices
of a face of G. Then, under I', the v;’s are not
collinear.

Proof. Suppose the v;’s are on the line ¢ = 0.
Figure 4 gives the essential ideas of the proof: we
again find a subdivision of K3 3. By Lemma 7, the
v;’s are @-active. Since the v;’s are collinear, at
least one of them is in V;, so none of them is a
p-pole. Again, Lemma 6 and the Y-lemma show
the existence of a vertex z and three disjoint paths
(except at z) @Q; joining v; to x in G (@4, v1,v2,v3).
Using a similar argument on the other side of the
line ¢ = 0, we finally obtain the existence of z,y

Figure 4: A summary of the proof of Lemma 8.

and six disjoint (except at their endpoints) paths
joining z or y to the v;’s. Let G’ be the graph G to
which we add a vertex w linked to the v;’s. Because
the v;’s belong to a common face, G’ is planar. But
it also contains a subdivision of K33 (with the six
paths described above and the three new paths
joining w to the v;’s), which is impossible. O

The two previous lemmas have been shown
merely under the hypotheses of Theorem 1.
Lemma 7 will be used to deal with the non-
triangulated case. But here, as a straightforward
consequence, we get the proof of the theorem in
the triangulated case:

Corollary 9 Theorem 1 holds when (iii) is satis-
fied, that is, in the particular case where each face
of G is a triangle.

Proof. Indeed, assuming condition (iii), Lemma 8
states that condition (iv) is also true. We can thus
apply Lemma 3. Therefore, I' is an embedding.
O

We can now prove Theorem 1 in full generality.
We first triangulate G. More precisely, this means
that edges are added to split the faces of G in
triangles, without adding vertices (this is done in a
purely combinatorial way: no geometry is involved
here). Let G; be this planar augmented graph.
Adding the same edges in the mapping I" gives us
a mapping I'y of the graph G;. We now check
that we can apply Corollary 9 to G1 and I'1. In
fact, this boils down to checking condition (ii’) to
I'1. By condition (ii’) and Lemma 7 applied to T',
the neighbors of an interior vertex are not all on a
line (under T'), and such a vertex is in the interior
of the convex hull of its neighbors. Because I'; is
obtained from I' by adding extra edges, condition
(i’) also holds for I';. Thus, by Corollary 9, I'; is
an embedding. Deleting the edges we added earlier
to I', we obtain that I' is an embedding as well. It
is clear that the faces are strictly convex.



3 Isotopies in the plane

Now, we detail the construction of the isotopy out-
lined in the introduction. Let G = (V, E) be a 3-
connected planar graph and let I'y and I'y be two
embeddings of G into the plane. We look for an
isotopy between 'y and I'y, restricting ourselves
to the following situation: the boundary cycle C
of the exterior face of I'y is a convex polygon, it
bounds also the exterior face of I'y, and the corre-
sponding vertices of C are at the same location in
I'yg and I';. During the isotopy, the vertices of C
have to remain at the same position. In addition,
we will require the graph G to be triangulated.

Figure 5: An isotopy I'; (¢t € [0,1]) in our frame-
work: here I'g, I'; /5 and Ty are depicted.

A natural idea arising to solve this problem is
the following: try to deform I'y into I'; by keep-
ing the exterior vertices at the same place and
moving the interior vertices linearly. That is,
T'y(v) = (1—t)To(v)+iT'1 (v) for an interior vertex v
and ¢ in [0, 1]. It turns out that this approach does
not always yield an isotopy, as Figure 6 demon-
strates. Bing and Starbird [4], generalizing a result
by Cairns [8], showed the existence of an isotopy
in the context described above. However, these
papers do not provide an algorithmic solution to
this problem.

As explained in introduction, Gotsman et al. [20,
21] gave a method, based on Tutte’s theorem, to
solve this isotopy problem, representing a vertex
as barycenter of its neighbors. We will use the
following definitions in order to study the case
where the barycentric coefficients are symmetric.
Let E; be the set of (undirected) interior edges
(the edges for which at least one incident vertex
is in V;). A weight function on T, or stress, is a
map w : F; — R hence wyy, = wyy. w is posi-
tive if wy, > 0 for each interior edge uv. If w and
the positions of each v € V, are fixed, the equi-
librium state is defined by the system: for each
u € Vi, > yjuwer Wuo(W — ) = 0. In these condi-
tions, w is an equilibrium stress for I'.

Figure 6: An example showing that the naive
approach does not work. The figure shows Iy
(left) and T'; (right). The two inner squares are
“twisted” to the left (resp. right) under I'y (resp.
I'1), and the innermost square must rotate by an
angle of m in the whole motion. With the linear
motion, the vertices of the inner square would col-
lapse at t = 1/2, as shown in the picture in the
middle. Therefore, this motion does not yield an
isotopy.

Here is a summary of our approach: compute
equilibrium stresses w® (resp. w') of embeddings
Ty (resp. T'1); then, for t € [0,1], compute the
equilibrium state of w’ = (1 —#)w® 4 tw'. The dif-
ficulty resides in computing an equilibrium stress
for a given embedding I': our method relies on
the Maxwell-Cremona correspondence, a theorem
well-known in rigidity theory (see Hopcroft and
Kahn [22] for details). Think of I" as being in the
plane z = 0 of R3. Take any lift of I', by adding
to each vertex o = p, = (zy,Yy,0) of T' a third
coordinate, leading to ¢, = (Zy, Y, 2y). Consider
the polyhedral terrain whose vertices are the g;’s
and which has the same incidence structure as T’
(Figure 7). Now, let ij be an interior edge of I';
let I and r be the left and right neighbor of the
(oriented) edge ij (Figure 8) and goiLj (resp. w%)
the affine form which takes the value z;, z;, 2 (resp.
zr) at points p;, pj, p; (resp. pr). We will define an
equilibrium stress for I' determined by this lift.

—

Figure 7: A lift of an embedding.

If ag,...,a; are k + 1 points of R* writ-
ten as column vectors, we introduce the multi-
affine bracket operator [ag,...,ax|, defined by



Figure 8: The notations for the computation of
Wyj .

ay ai ... ag
11 ... 1
ing proportional to the signed volume of the con-
vex hull of the a;’s).

[ag, .. .,aK] = (this quantity be-

Lemma 10 For each interior edge ij and any p €
R?,

oht0) = o150 = L) ~ o).
Proof. It is a consequence of Cramer’s formula.
Let ¢ be an affine form on R¥ and ay,...,a; be
k + 1 affinely independent points, a € RF. Let
o, . . . , o be the barycentric coordinates of a with
respect to the a;’s, that is, by definition:

apay  + + arar =a
o7y} + ... 4+ o = 1.

Cramer’s formula now implies:
P

o — [a,(),. ey Q—1,Qy Q4415 - - - ,G,k]
! [ao,...,ak]

So (if & = 2, and because ¢ is an affine form):

[G,, ai, a2] [a07 a, 0,2]

a) = —/——=y(a —=0p(a1) +
(P( ) [ao’al,aa] ( 0) [ao,al,a2]<p( 1)
M@(ag). It is now easy to conclude. O
[a(], ai, a2]

Define, for any interior edge ij and for a point
p not on the line (p;p;):

L eip) — e @)
Y [pzapjap]

This definition does not depend on the point p, by
Lemma 10. Furthermore, w;; = wj;. In practice,
there is an intrinsic formula (recall that the ¢;’s are
the lifts of the points p;’s, which are the images of
the vertices under I'):

%, 95, 1> v ]
[Di, pj, Pil[Pi D5 > Pr]

Lemma 11 w;; =

Proof. By definition of w;;:

wijlpi, pjs pillpis s pr] = (21 — @ (1)) [pi, Py e,
(4)
By Cramer’s formula, as in the proof of Lemma, 10:
e ()i pjyor]l = zilpipipe] + 2P pupr] +
Zr[pi, pj, p1)- Thus the left member of Equation (4)
equals

2i[pis D> Pr]—2i[D15 Pj> Pr]— 2§ [Pi> D1 Pr) — 22 (D3, D, DU,

which equals [g;, g;, q1,¢,] (by developping this de-
terminant with respect to the third line). O

Theorem 12 w is an equilibrium stress for T.

Proof. For any point p in the plane, i € V;,
we have: Ej|ijeE wij[pi, pj, p] = Zj\ijEE(%I}-(P) -
<pf§(p)) = 0, because the affine form ¢ corre-
sponding to a face incident to p; appears twice
in this sum, once counted positively, once nega-
tively. As [p;, pj,p] = det(p; — pi,p — p;), this im-
plies det(zj”jeE wij(pi — pj),p — pi) = 0, for each
point p in R?. Therefore ZﬂijeE wij(pi —pj) = 0.
O

Thus, each lift of the embedding I" determines an
equilibrium stress on I'. Conversely, it is possible
to show that an equilibrium stress determines a
unique lift of T', up to the choice of an affine form
of R? (Maxwell’s theorem, shown for example in
[22] in a slightly different context).

If we have positive equilibrium stresses w® and
w! of Ty and T'; respectively, we have a method to
compute an isotopy between I'y and I'y: by Tutte’s
theorem, because w’ = (1 —t)w® +tw' is a positive
stress for each ¢ € [0, 1], the corresponding map-
ping Ty is an embedding, and (I';)sc[o,1) is clearly
continuous (the map which associates to each in-
vertible matrix its inverse, is continuous), hence
an isotopy. Furthermore, it is easy to characterize
the set of embeddings which admit a positive equi-
librium stress: an edge ij has a positive weight if
and only if the line g;¢; (with the notations above)
is under the line ¢;¢,; hence an embedding has a
positive stress if and only if it is a regular triangu-
lation. Therefore, we have:



Theorem 13 If 'y and I'y are regular triangula-
tions, then we can compute an isotopy between I’
and I'1.

Testing whether I' is a regular subdivision, and,
if so, computing a positive lift, can be done easily
using linear programming; indeed, we have a con-
vex lift for I if and only if, for each interior edge
ij and with the notations above, [g;, ¢, 1, ¢-] <0,
which is a linear inequality in the z;’s. Not all
triangulations are regular subdivisions, as shown
in Figure 9 (see [42, p. 132]), but a large class
of embeddings are regular subdivisions, including
Delaunay triangulations for example (because the
Delaunay triangulation of a set of points is the pro-
jection of the edges of the convex hull of the points
lifted on the standard paraboloid, see [5, p. 437]
or [17]); this remark might be useful because of the
wide use of these triangulations in computational
geometry.

3 2

Figure 9: An embedding which is not a regular
subdivision. Indeed, assuming it is possible to
lift it to a lower convex hull, we can suppose, by
adding a suitable affine form to all the z;’s, that
24 = 25 = 2¢ = 0. If this graph were a regular
subdivision, we would have z; > 22 > 23, which is
impossible.

Remark. We only studied triangulated graphs in
this section because it is probably easier to deal
with them than with general planar 3-connected
graphs. However, the same theory applies if the
graph is only 3-connected. The definition of a lift
must be adapted: all the vertices belonging to the
same face must be lifted on a common plane in
3D space (it also corresponds to triangulating the
graph and putting a weight equal to zero on these
new edges); testing whether we have a regular sub-
division is also a linear programming problem.

In practice, we tried to build an isotopy be-
tween a random triangulated embedding and the

“canonical” embedding of the same graph (that is,
the embedding obtained by Tutte’s method when
all weights equal 1). We lift 'y to the standard
paraboloid z = z? + y2, compute the equilibrium
stress, and use linear interpolation between w® and
w!'. Although the initial stress is not necessarily
positive, it turns out that, in many (not too big)
cases, this method yields an isotopy; long exper-
iments have been necessary to find a small coun-
terexample like Figure 10. Our smallest counterex-
ample uses 4 outer vertices and 2 inner vertices,
but the failure is very hard to see on the screen
and can only be proved by computation. Lifting
on the paraboloid may give an isotopy even if the
considered triangulation is non-regular, like in Fig-
ure 6, but can also fail with regular triangulations
(the initial and final triangulations in Figure 10
are regular). This method has been programmed
in C++ using Numerical Recipes and the LEDA
library, and also in Mathematica for exact compu-
tations. Coordinates of the examples are available
at [1].

EIE] Tssiopy 15 [EE Tssiopy 15 [EE Tssiopy 1

Figure 10: An example of non-planarity with the
lift on the standard paraboloid.

Several other approaches could be done in the
same spirit to try to find a method which would
work for a larger class of embeddings than the reg-
ular subdivisions. Omne could attempt to study
the space of stresses which yield an embedding
(thus an isotopy corresponds to a path in this
space). If we restrict ourselves to the linear inter-
polation between the weights, an important ques-
tion is: are there two embeddings I'y and I'; so
that, for any lifts of 'y and I'y, the interpolation
w! = (1 — t)w® + tw of the corresponding weights
does not yield an isotopy? If it is not the case, how
to compute the lifts?

Finally, in our attempts to disprove the conjec-
ture stating that a lift on the standard paraboloid
always yields an embedding, we noticed that the
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matrix involved in the computation of the posi-
tions of the points was symmetric positive defi-
nite in all our experiments; whether this result
is always true remains an open question. If it
is the case, it has the following interesting con-
sequence. If w is a stress on G, let us denote
by M, the matrix involved in the inversion of
System (S). It can be shown (see the proofs of
Lemma 18) that M, is symmetric positive defi-
nite if w is positive; moreover, w — M, is linear. If
M0 and M, are symmetric positive definite, so is
M1 )0 14t = (1—1) M0 +tM,,1, and uniqueness
of the positions of the vertices is guaranteed dur-
ing the motion (which may fail to be an isotopy).
Similarly, if M, o is symmetric positive definite and
w! is a positive stress, since multiplying w' by a
positive number does not affect the equilibrium
state, we can assume w! > w? (this notation sim-
ply means that for each interior edge 7, wilj > w%).
Each nondecreasing family w’ of stresses from w’
to w! yields a family M,: of symmetric positive
definite matrices; indeed, M+ = M o0 + M :_0;
the first matrix of the right term is symmetric pos-
itive definite, the second one is positive because
the corresponding stress is non-negative on each
interior edge. Thus, if this conjecture is true, the
positions of the vertices are uniquely determined
for many choices of the interpolation between the
weights.

4 Generalization to 3D space

We explain here why the analogue of Tutte’s the-
orem is false in 3D space, thus making it difficult
to build isotopies in 3D. The vocabulary of this
section is different from the one used in the proof
of Tutte’s theorem; it is more convenient to use
combinatorial simplicial complexes (all simplicial
complexes considered here are combinatorial, not
geometric; see for example [39]).

We introduce some other definitions, general-
izing those in 2D. A mapping f from a sim-
plicial complex C into R? is a map from all
the simplexes of C into P(R?) satisfying: if
{vi,...,vp} is a simplex of C, f({vi,...,vp}) =
Conv{f(vi),...,f(vp)}. An embedding of C into
R is a mapping so that, for any two simplexes

o,7 € C, flonTt) = f(o)N f(r).

As usual, an

isotopy (h(t)) (t € [0,1]) of C into R? is a contin-
uous family of embeddings of C into R%. Finally,
the image of a simplicial complex C' by a mapping
f is the union of the sets f(7), over all simplexes
T of C.

In this section, we will often manipulate com-
plexes whose embeddings have to be fixed on the
“boundary” of these complexes. A 3-complex with
tetrahedral boundary (C,B,b) is a simplicial 3-
complex C with a subcomplex B C C so that B
is simplicially equivalent to the boundary of a 3-
simplex, together with an embedding b of B into
R3. An embedding f of (C, B,b) into R? is an em-
bedding of C so that f|g = b and the image of f
is exactly the tetrahedron bounded by the image
of b. An isotopy of a 3-complex with tetrahedral
boundary is a continuous family of embeddings.

The goal of this section is to show:

Theorem 14 There exist a complex with tetra-
hedral boundary (C,B,b), an embedding f of
(C, B,b) into R, and a mapping j of (C, B,b) into
R3, such that:

1. .7|B :f‘B7

2. each vertez in C \ B is in the strict convex
hull of its neighbors,

3. 7 is not an embedding.

This theorem is a counterexample to the ana-
logue of Tutte’s theorem in three dimensions: the
existence of f is the analogue of planarity in 2D,
the first condition fixes the images of the exterior
vertices by 7 and the second one is the condition
for the interior vertices.

The cornerstone for the proof of Theorem 14
is the description by Starbird [30] of a graph Ci,
embedded into R? in two different ways f; and g1,
so that it is impossible to deform one embedding
to the other without bending the edges. Yet, if
bending the edges is allowed, such a deformation
becomes possible. These embeddings are depicted
in Figure 11, copied from his paper. We found
coordinates for the vertices of these embeddings,
available at [1]. In the lemma below, we rephrase
the properties stated by Starbird.



Figure 11: Starbird’s embeddings fi and g1 of C}.

Lemma 15 1. There are a S-complex with
tetrahedral boundary (C,B,b), so that C con-
tains C1, and two embeddings f and g of
(C, B,b) extending respectively fi and g.

2. If C, f and g satisfy the preceding condition,
there is no isotopy of (C, B,b) taking f to g.

The first part of Lemma 15 expresses the fact
that f and g are combinatorially equivalent tri-
angulations (tetrahedralizations for purists) of a
tetrahedron, with the same boundary. Despite
this, as stated in the second part, there is no iso-
topy from f to g. It is to be noted that the ana-
logue of this lemma is false in 2D by Tutte’s theo-
rem.

The proof of the second part of this lemma, is
given in detail in Starbird’s paper, we shall not ex-
plain the argument here. Shortly said, the author
uses properties of piecewise linear curves embed-
ded in 3D space to show that the embeddings f;
and g; cannot be deformed from one to the other
while keeping the edges of C straight, for other-
wise at some stage of the isotopy there would be
a degeneracy which would prevent to have an em-
bedding. Then, because f (resp. g) extends fi
(resp. ¢1), there cannot be any isotopy between
those embeddings as well.

We will give a detailed summary of the proof of
the first part of Lemma 15, because it is stated
in Starbird’s paper but not all details of the proof
are supplied. The key ingredient for the proof is
the following “fundamental extension lemma” en-
abling to extend an isotopy of a complex to an
isotopy of a complex with tetrahedral boundary
containing this complex. It is proved in [4, The-
orem 3.3]; we rephrase it here for convenience in
our framework (it holds in fact in arbitrary dimen-
sion):
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Lemma 16 Let C be a simplicial 3-complex and
(h(t)) be an isotopy of C into R®. Then there
are a 3-complex with tetrahedral boundary (C, B, b)
so that C contains C and an isotopy (h(t)) of
(C,B,b) into R® extending (h(t)).

We shall not give the proof here. The two key
ingredients are that slightly perturbing an embed-
ding still yields an embedding, and the use of re-
finements of triangulations in R3.

Proof of Lemma 15, first part. We first ex-
press the fact that it is possible to deform f(C)
to g(C1) if bending the edges is allowed: there is
a refinement Co of C; (by adding vertices on the
edges of C1) and an isotopy (h(t)) of Cy into R3
taking fo to go. Here, fo is to be understood in
the following manner (and similarly for go): if v is
a vertex in C1, then fo(v) = fi(v); and if an edge
e = vw of (' is subdivided with vertices v, ..., v,
inserted on e, then fo(vg),..., fo(v,) are spread
uniformly on fi(v) f1 (w). It is easy to see that this
fact is true, as written in the paper, if you build
a model of fo(Cy) with strings (or small bars) and
deform it to g2(Co).

No argument apart from the fact that such a de-
formation is possible is given in Starbird’s paper
to complete the proof. We thus suggest the follow-
ing: In fact, we extend a bit more Cs by protecting
each edge of Cy (split in C5) by a 3-complex look-
ing like a skinny tube (Figure 12). Define fo and
g2 naturally on these tubular protections; the im-
ages of fo and go are just thickened versions of the
images of f; and g;. By Lemma 16, extend C to a
3-complex with tetrahedral boundary (Cs, Bs, bs),
extending the isotopy (h(t)) to an isotopy (h(t)) of
(C3, B3, bs). Now, considering A(0) and h(1), the
complex (C3, B3, bs) nearly satisfies the conditions
required in the first part of Lemma 15, except that
Cs does not contain exactly C; because the edges
of C7 have been subdivided.

Thus, in f3 and g3, the only thing we have to do
is to retriangulate compatibly the tubular protec-
tions of each (split) edge vw of Cj, removing the
vertices vy, . . . , vy splitting this edge and restoring
the initial edge vw. Since the tubular protections
of vw look alike under f3 and g3 (the v;’s are on a
line, and similarly for the a;’s, b;’s and ¢;’s), this
retriangulation is easy: the compatibility will be
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bs

Figure 12: How an edge vw of C; (in bold) is
protected by a skinny flexible tube. The vertices
Vg, - - - , Uy, are spread uniformly on the edge of Cy
which is considered, to make the edge flexible dur-
ing the isotopy. An equilateral triangle a;b;c; is
drawn around w;, and the vertices of these trian-
gles are linked as shown in the figure. Note the
special treatment at the end of the edge (vertex
v). The space between the triangles a;b;c; is also
triangulated (not all edges are shown in the figure).
Thus, a 3-dimensional simplicial complex protects
each edge of C].

automatically satisfied. See [3, p. 4-6] for sim-
ilar retriangulation problems: first retriangulate
the 2D region which is the convex hull of v, w,
and the a;’s by removing the v;’s and linking each
of the a;’s to v. Do the same with the b;’s and the
¢;'s. Now, we have to retriangulate three thirds of
the tubular protection of edge vw. To retriangu-
late the region which is the convex hull of v, w,
the a;’s and the b;’s, simply insert a new vertex
p in the interior of this region; since its boundary
is still triangulated, it is sufficient to insert in the
complex the simplexes which are on the bound-
ary of this region with p adjoined (“coning” the
boundary of this region from p). Do the same for
the other thirds. The resulting complex (C, B, b)
and embeddings f and g satisfy the hypotheses.
O

Proof of Theorem 14. First notice that, under
f and g, all interior vertices are in the strict con-
vex hull of their adjacent vertices. For otherwise a
vertex ¢ would be on a face of the polytope gener-
ated by the neighbors of %, hence ¢ would have no
neighbor on a half-space whose boundary passes
through the image of ¢; this contradicts the fact
that ¢ is a vertex interior to the triangulation.
Now, because being in the strict convex hull of

a set A of points is the same as being a barycen-
ter with positive coefficients of A (Lemma 17), ex-
press each interior vertex 7 as barycenter with pos-
itive coefficients of its neighbors, in the embedding
f (leading to coefficients )\ij for j neighbor of i),
and similarly for g. Note that the coefficients may
be non-symmetric: we follow the approach of [20]
to ensure we have positive coefficients. Then, for
t € [0,1], consider A}; = (1 — )X}, +AY, > 0. Fix
the positions p; of the vertices 7 € B, and look for
the positions of the other vertices i satisfying the
equations: Zj|ij€E X;j (pj —pi) =0, where E is the
set of edges of C'. This system admits a unique so-
lution for each ¢ € [0,1] (exactly the same proof
holds as in Appendix B). Let us call the resulting
family of mappings (h(t)). By Lemma 15, sec-
ond part, (h(t)) cannot be an isotopy: there is a
to € [0,1] such that h(ty) = j is not an embed-
ding. (C,B,b),f and j satisfy the conditions of
Theorem 14. [

This theorem is a counterexample to the gener-
alization of Tutte’s theorem in 3D, described in in-
troduction. In fact, the result is slightly stronger:
j is not an embedding, but even the restriction
of j to the 1-skeleton of C' is not an embedding
(two edges must cross). This also implies that
constructing isotopies of complexes in 3D is much
more difficult than in 2D. Starbird [31, 32] showed
the following theorem which might be a clue to
find a solution: if there are two embeddings f and
g of a complex K with tetrahedral boundary into
R3 (or more generally if the boundary is a con-
vex polyhedron), then there might be no isotopy
from f to g, but there is always a suitable refine-
ment K’ of the complex K for which there is an
isotopy between f and g. The problem is now to
realize algorithmically the refinement and the iso-
topy; unfortunately, it is unclear how to proceed.
Another track would be to try to find more restric-
tive conditions under which a barycentric method
would work; for example, if some subcomplexes are
forbidden, or if the complex is sufficiently refined,
does Tutte’s barycentric method always yield an
embedding?
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A The strict convex hull

Recall that the strict convex hull of a set of points
is the interior, in the space affinely generated by
this set of points, of the convex hull of these points.
The following lemma shows that conditions (ii)
and (ii’) are equivalent.

Lemma 17 Let A = {ai1,...,a,} C RY. Then
the strict convex hull of A is the set of barycenters
with positive coefficients of the points in A.

Proof. Suppose p € Str Conv A. Take k£ €
{1,...,n}. There is an ¢ > 0 so that p + ex(p —
ay) € Conv A. Therefore it is possible to write
p = 3y ufai, where 330, pf = 1, pf > 0 and
pk > 0. Taking A; = 2 377, u¥ yields that p is a
barycenter with positive coefficients of the points
in A.

For the opposite inclusion, suppose p =
Zz’nzl Aia;, with A; > 0 and Z?:l A= 1.0 If
lt1]; - - -, |n| are sufficiently small, p+> "7 | pi(a;i—
p) is in Conv A. This shows that p € Str Conv A.
O

B Invertibility of System (S)

Lemma 18 If the coefficients \;; are positive,
System (S) admits a unique solution.

Before showing this lemma, we must explicitely
compute the entries of the matrix involved in Sys-
tem (S). For convenience, note v1,...,v,, the in-
terior vertices and V41, - - -, vy the exterior ones.
The matrix involved in System (S) is square, of
size m, and defined, if 1 < 4,7 < m and with the
convention \;; = 0 if 45 is not an edge, by:

mi; =

—Aij, if i # 7;

n
My = E Aik-
k=1

Several proofs of this lemma exist in the litera-
ture. We first give the most straightforward proof
in the general case. It uses the well-known “diag-
onal dominant property” of matrices and can be
found in [19, p. 237].

Proof. We show that the kernel of M is {0}. If
M -y = 0 for a column vector y with m entries,
then: for each i € {1,...,m}, >0 ) Nij(yi — y;) =
0, where y; = 0if 7 > m by definition. Consider an
index ¢ such that |y;| is maximal. As X is positive,
the preceding equation yields y; = y; for every j
neighbor of 7. Because G is connected, and because
y; = 0if 7 > m, we get y; = 0. Therefore, M is
invertible. (In fact, the same argument shows that
M is symmetric definite positive, for it cannot have
a nonpositive eigenvalue). [

We now prove Lemma 18 in the special case
where the coefficients are symmetric, using the
physical interpretation with the springs. E; de-
notes the set of interior edges.

Proof. The energy of the system made of the
springs is defined by £ = %ZijeEi Nijlpj — pil?.
Consider that the positions of the exterior vertices
are fixed; £(p1,...,pm) is a polynomial function
of degree two. If at least one interior vertex p;
goes to infinity, £ tends to +o00 by connectivity
of G and positivity of the coefficients. Thus, the
homogeneous polynomial of degree two in the co-
ordinates p1,...,pm of £ is a quadratic form which
is symmetric definite positive. But the matrix of
this quadratic form is exactly the matrix M, as
it can be checked easily using the fact that the
coefficients are symmetric. Thus M is symmetric
definite positive and (S) admits a unique solution.
O



Finally, we indicate that Lemma 18 is a conse-
quence of the matriz tree theorem (see Brualdi and
Ryser [7, p. 324], Chaiken [9], Orlin [28] or Zeil-
berger [41]), a theorem interpreting combinatori-
ally the determinant of certain matrices in terms
of arborescences of graphs.

Proof. Let (nj)1<izj<m+1 be real numbers. Con-
sider the complete directed graph (without loops)
G with m + 1 vertices, each edge (ij) having, by
definition, weight n;;. Let P be the square matrix
of size m + 1 defined by:

pij = —nij, if i # J;

m+1

Pii = Z Nik-
k=1

The matrix P is called the Laplacian matriz of
G. A spanning arborescence of G rooted at i is a
subgraph of G covering all vertices of G so that it
has no directed cycle and all vertices j # ¢ have,
in G, outdegree equal to one. The matriz tree the-
orem asserts that the cofactor of the ith diagonal
element of matrix P is exactly the sum, over all
spanning arborescences of G rooted at i, of the
product of the weights of the edges of this arbores-
cence.

Apply this theorem to our particular case: let
nij:)\ijiflgiaéjSm;ifigm,let
Nigmil = Ipeme1 Mk a0d Npy1; = 0. The
(m+1)th cofactor of P is exactly the determinant
of the matrix M and also equals the sum, over
all spanning arborescences of G rooted at vertex
m + 1, of the product of the weights of the edges
of this arborescence. There is at least one span-
ning arborescence yielding a nonzero contribution
to this sum: to see this, take a spanning tree of
the graph induced by the inner vertices of G, and
add one directed edge from a vertex in G which, in
G, is linked to an exterior vertex, to vertex m + 1.
Since the weights of the edges are nonnegative, the
contribution of any spanning arborescence is non-
negative, hence the cofactor is positive and M is
invertible. O
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