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9.1 Approximate inference with MCMC

9.1.1 Gibbs sampling

Let us consider an undirected graph and its associated distribution p from which we want
to sample (in order to do inference for example). It is assumed that:

• It is difficult to sample directly from p.

• It is easy to sample from Pp(Xi = .|X−i = x−i)

The idea consists in using the Markov property so that:

Pp(Xi = .|X−i = x−i) = Pp(Xi = .|XNi
= xNi

) (9.1)

Where Ni is the Markov blanket of the node i. Based on this, Gibbs sampling is a process
that converges in distribution to p.

The most classical version of the Gibbs sampling algorithm is cyclic scan Gibbs sampling.

Algorithm 1 Cyclic scan Gibbs sampling
initialize t = 0 and x0

while t < T do
for i = 1..d do

xti ∼ Pp(Xi = .|X−i = xt−1−i )
xtj = xt−1j ∀j 6= i
t = t+ 1

end for
end while
return xT

Another version of the algorithm called random scan Gibbs sampling consists in picking
the index i at random at each step t.
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Algorithm 2 Random scan Gibbs sampling
initialize t = 0 and x0

while t < T do
Draw i uniformly at random in {1, . . . , d}
xti ∼ Pp(Xi = .|X−i = xt−1−i )
xtj = xt−1j ∀j 6= i
t = t+ 1

end while
return xT

9.1.2 Application to the Ising Model

Let us now consider the Ising model on a graph G = (V,E). X is a random variable which
takes values in {0, 1}d with a probability distribution that depends on some parameter η:

pη(x) = exp

∑
i

ηixi +
∑
{i,j}∈E

ηijxixj − A(η)

 (9.2)

To apply the Gibbs sampling algorithm, we need to compute P(Xi = xi|X−i = x−i)
We have

P(Xi = xi, X−i = x−i) =
1

Z(η)
exp

(
ηixi +

∑
j∈Ni

ηijxixj +
∑
j 6=i

ηjxj +
∑

{j,j′}∈E, j,j′ 6=i

ηjj′xjxj′
)

and thus

P(X−i = x−i) =
1

Z(η)

∑
z∈{0,1}

exp
(
ηiz +

∑
j∈Ni

ηijzxj +
∑
j 6=i

ηjxj +
∑

{j,j′}∈E, j,j′ 6=i

ηjj′xjxj′
)

Taking the ratio of the two previous quantities, the two last terms cancel out and we get

P(Xi = xi|X−i = x−i) =
exp

(
xiηi +

∑
j∈Nj

xixjηij

)
1 + exp

(
ηi +

∑
j∈Nj

xjηij

)
In particular:

P(Xi = xi|X−i = x−i) =
exp

(
ηi +

∑
j∈Nj

xjηij

)
1 + exp

(
ηi +

∑
j∈Nj

xjηij

)
=

(
1 + exp

(
−(ηi +

∑
j∈Ni

ηijxj)

))−1
= σ

(
ηi +

∑
j∈Ni

ηijxj

)
,
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where σ is the logistic function σ : z 7→ (1 + e−z)−1.
Without surprise, the conditional distribution P(Xi = xi|X−i = x−i) only depends on

the variables that are neighbors of i in the graph and that form its Markov blanket, since
we must have

P(Xi = xi|X−i = x−i) = P(Xi = xi | XNi
= xNi

).

Since the conditional distribution of Xi given all other variable is Bernoulli, it is easy to
sample it, using a uniform random variable.

Proposition 1 Random scan Gibbs sampling satisfies detailed balance for π the Gibbs dis-
tribution of interest (i.e. the distribution of the graphical model).

Proof Let us consider one step of the random scan Gibbs sampling algorithm starting from
π, the distribution of the graphical model. The idea is to prove the reversibility. We first
prove the result for an index i fixed, that is we prove that the transition qi,Gibbs(x

t+1 | xt)
that only resamples the ith coordinate of xt is reversible for π. We write pπ(xi|x−i) the
conditional distribution pπ(xi|x−i) = π(xi, x−i)/(

∑
x′−i

π(xi, x
′
−i)) of the Gibbs distribution

π. Using the Kronecker symbol δ defined by δ(x, y) = 1 if x = y and δ(x, y) = 0 else we
have:

π(xt) qi,Gibbs(x
t+1 | xt) = π(xt) δ(xt+1

−i , x
t
−i) pπ(x

t+1
i | xti)

= π(xt−i) pπ(x
t
i|xt−i) δ(xt+1

−i , x
t
−i) pπ(x

t+1
i | xt−i)

= π(xt+1
−i ) pπ(x

t
i | xt+1

−i ) δ(x
t
−i, x

t+1
−i ) pπ(x

t+1
i | xt+1

−i )

= π(xt+1) qi,Gibbs(x
t | xt+1).

Detailed balance for qi,Gibbs is valid for any i. In the random scan case, the index i being
chosen at random uniformly with probability 1

d
, the Gibbs transition is in fact:

1

d

d∑
i=1

qi,Gibbs(x
t+1 | xt)

The result is then obtained by taking the average over i in the previous derivation. Thus
π is a stationary distribution of the random scan Gibbs transition.

Proposition 2 If the Gibbs transition (e.g. random, cycle, etc.) is regular, then the MC
defined by the Gibbs sampling algorithm converges in distribution to π, the Gibbs distribution.

Exercise 1 Extend Gibbs method to Potts model.

Exercise 2 Prove that the Gibbs transition is a special case of Metropolis-Hastings proposal
that is always accepted.
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9.2 Variational inference

9.2.1 Overview

The goal is to do approximate inference without using sampling. Indeed, algorithms such as
Metropolis-Hastings or Gibbs sampling can be very slow to converge; besides, in practice, it
is very difficult to find a good stopping criterion. People working on MCMC methods try to
find clever tricks to speed up the process, hence the motivation for variational methods.

Let us consider a distribution on X finite (but usually very large) and Q an exponential
family with qη(x) = exp(ηTφ(x) − A(η)). Let us assume that the distribution of interest p,
that is for example the distribution of our graphical model that we are working with, is in
Q. The goal is to compute Ep [φ(x)].

Computing this expectation corresponds to probabilistic inference in general. For exam-
ple, for Potts model, using the notation [K] := {1, . . . , K}, we have

φ(x) =

(
(xik)i∈V,k∈[K]

(XikXjl)ij∈E; k,l∈[K]

)
We recall that: p = argminqD(q||p) where:

D(q||p) =
∑
x∈X

q(x) log
q(x)

p(x)
= Eq [− log p(X)]−H(q)

Since p is in Q, it is associated with a parameter η:

Eq [− log p(X)] = Eq
[
−ηTφ(X) + A(η)

]
= −ηT Eq [φ(X)]︸ ︷︷ ︸

µ(q)

+A(η)

where µ(q) is the moment parameter (see course on exponential families). Thus we have:

−D(p||q) = ηTµ(q) +H(q)− A(η)

This quantity is always negative (≤ 0) thus, for all q, A(η) ≥ ηTµ(q)+H(q). Maximizing
with respect to q in the exponential family leads to:

A(η) = max
q∈Q

ηTµ(q) +H(q) (9.3)

and the unique value of q that attains the maximum is p.

Remark 9.2.1 It is possible here to get rid of q and express things only in terms of the
moment. It is indeed a way to parameterize the distribution q : for a µ realizable in the
exponential family there is a single distribution qµ. The maximization problem becomes:

max
µ∈M

ηTµ+ H̃(µ),
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where H̃(µ) = H(qµ) and whereM is called the marginal polytope and is the set of all possible
moments1. The maximum is only attained for µ∗ = µ(p) = Ep[φ(X)], which is exactly the
expectation that needs to be computed.

It turns out that it is possible to show that H̃ is always a concave function, so that the
optimization problem above is a convex optimization problem.

It is interesting to note that we have thus turned the probabilistic inference problem, which,
a priori, required to compute expectations, that is integrals, into an optimization problem,
which is furthermore convex. Unfortunately this convex optimization problem is NP-hard to
solve in general because it solves the NP-hard probabilistic inference problem, and it is not
possible to escape the fact that the latter is NP-hard. This optimization problem is thus in
general intractable and this is because of two reasons:

• For a general graph the marginal polytopeM has number of faces which is exponential
in the tree width of the graph.

• The function H̃(µ) can be extremely complicated to write explicitly.

9.2.2 Mean field

In order to approximate the optimization problem it is possible either to change the set of
distribution Q, the moments M or to change the definition of the entropy H̃. The mean
field technique consists in choosing q in a set that makes all variables independent:

For a graphical models on variables x1 . . . xd, let us consider:

Q⊥⊥ = {q | q(x) = q1(x1) . . . qd(xd)},

the collection of distributions that make the variables X1, . . . , Xd independents.
We consider the optimization problem (8.3), but in which we replace Q by Qπ

max
q∈Q⊥⊥

ηTµ(q) +H(q). (9.4)

Note that in general p /∈ Qπ so that the solution cannot be exactly µ(p).
In order to write this optimization problem for a Potts model, we need to write explicitly

ηTµ(q) and H(q)

1We have seen in the course on exponential families that the distribution of maximum entropy q under
the moment constraint Eq[φ(X)] = µ is also, when it exists, the distribution of maximum likelihood in the
exponential family associated with the sufficient statistic φ. This essentially – but not exactly – shows that
for any moment µ there exists a member of the exponential family, say q, such that µ = µ(q). In fact, to
be rigorous one has to be careful about what happens at points of the boundary of the setM: the correct
statement is that for every µ in the interior of M there exists a distribution q in the exponential family
such that µ(q) = µ. The points on the boundary ofM are only corresponding to limits of distributions of
the exponential family that can be degenerate, like the Bernoulli distribution with probability 1 (or 0) for
example in the Bernoulli family case, which are themselves not in the family.
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Moments in the mean field formulation

ηTµ(q) = ηTEq [φ(X)]

=
∑

i∈V,k∈[K]

ηik Eq [Xik] +
∑

(i,j)∈E

ηijkl Eq [XikXji]

We have

Eq [Xik] = Eqi [Xik] = µik(q)

On the other hand, the independence of the variables lead to:

Eq [XikXjl] = Eqi [Xik]Eqj [Xjl] = µik µjl

Note that if we had not constrained q to make these variables independent, we would in
general have a moment here of the form Eq [XikXjl] = µijkl. This is the main place where
the mean field approximation departs from the exact variational formulation (8.3).

Entropy H(q) in the mean field formulation

By independence of the variables: H(q) = H(q1) + · · · +H(qd). Recall that qi is the distri-
bution on a single node, and that Xi is a multinomial random variable:

H(qi) = −
K∑
k=1

Pqi(Xik = 1) logPqi(Xik = 1) = −
K∑
k=1

µik log µik

Mean field formulation for the Potts model

In the end, putting everything together the optimization problem (8.4) can be written as

max
µ

∑
i,k

ηik µik +
∑
i,j,k,l

ηijklµikµjl −
∑
i,k

µik log µik

s.t. ∀i, k, µik ≥ 0

∀i,
K∑
k=1

µik = 1.

The problem is simple to express, however we cannot longer expect that it will solve
our original problem (8.3), because by restricting to the set Q⊥⊥, we have restrained the
forms that the moment parameters µijkl := E[XikXjl] can take. In particular since p is not
in Q⊥⊥ in general, the optimal solution of the mean field formulation does not retrieve the
correct moment parameter µ(p). The approximation will be reasonable if µ(p) is not too far
from the sets of moments that are achievable by moments of distributions in Q⊥⊥, since the
moments of p are approximated by the moments of the closest independent distribution. Note
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however that the mean field approximation is much more subtle than ignoring the binary
potentials in the model, which would be a too naive way of finding an “approximation" with
an independent distribution.

One difficulty though is that the objective function is no longer concave, because of the
products µikµjl which arise because of the independence assumption from the mean field
approximation. Coordinate descent on each of the µi (not the µik) is an algorithm of choice
to solve this kind of problem. To present the algorithm we consider the case of the Ising
model, which is a special case of the Potts model with 2 states for each variable.

Mean field formulation for the Ising model

When working with the Ising model is simple to reduce the number of variables by using
the fact that if µi2 = 1 − µi1, we therefore write µi for µi1 and the mean field optimization
problem becomes

max
µ

∑
i

ηi µi +
∑
i,j

ηij µiµj −
∑
i

(
µi log µi + (1− µi) log(1− µi)

)
s.t. µi ∈ [0, 1].

The stationary points for each coordinate correspond to the zeros of the partial deriva-
tives:

df

dµi
= ηi +

∑
j∈Ni

ηijµj − log
µi

1− µi

So that

df

dµi
= 0 ⇔ log µi/(1− µi) = ηi +

∑
j∈Ni

ηijµj

⇔ µ∗i = σ(ηi +
∑
j∈Ni

ηijµj),

where σ is the logistic function σ : z 7→ (1 + e−z)−1.
Note that in Gibbs sampling xt+1

i = 1 with probability σ(ηi+
∑

j∈Ni
ηijxj). This is called

mean field because the sampling is replaced by an approximation where it is assumed that
the sample value is equal to its expectation, which for the physicist correspond to the mean
field in the ferromagnetic Ising model.

Finally, lets insist that the mean field formulation is only one of the formulations for
variational inference, there are several other ones, among which structured mean field, ex-
pectation propagation, loopy belief propagation (which can be reinterpreted as as solving a
variational formulation as well), tree-reweighted variational inference, etc.
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