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Abstract

Discriminative Machine Learning with Structure

by

Simon Lacoste-Julien

Doctor of Philosophy in Computer Science

and the Designated Emphasis in Communication, Computation and Statistics

University of California, Berkeley

Professor Michael I. Jordan, Chair

Some of the best performing classifiers in modern machine learning have been

designed using discriminative learning, as exemplified by Support Vector Machines.

The ability of discriminative learning to use flexible features via the kernel trick has

enlarged the possible set of applications for machine learning. With the expanded

range of possible applications though, it has become apparent that real world data

exhibits more structure than has been assumed by classical methods. In this thesis,

we show how to extend the discriminative learning framework to exploit different

types of structure: on one hand, the structure on outputs, such as the combinatorial

structure in word alignment; on the other hand, a latent variable structure on inputs,

such as in text document classification.

In the context of structured output classification, we present a scalable algorithm

for maximum-margin estimation of structured output models, including an important

class of Markov networks and combinatorial models. We formulate the estimation

problem as a convex-concave saddle-point problem that allows us to use simple pro-

jection methods based on the dual extragradient algorithm of Nesterov. We analyze

the convergence of the method and present experiments on two very different struc-
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tured prediction tasks: 3D image segmentation and word alignment. We then show

how one can obtain state-of-the-art results for the word alignment task by formulating

it as a quadratic assignment problem within our discriminative learning framework.

In the context of latent variable models, we present DiscLDA, a discriminative

variant of the Latent Dirichlet Allocation (LDA) model which has been popular to

model collections of text documents or images. In DiscLDA, we introduce a class-

dependent linear transformation on the topic mixture proportions of LDA and esti-

mate it discriminatively by maximizing the conditional likelihood. By using the trans-

formed topic mixture proportions as a new representation of documents, we obtain

a supervised dimensionality reduction algorithm that uncovers the latent structure

in a document collection while preserving predictive power for the task of classifi-

cation. Our experiments on the 20 Newsgroups document classification task show

how our model can identify shared topics across classes as well as discriminative

class-dependent topics.

Professor Michael I. Jordan, Chair Date
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Chapter 1

Introduction

In supervised learning for classification, the goal is to learn a function from inputs

(objects) to discrete outputs (labels), given a training set of already labeled instances.

This framework has a vast number of applications, ranging from machine translation

to optical character recognition. Two of the major paradigms of machine learning for

solving this problem have been the generative and the discriminative approaches. In

the generative approach (also called generative learning), one models a joint prob-

ability distribution on inputs and outputs. The parameters of this distribution are

estimated by using a likelihood-based criterion, such as regularized maximum like-

lihood, or are marginalized out, such as in the Bayesian approach. Prediction is

done by computing posterior probabilities based on the probabilistic model. By con-

trast, in the discriminative approach, one directly models the mapping from inputs

to outputs, either as a conditional distribution or as a function. The parameters

are estimated by optimizing various objectives related to the loss function of the

classification task, such as regularized conditional likelihood or a large-margin crite-

rion. Discriminative approaches typically show better classification performance with

enough data, as they are better tuned to the prediction task and are more robust to
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Chapter 1. Introduction

model misspecification (Ng and Jordan, 2002; Liang and Jordan, 2008). On the other

hand, the generative modeling approach provides a natural way to encode more com-

plex structural information about the data such as with the language of probabilistic

graphical models (Jordan, 1999). With the widening range of applications considered

by machine learning in the last decade, discriminative approaches have been devel-

oped to leverage graphical models and be used on prediction tasks for which the labels

are structured objects with complex interactions (Lafferty et al., 2001; Taskar et al.,

2004b).

The goal of this thesis is to extend the ability of discriminative methods to exploit

the structure in the data, akin to generative methods, but maintaining the goal of

classification in mind. In this regard, we make the following contributions:

• In Chapter 2, we present a scalable algorithm for maximum-margin estimation

of structured output models, including an important class of Markov networks

and combinatorial models. We formulate the estimation problem as a convex-

concave saddle-point problem that allows us to use simple projection methods

based on the dual extragradient algorithm of Nesterov (2003). The projection

step can be solved using dynamic programming or combinatorial algorithms for

min-cost convex flow, depending on the structure of the problem. We show that

this approach provides a memory-efficient alternative to formulations based on

reductions to a quadratic program (QP). We analyze the convergence of the

method and present experiments on two very different structured prediction

tasks: 3D image segmentation and word alignment, illustrating the favorable

scaling properties of our algorithm. In particular, we show how we can ap-

ply max-margin learning to tens of thousands of sentences for word alignment

whereas standard off-the-shelf solvers go out of memory after 1,000 to 2,000

sentences. This work was published in Taskar et al. (2006b).
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Chapter 1. Introduction

• In Chapter 3, we explore more in details our learning framework for the word

alignment application in natural language processing. We propose a more realis-

tic model which encodes similar linguistic information which was used by previ-

ous generative models but was missing in the original discriminative model: fer-

tility and first order interactions. This provides a good example of the power of

discriminative learning: with those simple modifications, we can obtain the best

alignment error rate published so far on the French-English Hansards dataset.

This work was published in Lacoste-Julien et al. (2006).

• In Chapter 4, we turn to the problem of exploiting a latent variable structure on

the inputs for the task of classification. We present DiscLDA, a discriminative

variant of the Latent Dirichlet Allocation (LDA) model which has been popu-

lar for the modeling of collections of text documents or images. We consider

the problem of finding a reduced dimensionality representation of text docu-

ments which preserves its predictive power for classification. In DiscLDA, we

introduce a class-dependent linear transformation on the topic mixture propor-

tions of LDA. We estimate this parameter discriminatively by maximizing the

conditional likelihood on the training set. By using the transformed topic mix-

ture proportions as a new representation of documents, we obtain a supervised

dimensionality reduction algorithm that uncovers the latent structure in a doc-

ument collection while preserving predictive power for the task of classification.

We compare the predictive power of the latent structure of DiscLDA with un-

supervised LDA on the 20 Newsgroups document classification task and show

how our model can identify shared topics across classes as well as discriminative

class-dependent topics. This work was published in Lacoste-Julien et al. (2009).
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Chapter 2

Scalable Algorithm for Discriminative

Structured Prediction

2.1 Background

Structured prediction problems are classification or regression problems in which the

output variables (the class labels or regression responses) are interdependent. These

dependencies may reflect sequential, spatial, recursive or combinatorial structure in

the problem domain, and capturing these dependencies is often as important for

the purposes of prediction as capturing input-output dependencies. In addition to

modeling output correlations, we may wish to incorporate hard constraints between

variables. For example, we may seek a model that maps descriptions of pairs of struc-

tured objects (shapes, strings, trees, etc.) into alignments of those objects. Real-life

examples of such problems include bipartite matchings in alignment of 2D shapes (Be-

longie et al., 2002) and word alignment of sentences from a source language to a target

language in machine translation (Matusov et al., 2004) or non-bipartite matchings of

residues in disulfide connectivity prediction for proteins (Baldi et al., 2005). In these
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examples, the output variables encode presence of edges in the matching and may

obey hard one-to-one matching constraints. The prediction problem in such situations

is often solved via efficient combinatorial optimization such as finding the maximum

weight matching, where the model provides the appropriate edge weights.

Thus in this thesis we define the term structured output model very broadly, as a

compact scoring scheme over a (possibly very large) set of combinatorial structures

and a method for finding the highest scoring structure. For example, when a proba-

bilistic graphical model is used to capture dependencies in a structured output model,

the scoring scheme is specified via a factorized probability distribution for the output

variables conditional on the input variables, and the search involves some form of gen-

eralized Viterbi algorithm. More broadly, in models based on combinatorial problems,

the scoring scheme is usually a simple sum of weights associated with vertices, edges,

or other components of a structure; these weights are often represented as parametric

functions of the inputs. Given training data consisting of instances labeled by desired

structured outputs and a set of features that parameterize the scoring function, the

(discriminative) learning problem is to find parameters such that the highest scoring

outputs are as close as possible to the desired outputs.

In the case of structured prediction based on graphical models, which encom-

passes a large proportion of the work to date on structured prediction, two major

approaches to discriminative learning have been explored1: (1) maximum conditional

likelihood (Lafferty et al., 2001, 2004) and (2) maximum margin (Collins, 2002; Al-

tun et al., 2003; Taskar et al., 2004b). Both approaches are viable computationally

for restricted classes of graphical models. In the broader context of the current

thesis, however, only the maximum-margin approach appears to be viable for ex-

act inference. In particular, it has been shown that maximum-margin estimation

1Other approaches not based on graphical models include search-based learning, as in the SEARN
algorithm of Daumé III et al. (2009), and energy-based methods (LeCun et al., 2006).

5



Chapter 2. Scalable Algorithm for Discriminative Structured Prediction

can be formulated as a tractable convex problem — a polynomial-size quadratic

program (QP) — in several cases of interest (Taskar et al., 2004a, 2005a); such

results are not available for conditional likelihood. Moreover, it is possible to find

interesting subfamilies of graphical models for which maximum-margin methods are

provably tractable whereas likelihood-based methods are not. For example, for the

Markov random fields that arise in object segmentation problems in vision (Kumar

and Hebert, 2004; Anguelov et al., 2005) the task of finding the most likely assign-

ment reduces to a min-cut problem. In these prediction tasks, the problem of finding

the highest scoring structure is tractable, while computing the partition function

is #P-complete. Essentially, maximum-likelihood estimation requires the partition

function, while maximum-margin estimation does not, and thus remains tractable.

Polynomial-time sampling algorithms for approximating the partition function for

some models do exist (Jerrum and Sinclair, 1993), but have high-degree polynomial

complexity and have not yet been shown to be effective for conditional likelihood

estimation.

While the reduction to a tractable convex program such as a QP is a significant

step forward, it is unfortunately not the case that off-the-shelf QP solvers necessarily

provide practical solutions to structured prediction problems. Indeed, despite the

reduction to a polynomial number of variables, off-the-shelf QP solvers tend to scale

poorly with problem and training sample size for these models. The number of

variables is still large and the memory needed to maintain second-order information

(for example, the inverse Hessian) is a serious practical bottleneck.

To solve the largest-scale machine learning problems, researchers have often found

it expedient to consider simple gradient-based algorithms, in which each individual

step is cheap in terms of computation and memory (Platt, 1999; LeCun et al., 1998).

Examples of this approach in the structured prediction setting include the Structured

Sequential Minimal Optimization algorithm (Taskar et al., 2004b; Taskar, 2004) and
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the Structured Exponentiated Gradient algorithm (Bartlett et al., 2005). These al-

gorithms are first-order methods for solving QPs arising from low-treewidth Markov

random fields and other decomposable models. In these restricted settings these

methods can be used to solve significantly larger problems than can be solved with

off-the-shelf QP solvers. These methods are, however, limited in scope in that they

rely on dynamic programming to compute essential quantities such as gradients. They

do not extend to models where dynamic programming is not applicable, for exam-

ple, to problems such as matchings and min-cuts. Another line of work in learning

structured prediction models aims to approximate the arising QPs via constraint gen-

eration (Altun et al., 2003; Tsochantaridis et al., 2005). This approach only requires

finding the highest scoring structure in the inner loop and incrementally solving a

growing QP as constraints are added.

In this chapter, we present a solution methodology for structured prediction that

encompasses a broad range of combinatorial optimization problems, including match-

ings, min-cuts and other network flow problems. There are two key aspects to our

methodology. The first is that we take a novel approach to the formulation of struc-

tured prediction problems, formulating them as saddle-point problems. This allows us

to exploit recent developments in the optimization literature, where simple gradient-

based methods have been developed for solving saddle-point problems (Nesterov,

2003). Moreover, we show that the key computational step in these methods—a

certain projection operation—inherits the favorable computational complexity of the

underlying optimization problem. This important result makes our approach viable

computationally. In particular, for decomposable graphical models, the projection

step is solvable via dynamic programming. For matchings and min-cuts, projection

involves a min-cost quadratic flow computation, a problem for which efficient, highly-

specialized algorithms are available.

The remaining of this chapter is organized as follows. In Section 2.2 we present an
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overview of structured prediction, focusing on three classes of tractable optimization

problems. Section 2.3 shows how to formulate the maximum-margin estimation prob-

lem for these models as a saddle-point problem. In Section 2.4 we discuss the dual

extragradient method for solving saddle-point problems and show how it specializes

to our setting. We derive a memory-efficient version of the algorithm that requires

storage proportional to the number of parameters in the model and is independent

of the number of examples in Section 2.5. In Section 2.6 we illustrate the effective-

ness of our approach on two very different large-scale structured prediction tasks:

3D image segmentation and word alignment in natural language translation. Finally,

Section 2.8 presents our conclusions.

2.2 Structured output models

We begin by discussing three special cases of the general framework that we present

subsequently: (1) tree-structured Markov networks, (2) Markov networks with sub-

modular potentials, and (3) a bipartite matching model. Despite significant differ-

ences in the formal specification of these models, they share the property that in all

cases the problem of finding the highest-scoring output can be formulated as a linear

program (LP).

2.2.1 Tree-structured Markov networks

For simplicity of notation, we focus on tree networks, noting in passing that the

extension to hypertrees is straightforward. Given N variables, y = {y1, . . . , yN},

with discrete domains yj ∈ Dj = {α1, . . . , α|Dj |}, we define a joint distribution over

8
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Y = D1 × . . .×DN via

P (y) ∝
∏
j∈V

φj(yj)
∏
jk∈E

φjk(yj, yk),

where (V = {1, . . . , N}, E ⊂ {jk : j < k, j ∈ V , k ∈ V}) is an undirected graph, and

where {φj(yj), j ∈ V} are the node potentials and {φjk(yj, yk), jk ∈ E} are the edge

potentials. We can find the most likely assignment, arg maxy P (y), using the Viterbi

dynamic programming algorithm for trees. We can also find it using a standard linear

programming formulation as follows. We introduce variables zjα to denote indicators

1I(yj = α) for all variables j ∈ V and their values α ∈ Dj. Similarly, we introduce

variables zjkαβ to denote indicators 1I(yj = α, yk = β) for all edges jk ∈ E and the

values of their nodes, α ∈ Dj, β ∈ Dk. We can formulate the problem of finding the

maximal probability configuration as follows:

max
0≤z≤1

∑
j∈V

∑
α∈Dj

zjα log φj(α) +
∑
jk∈E

∑
α∈Dj ,β∈Dk

zjkαβ log φjk(α, β) (2.1)

s.t.
∑
α∈Dj

zjα = 1, ∀j ∈ V ;
∑

α∈Dj ,β∈Dk

zjkαβ = 1, ∀jk ∈ E ; (2.2)

∑
α∈Dj

zjkαβ = zkβ, ∀jk ∈ E , β ∈ Dk;
∑
β∈Dk

zjkαβ = zjα,
∀jk ∈ E
α ∈ Dj

, (2.3)

where (2.2) expresses normalization constraints and (2.3) captures marginalization

constraints. This LP has integral optimal solutions if E is a forest (Chekuri et al.,

2001; Wainwright et al., 2002; Chekuri et al., 2005). In networks of general topology,

however, the optimal solution can be fractional (as expected, since the problem is NP-

hard). Other important exceptions can be found, however, specifically by focusing

on constraints on the potentials rather than constraints on the topology. We discuss

one such example in the following section.

9
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2.2.2 Markov networks with submodular potentials

We consider a special class of Markov networks, common in vision applications, in

which inference reduces to a tractable min-cut problem (Greig et al., 1989; Kol-

mogorov and Zabih, 2004). We assume that (1) all variables are binary (Dj = {0, 1}),

and (2) all edge potentials are “regular” (i.e., submodular):

log φjk(0, 0) + log φjk(1, 1) ≥ log φjk(1, 0) + log φjk(0, 1), ∀jk ∈ E . (2.4)

Such potentials prefer assignments where connected nodes have the same label, that

is, yj = yk. This notion of regularity can be extended to potentials over more than

two variables (Kolmogorov and Zabih, 2004). These assumptions ensure that the LP

in Eq. (2.1) has integral optimal solutions (Chekuri et al., 2001; Kolmogorov and

Wainwright, 2005; Chekuri et al., 2005). Similar kinds of networks (defined also for

non-binary variables and non-pairwise potentials) were called “associative Markov

networks” by Taskar et al. (2004a) and Anguelov et al. (2005), who used them for

object segmentation and hypertext classification.

In figure-ground segmentation (see Fig. 2.1a), the node potentials capture local

evidence about the label of a pixel or range scan point. Edges usually connect nearby

pixels in an image, and serve to correlate their labels. Assuming that such correlations

tend to be positive (connected nodes tend to have the same label) leads us to consider

simplified edge potentials of the form φjk(yj, yk) = exp{−sjk1I(yj 6= yk)}, where sjk

is a nonnegative penalty for assigning yj and yk different labels. Note that such

potentials are regular if sjk ≥ 0. Expressing node potentials as φj(yj) = exp{sjyj},

we have P (y) ∝ exp
{∑

j∈V sjyj −
∑

jk∈E sjk1I(yj 6= yk)
}

. Under this restriction on

10



Chapter 2. Scalable Algorithm for Discriminative Structured Prediction

What
is 

the
anticipated

cost
of

collecting 
fees 

under 
the 

new 
proposal

?

En 
vertu
de
les
nouvelles
propositions
, 
quel
est
le 
coût
prévu
de 
perception 
de 
les 
droits
?

(a) (b)

Figure 2.1: Structured prediction applications: (a) 3D figure-ground segmentation; (b)
Word alignment in machine translation.

the potentials, we can obtain the following (simpler) LP:

max
0≤z≤1

∑
j∈V

sjzj −
∑
jk∈E

sjkzjk (2.5)

s.t. zj − zk ≤ zjk, zk − zj ≤ zjk, ∀jk ∈ E ,

where the continuous variables zj correspond to a relaxation of the binary variables

yj, and the constraints encode zjk = 1I(zj 6= zk). To see this, note that the constraints

can be equivalently expressed as |zj − zk| ≤ zjk. Because sjk is positive, zjk =

|zk − zj| at the maximum, which is equivalent to 1I(zj 6= zk) if the zj, zk variables

are binary. An integral optimal solution always exists, since the constraint matrix is

totally unimodular (Schrijver, 2003), hence the relaxation is exact.

We can parameterize the node and edge potentials in terms of user-provided fea-

tures xj and xjk associated with the nodes and edges. In particular, in 3D range

data, xj might involve spin-image features or spatial occupancy histograms of a point

j, while xjk might include the distance between points j and k, the dot-product of
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their normals, etc. The simplest model of dependence is a linear combination of fea-

tures: sj = w>n fn(xj) and sjk = w>e fe(xjk), where wn and we are node and edge

parameters, and fn and fe are node and edge feature mappings, of dimension dn and

de, respectively. To ensure non-negativity of sjk, we assume that the edge features

fe are nonnegative and we impose the restriction we ≥ 0. This constraint is incor-

porated into the learning formulation we present below. We assume that the feature

mappings f are provided by the user and our goal is to estimate parameters w from

labeled data. We abbreviate the score assigned to a labeling y for an input x as

w>f(x,y) =
∑

j yjw
>
n fn(xj)−

∑
jk∈E yjkw

>
e fe(xjk), where yjk = 1I(yj 6= yk).

2.2.3 Matchings

Consider modeling the task of word alignment of parallel bilingual sentences (Fig. 2.1b)

as a maximum weight bipartite matching problem in a graph, where the nodes

V = Vs ∪ V t correspond to the words in the “source” sentence (Vs) and the “tar-

get” sentence (V t) and the edges E = {jk : j ∈ Vs, k ∈ V t} correspond to possible

alignments between the words. For simplicity, we assume in this chapter that the

source word aligns to at most one word (zero or one) in the other sentence — this

constraint will be lifted in Chapter 3 to obtain a more realistic model. The edge

weight sjk represents the degree to which word j in one sentence can translate into

the word k in the other sentence. Our objective is to find an alignment that maxi-

mizes the sum of edge scores. We represent a matching using a set of binary variables

yjk that are set to 1 if word j is assigned to word k in the other sentence, and 0 oth-

erwise. The score of an assignment is the sum of edge scores: s(y) =
∑

jk∈E sjkyjk.

The maximum weight bipartite matching problem, arg maxy∈Y s(y), can be found by

12
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solving the following LP:

max
0≤z≤1

∑
jk∈E

sjkzjk (2.6)

s.t.
∑
j∈Vs

zjk ≤ 1, ∀k ∈ V t;
∑
k∈Vt

zjk ≤ 1, ∀j ∈ Vs.

where again the continuous variables zjk correspond to the relaxation of the binary

variables yjk. As in the min-cut problem, this LP is guaranteed to have integral

solutions for any scoring function s(y) (Schrijver, 2003).

For word alignment, the scores sjk can be defined in terms of the word pair jk

and input features associated with xjk. We can include the identity of the two words,

the relative position in the respective sentences, the part-of-speech tags, the string

similarity (for detecting cognates), etc. We let sjk = w>f(xjk) for a user-provided

feature mapping f and abbreviate w>f(x,y) =
∑

jk yjkw
>f(xjk).

2.2.4 General structure

More generally, we consider prediction problems in which the input x ∈ X is an

arbitrary structured object and the output is a vector of values y = (y1, . . . , yLx)

encoding, for example, a matching or a cut in the graph. We assume that the length

Lx and the structure encoded by y depend deterministically on the input x. In

our word alignment example, the output space is defined by the length of the two

sentences. Denote the output space for a given input x as Y(x) and the entire output

space as Y =
⋃

x∈X Y(x).

Consider the class of structured prediction models H defined by the linear family:

hw(x)
.
= arg max

y∈Y(x)

w>f(x,y), (2.7)

13
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where f(x,y) is a vector of functions f : X × Y 7→ IRn. This formulation is very

general. Indeed, it is too general for our purposes—for many (f ,Y) pairs, finding the

optimal y is intractable. We specialize to the class of models in which the optimization

problem in Eq. (2.7) can be solved in polynomial time via convex optimization; this

is still a very large class of models. Beyond the examples discussed here, it includes

weighted context-free grammars and dependency grammars (Manning and Schütze,

1999) and string edit distance models for sequence alignment (Durbin et al., 1998).

2.3 Large margin estimation

We assume a set of training instances S = {(xi,yi)}mi=1, where each instance consists

of a structured object xi (such as a graph) and a target solution yi (such as a match-

ing). Consider learning the parameters w in the conditional likelihood setting. We can

define Pw(y | x) = 1
Zw(x)

exp{w>f(x,y)}, where Zw(x) =
∑

y′∈Y(x) exp{w>f(x,y′)},

and maximize the conditional log-likelihood
∑

i logPw(yi | xi), perhaps with addi-

tional regularization of the parameters w. As we have noted earlier, however, the

problem of computing the partition function Zw(x) is computationally intractable

for many of the problems we are interested in. In particular, it is #P-complete for

matchings and min-cuts (Valiant, 1979; Jerrum and Sinclair, 1993).

We thus retreat from conditional likelihood and consider the max-margin formula-

tion developed in several recent papers (Collins, 2002; Taskar et al., 2004b; Tsochan-

taridis et al., 2005). In this formulation, we seek to find parameters w such that:

yi = hw(xi) = arg max
y′i∈Yi

w>f(xi,y
′
i), ∀i,

where Yi = Y(xi). The solution space Yi depends on the structured object xi; for

example, the space of possible matchings depends on the precise set of nodes and

14



Chapter 2. Scalable Algorithm for Discriminative Structured Prediction

edges in the graph.

As in univariate prediction, we measure the error of prediction using a loss function

`(yi,y
′
i). To obtain a convex formulation, we upper bound the loss `(yi, hw(xi))

using the hinge function2: LH(w)
.
= maxy′i∈Yi [w

>fi(y
′
i) + `i(y

′
i) − w>fi(yi)], where

`i(y
′
i) = `(yi,y

′
i), and fi(y

′
i) = f(xi,y

′
i). Minimizing this upper bound will force the

true structure yi to be optimal with respect to w for each instance i:

min
w∈W

∑
i

max
y′i∈Yi

[w>fi(y
′
i) + `i(y

′
i)]−w>fi(yi), (2.8)

where W is the set of allowed parameters w. We assume that the parameter space

W is a convex set, typically a norm ball {w : ||w||p ≤ γ} with p = 1, 2 and a

regularization parameter γ. In the case that W = {w : ||w||2 ≤ γ}, this formulation

is equivalent to the standard large margin formulation using slack variables ξ and

slack penalty C (cf. Taskar et al., 2004b), for some suitable values of C depending

on γ. The correspondence can be seen as follows: let w∗(C) be a solution to the

optimization problem with slack penalty C and define γ(C) = ||w∗(C)||. Then w∗ is

also a solution to Eq. (2.8). Conversely, we can invert the mapping γ(·) to find those

values of C (possibly non-unique) that give rise to the same solution as Eq. (2.8)

for a specific γ. In the case of submodular potentials, there are additional linear

constraints on the edge potentials. In the setting of Eq. (2.5), the constraint we ≥ 0

is sufficient. For more general submodular potentials, we can parameterize the log

of the edge potential using four sets of edge parameters, we00,we01,we10,we11, as

follows: log φjk(α, β) = w>eαβf(xjk). Assuming, as before, that the edge features are

nonnegative, the regularity of the potentials can be enforced via a linear constraint:

we00 +we11 ≥ we10 +we01, where the inequality should be interpreted componentwise.

2Under the assumption that the true label belongs to the output space in our model, i.e. yi ∈ Yi

(and only if), then it not hard to show that the hinge loss upper bounds the true loss of our predictor:
LH(w) ≥ ` (yi, hw(xi)).
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The key to solving Eq. (2.8) efficiently is the loss-augmented inference problem,

max
y′i∈Yi

[w>fi(y
′
i) + `i(y

′
i)]. (2.9)

This optimization problem has precisely the same form as the prediction problem

whose parameters we are trying to learn—maxy′i∈Yi w
>fi(y

′
i)—but with an additional

term corresponding to the loss function. Tractability of the loss-augmented inference

thus depends not only on the tractability of maxy′i∈Yi w
>fi(y

′
i), but also on the form

of the loss term `i(y
′
i). A natural choice in this regard is the Hamming distance,

which simply counts the number of variables in which a candidate solution y′i differs

from the target output yi. In general, we need only assume that the loss function

decomposes over the variables in yi.

In particular, for word alignment, we use weighted Hamming distance, which

counts the number of variables in which a candidate matching y′i differs from the

target alignment yi, with different cost for false positives (c+) and false negatives

(c-):

`(yi,y
′
i) =

∑
jk∈Ei

[
c-yi,jk(1− y′i,jk) + c+ y′i,jk(1− yi,jk)

]
(2.10)

=
∑
jk∈Ei

c-yi,jk +
∑
jk∈Ei

[c+ − (c- + c+)yi,jk]y
′
i,jk,

where yi,jk indicates the presence of edge jk in example i and Ei is the set of edges

in example i. The loss-augmented matching problem can then be written as an LP

similar to Eq. (2.6) (without the constant term
∑

jk c
-yi,jk):

max
0≤zi≤1

∑
jk∈Ei

zi,jk[w
>f(xi,jk) + c+ − (c- + c+)yi,jk]

s.t.
∑
j∈Vsi

zi,jk ≤ 1, ∀k ∈ V ti ;
∑
k∈Vti

zi,jk ≤ 1, ∀j ∈ Vsi ,
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where f(xi,jk) is the vector of features of the edge jk in example i and Vsi and V ti are

the nodes in example i. As before, the continuous variables zi,jk correspond to the

binary values y′i,jk.

Generally, suppose we can express the prediction problem as an LP:

max
y′i∈Yi

w>fi(y
′
i) = max

zi∈Zi
w>Fizi,

where

Zi = {zi : Aizi ≤ bi, 0 ≤ zi ≤ 1}, (2.11)

for appropriately defined Fi,Ai and bi. Then we have a similar LP for the loss-

augmented inference for each example i:

max
y′i∈Yi

w>fi(y
′
i) + `i(y

′
i) = di + max

zi∈Zi
(F>i w + ci)

>zi, (2.12)

for appropriately defined di and ci. For the matching case, di =
∑

jk c
-yi,jk is the

constant term, Fi is a matrix that has a column of features f(xi,jk) for each edge jk in

example i, and ci is the vector of the loss terms c+−(c-+c+)yi,jk. Let z = {z1, . . . , zm}

and Z = Z1 × . . . × Zm. With these definitions, we have the following saddle-point

problem:

min
w∈W

max
z∈Z

∑
i

(
w>Fizi + c>i zi −w>fi(yi)

)
(2.13)

where we have omitted the constant term
∑

i di. The only difference between this

formulation and our initial formulation in Eq. (2.8) is that we have created a concise

continuous optimization problem by replacing the discrete y′i’s with continuous zi’s.

When the prediction problem is intractable (for example, in general Markov net-

works or tripartite matchings), we can use a convex relaxation (for example, a linear
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or semidefinite program) to upper bound maxy′i∈Yi w>fi(y
′
i) and obtain an approx-

imate maximum-margin formulation. This is the approach taken in Taskar et al.

(2004b) for general Markov networks using the LP in Eq. (2.1).

To solve (2.13), we could proceed by making use of Lagrangian duality. This

approach, explored in Taskar et al. (2004a, 2005a), yields a joint convex optimization

problem. If the parameter space W is described by linear and convex quadratic

constraints, the result is a convex quadratic program which can be solved using a

generic QP solver.

We briefly outline this approach below, but in this chapter, we take a different

approach, solving the problem in its natural saddle-point form. As we discuss in

the following section, this approach allows us to exploit the structure of W and Z

separately, allowing for efficient solutions for a wider range of parameterizations and

structures. It also opens up alternatives with respect to numerical algorithms.

Before moving on to solution of the saddle-point problem, we consider the joint

convex form when the feasible set has the form of (2.11) and the loss-augmented

inference problem is a LP, as in (2.12). Using commercial convex optimization solvers

for this formulation will provide us with a comparison point for our saddle-point

solver. We now proceed to present this alternative form.

To transform the saddle-point form of (2.13) into a standard convex optimization

form, we take the dual of the individual loss-augmented LPs (2.12):

max
zi∈Zi

(F>i w + ci)
>zi = min

(λi,µi)∈Λi(w)
b>i λi + 1>µi (2.14)

where Λi(w) = {(λi, µi) ≥ 0 : F>i w + ci ≤ A>i λi + µi} defines the feasible space

for the dual variables λi and µi. Substituting back in equation (2.13) and writing
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λ = (λ1, . . . , λm), µ = (µ1, . . . , µm), we obtain (omitting the constant
∑

i di):

min
w∈W, (λ,µ)≥0

∑
i

(
b>i λi + 1>µi −w>fi(yi)

)
(2.15)

s.t. F>i w + ci ≤ A>i λi + µi i = 1, . . . ,m.

If W is defined by linear and convex quadratic constraints, the above optimization

problem can be solved using standard commercial solvers. The number of variables

and constraints in this problem is linear in the number of the parameters and the

training data (for example nodes and edges). On the other hand, note that the

constraints in equation (2.15) intermix the structure of W and Z together. Hence,

even though each original constraint set could have a simple form (e.g. a ball for

W and a product of matchings for Z), the resulting optimization formulation (2.15)

makes it hard to take advantage of this structure. By contrast, the saddle-point

formulation (2.13) preserves the simple structure of the constraint sets. We will see

in the next section how this can be exploited to obtain an efficient optimization

algorithm.

2.4 Saddle-point problems and the dual extragradient

method

We begin by establishing some notation and definitions. Denote the objective of the

saddle-point problem in (2.13) by:

L(w, z)
.
=
∑
i

w>Fizi + c>i zi −w>fi(yi).
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L(w, z) is bilinear in w and z, with gradient given by: ∇wL(w, z) =
∑

i Fizi− fi(yi)

and ∇ziL(w, z) = F>i w + ci.

We can view this problem as a zero-sum game between two players, w and z.

Consider a simple iterative improvement method based on gradient projections:

wt+1 = πW(wt − η∇wL(wt, zt)); zt+1
i = πZi(zti + η∇ziL(wt, zt)), (2.16)

where η is a step size and

πV(v)
.
= arg min

v′∈V
||v − v′||2

denotes the Euclidean projection of a vector v onto a convex set V . In this simple

iteration, each player makes a small best-response improvement without taking into

account the effect of the change on the opponent’s strategy. This usually leads to

oscillations, and indeed, this method is generally not guaranteed to converge for

bilinear objectives for any step size (Korpelevich, 1976; He and Liao, 2002). One way

forward is to attempt to average the points (wt, zt) to reduce oscillation. We pursue

a different approach that is based on the dual extragradient method of Nesterov

(2003). In our previous work (Taskar et al., 2006a), we used a related method, the

extragradient method due to Korpelevich (1976). The dual extragradient is, however,

a more flexible and general method, in terms of the types of projections and feasible

sets that can be used, allowing a broader range of structured problems and parameter

regularization schemes. Before we present the algorithm, we introduce some notation

which will be useful for its description.

Let us combine w and z into a single vector, u = (w, z), and define the joint

feasible space U = W × Z. Note that U is convex since it is a direct product of

convex sets.

20



Chapter 2. Scalable Algorithm for Discriminative Structured Prediction

We denote the (affine) gradient operator on this joint space as


∇wL(w, z)

−∇z1L(w, z)
...

−∇zmL(w, z)

 =


0 F1 · · · Fm

−F>1
... 0

−F>m


︸ ︷︷ ︸


w

z1

...

zm


︸ ︷︷ ︸

−



∑
i fi(yi)

c1

...

cm


︸ ︷︷ ︸

= Fu− a.

F u a

2.4.1 Dual extragradient

We first present the dual extragradient algorithm of Nesterov (2003) using the Eu-

clidean geometry induced by the standard 2-norm, and consider a non-Euclidean

setup in Sec. 2.4.2.

As shown in Fig. 2.2, the dual extragradient algorithm proceeds using very simple

gradient and projection calculations.

Initialize: Choose û ∈ U , set s−1 = 0.
Iteration t, 0 ≤ t ≤ τ :

v = πU(û + ηst−1);

ut = πU(v − η(Fv − a)); (2.17)

st = st−1 − (Fut − a).

Output: ūτ = 1
τ+1

∑τ
t=0 ut.

Figure 2.2: Euclidean dual extragradient algorithm.

To relate this generic algorithm to our setting, recall that u is composed of subvec-

tors w and z; this induces a commensurate decomposition of the v and s vectors into

subvectors. To refer to these subvectors we will abuse notation and use the symbols

w and zi as indices. Thus, we write v = (vw,vz1 , . . . ,vzm), and similarly for u and

s. Using this notation, the generic algorithm in Eq. (2.17) expands into the following
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dual extragradient algorithm for structured prediction (where the brackets represent

gradient vectors):

vw = πW(ûw + ηst−1
w ); vzi = πZi(ûzi + ηst−1

zi
), ∀i;

utw = πW(vw − η

[∑
i

Fivzi − fi(yi)

]
); utzi = πZi(vzi + η

[
F>i vw + ci

]
), ∀i;

stw = st−1
w −

[∑
i

Fiu
t
zi
− fi(yi)

]
; stzi = st−1

zi
+
[
F>i utw + ci

]
, ∀i.

In the convergence analysis of the dual extragradient (Nesterov, 2003), the stepsize

η is set to the inverse of the Lipschitz constant (with respect to the 2-norm) of the

gradient operator:

1/η = L
.
= max

u,u′∈U

||F(u− u′)||2
||u− u′||2

≤ ||F||2,

where ||F||2 is the largest singular value of the matrix F. In practice, various simple

heuristics can be considered for setting the stepsize, including search procedures based

on optimizing the gap merit function (see, e.g., He and Liao, 2002).

2.4.1.1 Convergence

One measure of quality of a saddle-point solution is via the gap function:

G(w, z) =

[
max
z′∈Z
L(w, z′)− L∗

]
+

[
L∗ − min

w′∈W
L(w′, z)

]
, (2.18)

where the optimal loss is denoted L∗ = minw′∈W maxz∈Z L(w, z). For non-optimal

points (w, z), the gap G(w, z) is positive and serves as a useful merit function, a mea-

sure of accuracy of a solution found by the extragradient algorithm. At an optimum
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we have

G(w∗, z∗) = max
z′∈Z
L(w∗, z′)− min

w′∈W
L(w′, z∗) = 0.

Define the Euclidean divergence function as

d(v,v′) =
1

2
||v − v′||22,

and define a restricted gap function parameterized by positive divergence radii Dw

and Dz

GDw,Dz(w, z) = max
z′∈Z
{L(w, z′) : d(ẑ, z′) ≤ Dz} − min

w′∈W
{L(w′, z) : d(ŵ,w′) ≤ Dw} ,

where the point û = (ûw, ûz) ∈ U is an arbitrary point that can be thought of as the

“center” of U . Assuming there exists a solution w∗, z∗ such that d(ŵ,w∗) ≤ Dw and

d(ẑ, z∗) ≤ Dz, this restricted gap function coincides with the unrestricted function

defined in Eq. (2.18). The choice of the center point û should reflect an expectation of

where the “average” solution lies, as will be evident from the convergence guarantees

presented below. For example, we can take ûw = 0 and let ûzi correspond to the

encoding of the target yi.

By Theorem 2 of Nesterov (2003), after τ iterations, the gap of (w̄τ , z̄τ ) = ūτ is

upper bounded by:

GDw,Dz(w̄
τ , z̄τ ) ≤ (Dw +Dz)L

τ + 1
. (2.19)

This implies that O(1
ε
) steps are required to achieve a desired accuracy of solution

ε as measured by the gap function. Note that the exponentiated gradient algo-

rithm (Bartlett et al., 2005) has the same O(1
ε
) convergence rate. This sublinear

convergence rate is slow compared to interior point methods, which enjoy superlinear

convergence (Boyd and Vandenberghe, 2004). However, the simplicity of each itera-
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j

s t

k

Figure 2.3: Euclidean projection onto the matching polytope using min-cost quadratic
flow. Source s is connected to all the “source” nodes and target t connected to all the
“target” nodes, using edges of capacity 1 and cost 0. The original edges jk have a
quadratic cost 1

2
(z′jk − zjk)2 and capacity 1.

tion, the locality of key operations (projections), and the linear memory requirements

make this a practical algorithm when the desired accuracy ε is not too small, and,

in particular, these properties align well with the desiderata of large-scale machine

learning algorithms. We illustrate these properties experimentally in Section 2.6.

2.4.1.2 Projections

The efficiency of the algorithm hinges on the computational complexity of the Eu-

clidean projection onto the feasible sets W and Zi. In the case of W , projections are

cheap when we have a 2-norm ball {w : ||w||2 ≤ γ}: πW(w) = γw/max(γ, ||w||2).

Additional non-negativity constraints on the parameters (e.g., we ≥ 0) can also be

easily incorporated by clipping negative values. Projections onto the 1-norm ball are

not expensive either (Boyd and Vandenberghe, 2004), but may be better handled by

the non-Euclidean setup we discuss below.

We turn to the consideration of the projections onto Zi. The complexity of these

projections is the key issue determining the viability of the extragradient approach
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for our class of problems. In fact, for both alignment and matchings these projections

turn out to reduce to classical network flow problems for which efficient solutions

exist. In case of alignment, Zi is the convex hull of the bipartite matching polytope

and the projections onto Zi reduce to the much-studied minimum cost quadratic flow

problem (Bertsekas, 1998). In particular, the projection problem z = πZi(z′i) can be

computed by solving

min
0≤zi≤1

∑
jk∈Ei

1

2
(z′i,jk − zi,jk)2

s.t.
∑
j∈Vsi

zi,jk ≤ 1, ∀j ∈ V ti ;
∑
k∈Vti

zi,jk ≤ 1, ∀k ∈ Vsi .

We use a standard reduction of bipartite matching to min-cost flow (see Fig. 2.3)

by introducing a source node s connected to all the words in the “source” sentence,

Vsi , and a target node t connected to all the words in the “target” sentence, V ti ,

using edges of capacity 1 and cost 0. The original edges jk have a quadratic cost

1
2
(z′i,jk − zi,jk)2 and capacity 1. Since the edge capacities are 1, the flow conservation

constraints at each original node ensure that the (possibly fractional) degree of each

node in a valid flow is at most 1. Now the minimum cost flow from the source s to

the target t computes projection of z′i onto Zi.

The reduction of the min-cut polytope projection to a convex network flow prob-

lem is more complicated; we present this reduction in Appendix 2.A. Algorithms

for solving convex network flow problems (see, for example, Bertsekas et al., 1997)

are nearly as efficient as those for solving linear min-cost flow problems, bipartite

matchings and min-cuts. In case of word alignment, the running time scales with the

cube of the sentence length. We use standard, publicly-available code for solving this

problem (Guerriero and Tseng, 2002).3

3Available from http://www.math.washington.edu/∼tseng/netflowg nl/.
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2.4.2 Non-Euclidean dual extragradient

Euclidean projections may not be easy to compute for many structured prediction

problems or parameter spaces. The non-Euclidean version of the algorithm of Nes-

terov (2003) affords flexibility to use other types of (Bregman) projections. The basic

idea is as follows. Let d(u,u′) denote a suitable divergence function (see below for a

definition) and define a proximal step operator:

Tη(u, s)
.
= arg max

u′∈U
[s>(u′ − u)− 1

η
d(u,u′)].

Intuitively, the operator tries to make a large step from u in the direction of s but not

too large as measured by d(·, ·). Then the only change to the algorithm is to switch

from using a Euclidean projection of a gradient step πU(u + 1
η
s) to a proximal step

in a direction of the gradient Tη(u, s) (see Fig. 2.4):

Initialize: Choose û ∈ Ũ , set s−1 = 0.
Iteration t, 0 ≤ t ≤ τ :

vw = Tη(ûw, s
t−1
w ); vzi = Tη(ûzi , s

t−1
zi

), ∀i;

utw = Tη(vw,−

[∑
i

Fivzi − fi(yi)

]
); utzi = Tη(vzi ,

[
F>i vw + ci

]
), ∀i;

stw = st−1
w −

[∑
i

Fiu
t
zi
− fi(yi)

]
; stzi = st−1

zi
+
[
F>i utw + ci

]
, ∀i.

Output: ūτ = 1
τ+1

∑τ
t=0 ut.

Figure 2.4: Non-Euclidean dual extragradient algorithm.

To define the range of possible divergence functions and to state convergence

properties of the algorithm, we will need some more definitions. We follow the devel-

opment of Nesterov (2003). Given a norm || · ||W on W and norms || · ||Zi on Zi, we
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combine them into a norm on U as

||u|| = max(||w||W , ||z1||Z1 , . . . , ||zm||Zm).

We denote the dual of U (the vector space of linear functions on U) as U∗. The norm

|| · || on the space U induces the dual norm || · ||∗ for all s ∈ U∗:

||s||∗
.
= max

u∈U ,||u||≤1
s>u.

The Lipschitz constant with respect to this norm (used to set η = 1/L) is

L
.
= max

u,u′∈U

||F(u− u′)||∗
||u− u′||

.

The dual extragradient algorithm adjusts to the geometry induced by the norm by

making use of Bregman divergences. Given a differentiable strongly convex function

h(u), we can define the Bregman divergence as:

d(u,u′) = h(u′)− h(u)−∇h(u)>(u′ − u). (2.20)

We need to be more specific about a few conditions to get a proper definition. First

of all, the function h(u) is strongly convex if and only if:

h(αu+(1−α)u′) ≤ αh(u)+(1−α)h(u′)−α(1−α)
σ

2
||u−u′||2, ∀u,u′, α ∈ [0, 1],

for some σ > 0, called the convexity parameter of h(·). In our setup, this function

can be constructed from strongly convex functions on each of the spaces W and Zi
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by a simple sum: h(u) = h(w) +
∑

i h(zi). It has a conjugate function defined as:

h∗(s)
.
= max

u∈U
[s>u− h(u)].

Since h(·) is strongly convex, h∗(u) is well-defined and differentiable at any s ∈ U∗.

We define its gradient set:

Ũ .
= {∇h∗(s) : s ∈ U∗}.

We further assume that h(·) is differentiable at any u ∈ Ũ . Given that it is also

strongly convex, for any two points u ∈ Ũ and u′ ∈ U , we have

h(u′) ≥ h(u) +∇h(u)>(u′ − u) +
σ

2
||u′ − u||2,

which shows that the Bregman divergence is always positive. Moreover, it motivates

the definition of the Bregman divergence (2.20) between u′ and u as the difference

between h(u′) and its linear approximation evaluated at u. The stronger the curvature

of h(·), the larger the divergence will scale with the Euclidean norm ||u′ − u||2.

Note that when || · || is the 2-norm, we can use h(u) = 1
2
||u||22, which has convexity

parameter σ = 1, and induces the usual squared Euclidean distance d(u,u′) = 1
2
||u−

u′||22. When || · || is the 1-norm, we can use the negative entropy h(u) = −H(u) (say

if U is a simplex), which also has σ = 1 and recovers the Kullback-Leibler divergence

d(u,u′) = KL(u′||u).

With these definitions, the convergence bound in Eq. (2.19) applies to the non-

Euclidean setup, but now the divergence radii are measured using Bregman divergence

and the Lipschitz constant is computed with respect to a different norm.
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Example 1: L1 regularization

Suppose W = {w : ||w||1 ≤ γ}. We can transform this constraint set into a simplex

constraint by the following variable transformation. Let w = w+ − w−, v0 = 1 −

||w||1/γ, and v
.
= (v0,w

+/γ,w−/γ). Then V = {v : v ≥ 0; 1>v = 1} corresponds to

W . We define h(v) as the negative entropy of v:

h(v) =
∑
d

vd log vd.

The resulting conjugate function and its gradient are given by

h∗(s) = log
∑
d

esd ;
∂h∗(s)

∂sd
=

esd∑
d e

sd
.

Hence, the gradient space of h∗(s) is the interior of the simplex, Ṽ = {v : v >

0; 1>v = 1}. The corresponding Bregman divergence is the standard Kullback-Leibler

divergence

d(v,v′) =
∑
d

v′d log
v′d
vd
, ∀v ∈ Ṽ ,v′ ∈ V ,

and the Bregman proximal step or projection, ṽ = Tη(v, s) = arg maxv′∈v[s>v′ −
1
η
d(v,v′)] is given by a multiplicative update:

ṽd =
vde

ηsd∑
d vde

ηsd
.

Note that we cannot choose ûv = (1,0,0) as the center of Ṽ—given that the

updates are multiplicative the algorithm will not make any progress in this case. In

fact, this choice is precluded by the constraint that ûv ∈ Ṽ , not just ûv ∈ V . A

reasonable choice is to set ûv to be the center of the simplex V , ûvd = 1
|V| = 1

2|W|+1
.

29



Chapter 2. Scalable Algorithm for Discriminative Structured Prediction

Example 2: tree-structured marginals

Consider the case in which each example i corresponds to a tree-structured Markov

network, and Zi is defined by the normalization and marginalization constraints in

Eq. (2.2) and Eq. (2.3) respectively. These constraints define the space of valid

marginals. For simplicity of notation, we assume that we are dealing with a single

example i and drop the explicit index i. Let us use a more suggestive notation for

the components of z: zj(α) = zjα and zjk(α, β) = zjkαβ. We can construct a natural

joint probability distribution via

Pz(y) =
∏
jk∈E

zjk(yj, yk)
∏
j∈V

(zj(yj))
1−qj ,

where qj is the number of neighbors of node j. Now z defines a point on the simplex

of joint distributions over Y , which has dimension |Y|. One natural measure of

complexity in this enlarged space is the 1-norm. We define h(z) as the negative

entropy of the distribution represented by z:

h(z) =
∑
jk∈E

∑
α∈Dj ,β∈Dk

zjk(α, β) log zjk(α, β) + (1− qj)
∑
j∈V

∑
α∈Dj

zj(α) log zj(α).

The resulting d(z, z′) is the Kullback-Leibler divergence KL(Pz′||Pz). The corre-

sponding Bregman step or projection operator, z̃ = Tη(z, s) = arg maxz′∈Z [s>z′ −
1
η
KL(Pz′||Pz)] is given by a multiplicative update on the space of distributions:

Pz̃(y) =
1

Z
Pz(y)eη[

∑
jk sjk(yj ,yk)+

∑
j sj(yj)]

=
1

Z

∏
jk

zjk(yj, yk)e
ηsjk(yj ,yk)

∏
j

(zj(yj))
1−qjeηsj(yj),

where we use the same indexing for the dual space vector s as for z and Z is a
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normalization constant. Hence, to obtain the projection z̃, we compute the node

and edge marginals of the distribution Pz̃(y) via the standard sum-product dynamic

programming algorithm using the node and edge potentials defined above. Note that

the form of the multiplicative update of the projection resembles that of exponentiated

gradient. As in the example above, we cannot let ûz be a corner (or any boundary

point) of the simplex since Z̃ does not include it. A reasonable choice for ûz would

be either the center of the simplex or a point near the target structure but in the

interior of the simplex.

2.5 Memory-efficient formulation

We now look at the memory requirements of the algorithm. The algorithm maintains

the vector sτ as well as the running average, ūτ , each with total dimensionality of

|W|+ |Z|. Note, however, that these vectors are related very simply by:

sτ = −
τ∑
t=0

(Fut − a) = −(τ + 1)(Fūτ − a).

So it suffices to only maintain the running average ūτ and reconstruct s as needed.

In problems in which the number of examples m is large, we can take advantage

of the fact that the memory needed to store the target structure yi is often much

smaller than the corresponding vector zi. For example, for word alignment, we need

O(|Vsi | log |V ti |) bits to encode a matching yi by using roughly logV ti bits per node in

Vsi to identify its match. By contrast, we need |Vsi ||V ti | floating numbers to maintain

zi. The situation is worse in context-free parsing, where a parse tree yi requires

space linear in the sentence length and logarithmic in grammar size, while |Zi| is the

product of the grammar size and the cube of the sentence length.

Note that from ūτ = (ūτw, ū
τ
z), we only care about ūτw, the parameters of the
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model, while the other component, ūτz, maintains the state of the algorithm. Fortu-

nately, we can eliminate the need to store ūz by maintaining it implicitly, at the cost

of storing a vector of size |W|. This allows us to essentially have the same small mem-

ory footprint of online-type learning methods, where a single example is processed

at a time and only a vector of parameters is maintained. In particular, instead of

maintaining the entire vector ūt and reconstructing st from ūt, we can instead store

only ūtw and stw between iterations, since

stzi = (t+ 1)(F>i ūtw + ci).

The diagram in Fig. 2.5 illustrates the process and the algorithm is summarized

in Fig. 2.6. We use two “temporary” variables vw and rw of size |W| to maintain

intermediate quantities. The additional vector qw shown in Fig. 2.5 is introduced

only to allow the diagram to be drawn in a simplified manner; it can be eliminated

by using sw to accumulate the gradients as shown in Fig. 2.6. The total amount of

memory needed is thus four times the number of parameters plus memory for a single

example (vzi ,uzi). We assume that we do not need to store ûzi explicitly but can

construct it efficiently from (xi,yi).

2.5.1 Kernels

Note that in case the dimensionality of the parameter space is much larger than the

dimensionality of Z, we can use a similar trick to only store variables of the size of z.

In fact, if W = {w : ||w||2 ≤ γ} and we use Euclidean projections onto W , we can

exploit kernels to define infinite-dimensional feature spaces and derive a kernelized

version of the algorithm.

For example, in the case of matchings of Sec. 2.2.3, we could define a kernel which
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Figure 2.5: Dependency diagram for memory-efficient dual extragradient algorithm. The
dotted box represents the computations of an iteration of the algorithm. Only ūtw and stw
are kept between iterations. Each example is processed one by one and the intermediate
results are accumulated as rw = rw − Fivzi + fi(yi) and qw = qw − Fiuzi + fi(yi).
Details shown in Fig. 2.6, except that intermediate variables uw and qw are only used
here for pictorial clarity.

Initialize: Choose û ∈ Ũ , sw = 0, ūw = 0, η = 1/L.
Iteration t, 0 ≤ t ≤ τ :

vw = Tη(ûw, sw); rw = 0.
Example i, 1 ≤ i ≤ m:

vzi = Tη(ûzi , t(F
>
i ūw + ci)); rw = rw − Fivzi + fi(yi);

uzi = Tη(vzi ,F
>
i vw + ci); sw = sw − Fiuzi + fi(yi).

ūw = tūw+Tη(vw,rw)

t+1
.

Output w = ūw.

Figure 2.6: Memory-efficient dual extragradient algorithm.
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depends on the features of an edge:

w =
∑
l

αlk(xl, ·) ,

where l ranges over all possible i, jk in the training set. Examples of quantities needed

in the dual extragradient algorithm are the edge scores vector:

F>i vw =

(∑
l

αlk(xl,xi,jk)

)
jk∈Ei

,

where αl’s are derived from vw, and the dual step direction:

stw = −(t+ 1)
[
Fiū

t
zi
− fi(yi)

]
= −(t+ 1)

[∑
i,jk

(ūti,jk − yi,jk)k(xi,jk, ·)

]
,

hence αi,jk = (t + 1)(yi,jk − ūti,jk) for stw. This direction step is then used for the

Euclidean projection on the ball W = {w : ||w||2 ≤ γ}, which is easily done with

kernels.

2.6 Experiments

In this section we describe experiments focusing on two of the structured models we

described earlier: bipartite matchings for word alignments and restricted potential

Markov nets for 3D segmentation.4 We compared three algorithms: the dual extragra-

dient (dual-ex), the averaged projected gradient (proj-grad) defined in Eq. (2.16),

and the averaged perceptron (Collins, 2002). For dual-ex and proj-grad, we used

4Software implementing our dual extragradient algorithm can be found at
http://www.cs.berkeley.edu/∼slacoste/research/dualex .
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Euclidean projections, which can be formulated as min-cost quadratic flow problems.

We used w = 0 and zi corresponding to yi as the centroid û in dual-ex and as the

starting point of proj-grad.

In our experiments, we consider standard L2 regularization, {||w||2 ≤ γ}. A

question which arises in practice is how to choose the regularization parameter γ.

The typical approach is to run the algorithm for several values of the regularization

parameter and pick the best model using a validation set. This can be quite expensive,

though, and several recent papers have explored techniques for obtaining the whole

regularization path, either exactly (Hastie et al., 2004), or approximately using path

following techniques (Rosset). Instead, we run the algorithm without regularization

(γ = ∞) and track its performance on the validation set, selecting the model with

best performance. For comparison, whenever feasible with the available memory, we

used commercial software to compute points on the regularization path. As we discuss

below, the dual extragradient algorithm approximately follows the regularization path

in our experiments (in terms of the training objective and test error) in the beginning

and the end of the range of γ and often performs better in terms of generalization

error in the mid-range.

2.6.1 Object segmentation

We tested our algorithm on a 3D scan segmentation problem using the class of Markov

networks with regular potentials that were described in Section 2.2.2. The dataset

is a challenging collection of cluttered scenes containing articulated wooden pup-

pets (Anguelov et al., 2005). It contains eleven different single-view scans of three

puppets of varying sizes and positions, with clutter and occluding objects such as

rope, sticks and rings. Each scan consists of around 7, 000 points. Our goal was to

segment the scenes into two classes—puppet and background. We use five of the scenes
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for our training data, three for validation and three for testing. Sample scans from

the training and test set can be seen at http://www.cis.upenn.edu/∼taskar/3DSegment/.

We computed spin images of size 10× 5 bins at two different resolutions, then scaled

the values and performed PCA to obtain 45 principal components, which comprised

our node features. We used the surface links output by the scanner as edges between

points and for each edge only used a single feature, set to a constant value of 1 for all

edges. This results in all edges having the same potential. The training data contains

approximately 37, 000 nodes and 88, 000 edges. We used standard Hamming distance

for our loss function `(yi,y
′
i).

We compared the performance of the dual extragradient algorithm along its un-

regularized path to solutions of the regularized problems for different settings of the

norm.5 For dual extragradient, the stepsize is set to η = 1/||F||2 ≈ 0.005. We also

compared to a variant of the averaged perceptron algorithm (Collins, 2002), where

we use the batch updates to stabilize the algorithm, since we only have five training

examples. We set the learning rate to 0.0007 by trying several values and picking the

best value based on the validation data.

In Fig. 2.7(a) we track the hinge loss on the training data:

∑
i

max
y′i∈Yi

[w>fi(y
′
i) + `i(y

′
i)]−w>fi(yi). (2.21)

The hinge loss of the regularization path (reg-path) is the minimum loss for a given

norm, and hence is always lower than the hinge loss of the other algorithms. However,

as the norm increases and the model approaches the unregularized solution, dual-ex

loss tends towards that of reg-path. Note that proj-grad behaves quite erratically in

the range of the norms shown. Fig. 2.7(b) shows the growth of the norm as a function

5We used CPLEX to solve the regularized problems and also to find the projections onto the
min-cut polytope, since the min-cost quadratic flow code we used (Guerriero and Tseng, 2002) does
not support negative flows on edges, which are needed in the formulation presented in Appendix 2.A.
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Figure 2.7: Object segmentation results: (a) Training hinge loss for the regularization
path (reg-path), the averaged projected gradient (proj-grad), the averaged percep-
tron (ave-perc) and unregularized dual extragradient (dual-ex) vs. the norm of the
parameters. (b) Norm of the parameters vs. iteration number for the three algorithms.
(c) Validation error vs. the norm of the parameters. (d) Test error vs. the norm of the
parameters.
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of iteration number for dual-ex and ave-perc. The unregularized dual extragradient

seems to explore the range of models (in terms on their norm) on the regularization

path more thoroughly than the averaged perceptron and eventually asymptotes to

the unregularized solution, while proj-grad quickly achieves very large norm.

Fig. 2.7(c) and Fig. 2.7(d) show validation and test error for the three algorithms.

The best validation and test error achieved by the dual-ex and ave-perc algorithms

as well as reg-path are fairly close, however, this error level is reached at very different

norms. Since the number of scenes in the validation and test data is very small (three),

because of variance, the best norm on validation is not very close to the best norm

on the test set. Selecting the best model on the validation set leads to test errors of

3.4% for dual-ex, 3.5% for ave-perc, 3.6% for reg-path and 3.8% for proj-grad

(proj-grad actually improves performance after the model norm is larger than 500,

which is not shown in the graphs).

2.6.2 Word alignment

We also tested our algorithm on word-level alignment using a data set from the 2003

NAACL set (Mihalcea and Pedersen, 2003), the English-French Hansards task. This

corpus consists of 1.1M pairs of sentences, and comes with a validation set of 37

sentence pairs and a test set of 447 word-aligned sentences. The validation and test

sentences have been hand-aligned (see Och and Ney, 2003) and are marked with both

sure and possible alignments. Using these alignments, the alignment error rate (AER)

is calculated as:

AER(A, S, P ) = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

,

where A is a set of proposed alignment pairs, S is the set of sure gold pairs, and P is

the set of possible gold pairs (where S ⊆ P ).

We experimented with two different training settings. In the first one, we split
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the original test set into 100 training examples and 347 test examples—this dataset

is called the ‘Gold’ dataset. In the second setting, we used GIZA++ (Och and Ney,

2003) to produce IBM Model 4 alignments for the unlabeled sentence pairs. We took

the intersection of the predictions of the English-to-French and French-to-English

Model 4 alignments on the first 5000 sentence pairs from the 1.1M sentences in order

to experiment with the scaling of our algorithm (training on 500, 1000 and 5000

sentences). The number of edges for 500, 1000 and 5000 sentences of GIZA++ were

about 31,000, 99,000 and 555,000 respectively. We still tested on the 347 Gold test

examples, and used the validation set to select the stopping point. The stepsize for

the dual extragradient algorithm was chosen to be 1/||F||2.

We used statistics computed on the 1.1M sentence pairs as the edge features for

our model. A detailed analysis of the constructed features and corresponding error

analysis is presented in Taskar et al. (2005b). Example features include: a measure of

mutual information between the two words computed from their co-occurrence in the

aligned sentences (Dice coefficient); the difference between word positions; character-

based similarity features designed to capture cognate (and exact match) information;

and identity of the top five most frequently occurring words. We used the structured

loss `(yi,y
′
i) defined in Eq. (2.10) with (c+, c-) = (1, 3) (where 3 was selected by testing

several values on the validation set). We obtained low recall when using equal cost

for both type of errors because the number of positive edges is significantly smaller

than the number of negative edges, and so it is safe (precision-wise) for the model to

predict fewer edges, hurting the recall. Increasing the cost for false negatives solves

this problem.

Fig. 2.8(a) and Fig. 2.8(e) compare the hinge loss of the regularization path with

the evolution of the objective for the unregularized dual extragradient, averaged pro-

jected gradient and averaged perceptron algorithms when trained on the Gold data
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Figure 2.8: Word alignment results: (a) Training hinge loss for the three different algorithms and the
regularization path on the Gold dataset. (b) AER for the unregularized dual extragradient (dual-ex) and
the regularization path (reg-path) on the 347 Gold sentences (test) and the validation set (valid)
when trained on the 100 Gold sentences; (c) Same setting as in (b), comparing dual-ex with the
averaged projected-gradient (proj-grad); (d) Same setting as in (b), comparing proj-grad with the
averaged perceptron (ave-perc); (e) Training hinge loss for dual-ex and reg-path on 500 and 1000
GIZA++ labeled sentences. (f) AER for dual-ex and reg-path tested on the Gold test set and trained
on 1000 and 5000 GIZA++ sentences. The graph for 500 sentences is omitted for clarity.
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set, 500 sentences and 1000 sentences of the GIZA++ output respectively.6 The dual

extragradient path appears to follow the regularization path closely for ||w|| ≤ 2 and

||w|| ≥ 12. Fig. 2.8(b) compares the AER on the test set along the dual extragradient

path trained on the Gold dataset versus the regularization path AER. The results on

the validation set for each path are also shown. On the Gold data set, the minimum

AER was reached roughly after 200 iterations.

Interestingly, the unregularized dual extragradient path seems to give better per-

formance on the test set than that obtained by optimizing along the regularization

path. The dominance of the dual extragradient path over the regularization path is

more salient in Fig. 2.8(f) for the case where both are trained on 1000 sentences from

the GIZA++ output. We conjecture that the dual extragradient method provides ad-

ditional statistical regularization (compensating for the noisier labels of the GIZA++

output) by enforcing local smoothness of the path in parameter space.

The averaged projected gradient performed much better for this task than segmen-

tation, getting somewhat close to the dual extragradient path as is shown in Fig. 2.8(c).

The online version of the averaged perceptron algorithm varied significantly with the

order of presentation of examples (up to five points of difference in AER between two

orders). To alleviate this, we randomize the order of the points at each pass over

the data. Fig. 2.8(d) shows that a typical run of averaged perceptron does somewhat

worse than dual extragradient. The variance of the averaged perceptron performance

for different datasets and learning rate choices was also significantly higher than for

dual extragradient, which is more stable numerically. The online version of the av-

eraged perceptron converged very quickly to its minimum AER score; converging in

as few as five iterations for the Gold training set. Selecting the best model on the

validation set leads to test errors of 5.6% for dual-ex, 5.6% for reg-path, 5.8% for

6 The regularization path is obtained by using the commercial optimization software Mosek with
the QCQP formulation of Eq. (2.15). We did not obtain the path in the case of 5000 sentences, as
Mosek runs out of memory.
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proj-grad and 6.1% for ave-perc on the Gold data training set.

The running time for 500 iterations of dual extragradient on a 3.4 Ghz Intel Xeon

CPU with 4G of memory was roughly 10 minutes, 30 minutes and 3 hours for 500,

1000 and 5000 sentences, respectively, showing the favorable linear scaling of the

algorithm (linear in the number of edges). Note, by way of comparison, that Mosek

ran out of memory for more than 1500 training sentences.

The framework we have presented here supports much richer models for word

alignment; for example, allowing finer-grained, feature-based fertility control (number

of aligned words for each word) as well as inclusion of positive correlations between

adjacent edges in alignments. We present these extensions in Chapter 3.

2.7 Related work and discussion

We consider in this section related work which sheds additional light on some prop-

erties of our algorithm. The approach presented in this chapter relied on two main

assumptions:

Tractable inference: That we can express the loss-augmented inference problem

(2.12) as an LP of tractable size. This in turns imposes related assumptions of

decomposability on the features f(x,y) and the structured loss `(y,y′).

Tractable projections: That we can compute the (possibly non-Euclidean) projec-

tion on W ×Z efficiently. We gave some examples in Sec. 2.4.2, but note that

supposing that the first assumption is satisfied, this requires solving a QP in the

worst case if we consider a Euclidean projection on a general polytope Z (rather

than the special cases we have considered in this paper for which the projection

was much more efficient). In this case though, the gain over the polynomial QP

formulation of equation (2.15) is less clear.
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By comparison, the SVMstruct algorithm of Tsochantaridis et al. (2005) uses a cut-

ting plane approach which needs only to solve the loss-augmented inference problem

efficiently (to find the maximally violated constraint in their exponential-size QP

which has the same solution as the large-margin objective of (2.15)). This inference

problem could be an LP, a dynamic program, or something else. Their algorithm

can thus in principle leverage more general losses and features. Moreover, Finley

and Joachims (2008) provided theory on the behavior of the algorithm when the

loss-augmented inference problem is solved approximately rather than exactly. On

the other hand, their algorithm needs O( 1
ε2

) iterations, in contrast to O(1
ε
) iteration

for our algorithm7, and with possibly much larger constants in theory. Moreover,

each iteration of their algorithm consists in solving a QP of increasing size (though

they can use warm start to mitigate the repetition), hence it is subject to the same

memory limitations as the QP formulation (2.15), and is not suitable for large-scale

learning on hundreds of thousands of examples. Unfortunately, we are not aware of

any empirical comparison between SVMstruct and either the dual extragradient or

the QP formulation (2.15), hence it is not yet clear to what extent these conceptual

considerations lead to significant differences in practice.

2.7.1 Online methods

Another approach to discriminative learning for structured prediction problems con-

sists of online learning methods. We recall in passing that we used a “poor’s man

regularization approach” in our experiments: rather than optimizing fully the large-

margin objective for different values of the regularization parameters γ, we initialized

the parameter at 0 and let our algorithm follow a path in the parameter space that

we found empirically to stay somewhat close to the true regularization path. In the

7Note that both ε have slightly different meanings for the two algorithms: for SVMstruct, ε
measures the maximum violation in the constraints, whereas our ε bounds the gap function (2.18).
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context of large-scale learning, Bottou and Bousquet (2008) gave a compelling ar-

gument to motivate this kind of approach: for practitioners who are not interested

in having an interpretable model, the goal is simply to minimize the generalization

error in minimal computation time. This time can either be allocated to running the

algorithm on more data (using a simple stochastic gradient technique for example),

or to reducing the optimization error on the given data (which doesn’t necessarily

reduce the statistical error). First-order optimization methods seem a good compro-

mise between the two goals. In our case, we also approximate the regularization path,

though focusing on the generalization error rather than than the exact optimization

along the path.

An example of a successful online learning method for structured prediction is

an extension of the MIRA algorithm of Crammer and Singer (2003) for structured

prediction (Crammer et al., 2005), which was applied for example to dependency

parsing (McDonald et al., 2005) and gene function prediction (Bernal et al., 2007).

They obtained similar results as the QP (2.15) (which is equivalent to the max-

margin Markov networks approach of Taskar et al. (2004b) for triangulated graphs)

on the smaller dataset for which the QP could be run. They also provide regret

bounds analyzing the convergence of a related version of their algorithm (see e.g.

Crammer et al., 2006), though the practical implementation of their algorithm uses

an approximate large-margin constraint only including the current k-best hypothesis

according to the current score, rather than the full exponential set.

Recently, Ratliff et al. (2007) proposed to use the simple subgradient algorithm

for structured prediction, which could be run either in batch mode or in online mode.

Their algorithm consists of doing simple subgradient steps on the regularized struc-

tured hinge-loss (equation (2.21) with the `2-norm of the parameter added). The

subgradient method is a generalization of gradient descent for non-differentiable con-

vex objectives, and has convergence rate of O( 1
ε2

) steps for diminishing step sizes
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under suitable regularity conditions – which are satisfied by the structured hinge loss

(see e.g. Boyd and Mutapcic, 2007, for a simple proof). Ratliff et al. (2007) also men-

tioned that the subgradient method with constant step size has linear convergence8,

but the rate of convergence is only to a (possibly large) ball around the true solution,

hence the rate here seems less meaningful. A subgradient of the hinge loss (2.21) (for

one example i) is simply given by a difference of feature vectors fi(y
∗)− fi(yi), where

y∗ is a solution to the loss-augmented inference problem. The online update for the

subgradient algorithm is thus quite similar to the perceptron algorithm, except it is

using a solution to the loss-augmented inference problem rather than basic inference

to compute the update direction as in the perceptron algorithm, and it contains as

well a regularization term. This small difference is enough to enable Ratliff et al.

(2007) to get better regret bounds and convergence guarantees than for the averaged

perceptron. Moreover, they also provide some theoretical analysis for the case where

approximate inference is used. Hence this approach seems to combine the generality

advantage of SVMstruct (which can use more general loss functions) with the scal-

ability advantage of the dual extragradient approach. Note that they have a slower

convergence rate of O( 1
ε2

), though. Interestingly, Shalev-Shwartz et al. (2007) were

able to prove that their subgradient-based algorithm called PEGASOS had O(1
ε
) rate,

using elegant proof techniques from Hazan et al. (2007). However, they only derived

this result for the binary SVM case, and it is unclear whether they could extend this

result to the structured prediction case. Finally, we note that we can take advantage

of a wider range of constraints onW efficiently by using the non-Euclidean version of

our algorithm. In particular, it can yield smaller Lipschitz constants and divergence

radii and thus faster convergence in theory.

8Linear convergence applies to the case of strongly convex functions – such as `2-norm regularized
convex losses e.g.
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2.8 Summary

We have presented a general and simple solution strategy for large-scale structured

prediction problems. Using a saddle-point formulation of the problem, we exploit

the dual extragradient algorithm, a simple gradient-based algorithm for saddle-point

problems (Nesterov, 2003). The factoring of the problem into optimization over the

feasible parameter space W and feasible structured output space Z allows easy inte-

gration of complex parameter constraints that arise in estimation of restricted classes

of Markov networks and other models.

Key to our approach is the recognition that the projection step in the extragradient

algorithm can be solved by network flow algorithms for matchings and min-cuts (and

dynamic programming for decomposable models). Network flow algorithms are among

the most well-developed algorithms in the field of combinatorial optimization, and

yield stable, efficient algorithmic platforms.

One of the key bottlenecks of large learning problems is the memory requirement

of the algorithm. We have derived a version of the algorithm that only uses storage

proportional to the number of parameters in the model, and is independent of the

number of examples. We have exhibited the favorable scaling of this overall approach

in two concrete, large-scale learning problems. It is also important to note that the

general approach extends and adopts to a much broader class of problems by allowing

the use of Bregman projections suitable to particular problem classes.
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Appendix 2.A Min-cut polytope projections

Consider projection for a single example i:

min
z

∑
j∈V

1

2
(z′j − zj)2 +

∑
jk∈E

1

2
(z′jk − zjk)2 (2.22)

s.t. 0 ≤ zj ≤ 1, ∀j ∈ V ; zj − zk ≤ zjk, zk − zj ≤ zjk, ∀jk ∈ E .

Let h+
j (zj) = 1

2
(z′j − zj)2 if 0 ≤ zj, else∞. We introduce non-negative Lagrangian

variables λjk, λkj for the two constraints for each edge jk and λj0 for the constraint

zj ≤ 1 each node j.

The Lagrangian is given by:

L(z, λ) =
∑
j∈V

h+
j (zj) +

∑
jk∈E

1

2
(z′jk − zjk)2 −

∑
j∈V

(1− zj)λj0

−
∑
jk∈E

(zjk − zj + zk)λjk −
∑
jk∈E

(zjk − zk + zj)λkj

Letting λ0j = λj0 +
∑

k:jk∈E(λjk − λkj) +
∑

k:kj∈E(λjk − λkj), note that

∑
j∈V

zjλ0j =
∑
j∈V

zjλj0 +
∑
jk∈E

(zj − zk)λjk +
∑
jk∈E

(zk − zj)λkj.

So the Lagrangian becomes:

L(z, λ) =
∑
j∈V

[
h+
j (zj) + zjλ0j − λj0

]
+
∑
jk∈E

[
1

2
(z′jk − zjk)2 − zjk(λjk + λkj)

]
.

Now, minimizing L(z, λ) with respect to z, we have

min
z
L(z, λ) =

∑
jk∈E

qjk(λjk + λkj) +
∑
j∈V

[q0j(λ0j)− λj0],
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where

qjk(λjk + λkj) = min
zjk

[
1

2
(z′jk − zjk)2 − zjk(λjk + λkj)

]
q0j(λ0j) = min

zj
[h+
j (zj) + zjλ0j].

The minimizing values of z are:

z∗j = arg min
zj

[
h+
j (zj) + zjλ0j

]
=

 0 λ0j ≥ z′j;

z′j − λ0j λ0j ≤ z′j;

z∗jk = arg min
zjk

[
1

2
(z′jk − zjk)2 − zjk(λjk + λkj)

]
= z′jk + λjk + λkj.

Hence, we have:

qjk(λjk + λkj) = −z′jk(λjk + λkj)−
1

2
(λjk + λkj)

2

q0j(λ0j) =

 1
2
z′j

2 λ0j ≥ z′j;

z′jλ0j − 1
2
λ2

0j λ0j ≤ z′j.

The dual of the projection problem is thus:

max
λ

∑
j∈V

[q0j(λ0j)− λj0] +
∑
jk∈E

[
−z′jk(λjk + λkj)−

1

2
(λjk + λkj)

2

]
(2.23)

s.t. λj0 − λ0j +
∑
jk∈E

(λjk − λkj) = 0, ∀j ∈ V ;

λjk, λkj ≥ 0, ∀jk ∈ E ; λj0 ≥ 0, ∀j ∈ V .

Interpreting λjk as flow from node j to node k, and λkj as flow from k to j and λj0, λ0j

as flow from and to a special node 0, we can identify the constraints of Eq. (2.23) as

conservation of flow constraints. The last transformation we need is to address the

presence of cross-terms λjkλkj in the objective. Note that in the flow conservation
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constraints, λjk, λkj always appear together as λjk − λkj. Since we are minimizing

(λjk +λkj)
2 subject to constraints on λjk−λkj, at least one of λjk, λkj will be zero at

the optimum and the cross-terms can be ignored. Note that all λ variables are non-

negative except for λ0j’s. Many standard flow packages support this problem form,

but we can also transform the problem to have all non-negative flows by introducing

extra variables. The final form has a convex quadratic cost for each edge:

min
λ

∑
j∈V

[−q0j(λ0j) + λj0] +
∑
jk∈E

[
z′jkλjk +

1

2
λ2
jk

]
+
∑
jk∈E

[
z′jkλkj +

1

2
λ2
kj

]
(2.24)

s.t. λj0 − λ0j +
∑
jk∈E

(λjk − λkj) = 0, ∀j ∈ V ;

λjk, λkj ≥ 0, ∀jk ∈ E ; λj0 ≥ 0, ∀j ∈ V .
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Chapter 3

Word Alignment via Quadratic

Assignment

In the previous chapter, we presented a general formulation for large margin learning

of structured output models for which we also had an efficient optimization algorithm.

An example of application was the word alignment problem from machine translation.

In this chapter, we focus on this application and show how we can obtain state-of-

the-art results by designing our model more carefully, while still staying inside the

large margin learning framework for structured prediction.

3.1 Background

Word alignment is a key component of most end-to-end statistical machine transla-

tion systems. The standard approach to word alignment is to construct directional

generative models (Brown et al., 1990; Och and Ney, 2003), which produce a sen-

tence in one language given the sentence in another language. While these models

require sentence-aligned bitexts, they can be trained with no further supervision, us-

ing EM. Generative alignment models do, however, have serious drawbacks. First,
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they require extensive tuning and processing of large amounts of data which, for the

better-performing models, is a non-trivial resource requirement. Second, conditioning

on arbitrary features of the input is difficult; for example, we would like to condition

on the orthographic similarity of a word pair (for detecting cognates), the presence

of that pair in various dictionaries, the similarity of the frequency of its two words,

choices made by other alignment systems, and so on.

Recently, Moore (2005) proposed a discriminative model in which pairs of sen-

tences (e, f) and proposed alignments a are scored using a linear combination of

arbitrary features computed from the tuples (a, e, f). While there are no restrictions

on the form of the model features, the problem of finding the highest scoring align-

ment is very difficult and involves heuristic search. Moreover, the parameters of the

model must be estimated using averaged perceptron training (Collins, 2002), which

can be unstable. In contrast, in the approach we presented in Sec. 2.2.3 (and also

described in Taskar et al. (2005b)), we cast word alignment as a maximum weighted

matching problem, in which each pair of words (ej, fk) in a sentence pair (e, f) is

associated with a score sjk(e, f) reflecting the desirability of the alignment of that

pair. Importantly, this approach is computationally tractable. The alignment for the

sentence pair is the highest scoring matching under constraints (such as the constraint

that matchings be one-to-one). The scoring model sjk(e, f) can be based on a rich

feature set defined on word pairs (ej, fk) and their context, including measures of

association, orthography, relative position, predictions of generative models, etc. The

parameters of the model are estimated within the framework of large-margin estima-

tion; in particular, the problem turns out to reduce to the solution of a (relatively)

small quadratic program (QP) or can be solved as a saddle-point formulation which

can be scaled to large datasets. We also showed that large-margin estimation is both

more stable and more accurate than perceptron training.

While the bipartite matching approach is a useful first step in the direction of
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discriminative word alignment, for discriminative approaches to compete with and

eventually surpass the most sophisticated generative models, it is necessary to con-

sider more realistic underlying statistical models. Note in particular two substantial

limitations of the bipartite matching model that we presented in Sec. 2.2.3: words

have fertility of at most one, and there is no way to incorporate pairwise interac-

tions among alignment decisions. Moving beyond these limitations—while retaining

computational tractability—is the next major challenge for discriminative word align-

ment.

In this chapter, we show how to overcome both limitations. First, we introduce a

parameterized model that penalizes different levels of fertility. While this extension

adds very useful expressive power to the model, it turns out not to increase the

computational complexity of the aligner, for either the prediction or the parameter

estimation problem. Second, we introduce a more thoroughgoing extension which

incorporates first-order interactions between alignments of consecutive words into the

model. We do this by formulating the alignment problem as a quadratic assignment

problem (QAP), where in addition to scoring individual edges, we also define scores

of pairs of edges that connect consecutive words in an alignment. The predicted

alignment is the highest scoring quadratic assignment.

QAP is an NP-hard problem, but in the range of problem sizes that we need to

tackle, the problem can be solved efficiently. In particular, using standard off-the-shelf

integer program solvers, we are able to solve the QAP problems in our experiments

in under a second. Moreover, the parameter estimation problem can also be solved

efficiently by making use of a linear relaxation of QAP for the min-max formulation

of large-margin estimation (Taskar, 2004).

We show that these two extensions yield significant improvements in error rates

when compared to the bipartite matching model. The addition of a fertility model
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improves the AER1 by 0.4. Modeling first-order interactions improves the AER by

1.8. Combining the two extensions results in an improvement in AER of 2.3, yielding

alignments of better quality than intersected IBM Model 4. Moreover, including

predictions of bi-directional IBM Model 4 and model of Liang et al. (2006) as features,

we achieve an absolute AER of 3.8 on the English-French Hansards alignment task—

the best AER result published on this task to date.

3.2 Models

Recall the maximum weight bipartite matching model for word alignment of Sec. 2.2.3.

Nodes V = Vs ∪ V t correspond to words in the “source” (Vs) and “target” (V t)

sentences, and edges E = {jk : j ∈ Vs, k ∈ V t} correspond to alignments between

word pairs.2 The edge weights sjk represent the degree to which word j in one sentence

can be translated using the word k in the other sentence. The predicted alignment is

chosen by maximizing the sum of edge scores. A matching is represented using a set

of binary variables yjk that are set to 1 if word j is assigned to word k in the other

sentence, and 0 otherwise. The score of an assignment is the sum of edge scores:

s(y) =
∑

jk sjkyjk. In our base model, we had assumed that each word aligns to one

or zero words in the other sentence; we revisit the issue of fertility in the next section.

Recall that the maximum weight bipartite matching problem, arg maxy∈Y s(y), can

be solved using combinatorial algorithms for min-cost max-flow, expressed in a linear

1AER was defined in Sec. 2.6.2 and will be expressed in percent in this chapter for convenience.
2The source/target designation is arbitrary, as the models considered below are all symmetric.
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programming (LP) formulation as follows:

max
0≤z≤1

∑
jk∈E

sjkzjk (3.1)

s.t.
∑
j∈Vs

zjk ≤ 1, ∀k ∈ V t;
∑
k∈Vt

zjk ≤ 1, ∀j ∈ Vs,

where the continuous variables zjk are a relaxation of the corresponding binary-valued

variables yjk. This LP is guaranteed to have integral (and hence optimal) solutions

for any scoring function s(y) (Schrijver, 2003). Note that although the above LP can

be used to compute alignments, combinatorial algorithms are generally more efficient.

For example, in Fig. 3.1(a), we show a standard construction for an equivalent min-

cost flow problem. However, we build on this LP to develop our extensions to this

model below. Representing the prediction problem as an LP or an integer LP provides

a precise (and concise) way of specifying the model and allows us to use the large-

margin framework of Taskar (2004) that we reviewed in Sec. 2.3. As before, we let

sjk = w>f(xjk) for a feature mapping f which can include the identity of the two

words, their relative positions in their respective sentences, their part-of-speech tags,

their string similarity (for detecting cognates), and so on.

3.2.1 Fertility

An important limitation of the model in Eq. (3.1) is that in each sentence, a word can

align to at most one word in the translation. Although it is common that words have

gold fertility zero or one, it is certainly not always true. Consider, for example, the

bitext fragment shown in Fig. 3.2(a), where backbone is aligned to the phrase épine

dorsal. In this figure, outlines are gold alignments, square for sure alignments, round

for possibles, and filled squares are target alignments (for details on gold alignments,

see Sec. 3.4). When considering only the sure alignments on the standard Hansards
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(a) (b) (c)

Figure 3.1: (a) Maximum weight bipartite matching as min-cost flow. Diamond-shaped
nodes represent flow source and sink. All edge capacities are 1, with edges between round
nodes (j, k) have cost −sjk, edges from source and to sink have cost 0. (b) Expanded
min-cost flow graph with new edges from source and to sink that allow fertility of up to
3. The capacities of the new edges are 1 and the costs are 0 for solid edges from source
and to sink, s2j•, s2•k for dashed edges, and s3j•, s3•k for dotted edges. (c) Three types
of pairs of edges included in the QAP model, where the nodes on both sides correspond
to consecutive words.

dataset, 7 percent of the word occurrences have fertility 2, and 1 percent have fertility

3 and above; when considering the possible alignments high fertility is much more

common—31 percent of the words have fertility 3 and above.

One simple fix to the original matching model is to increase the right hand sides for

the constraints in Eq. (3.1) from 1 to D, where D is the maximum allowed fertility.

However, this change results in an undesirable bimodal behavior, where maximum

weight solutions either have all words with fertility 0 or D, depending on whether

most scores sjk are positive or negative. For example, if scores tend to be positive,

most words will want to collect as many alignments as they are permitted. What

the model is missing is a means for encouraging the common case of low fertility (0

or 1), while allowing higher fertility when it is licensed. This end can be achieved

by introducing a penalty for having higher fertility, with the goal of allowing that

penalty to vary based on features of the word in question (such as its frequency or

identity).

In order to model such a penalty, we introduce indicator variables zdj• (and zd•k)
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Figure 3.2: An example fragment that requires fertility greater than one to correctly label.
(a) The guess of the baseline M model. (b) The guess of the M+F fertility-augmented
model.

with the intended meaning: node j has fertility of at least d (and node k has fertility

of at least d). In the following LP, we introduce a penalty of
∑

2≤d≤D sdj•zdj• for

fertility of node j, where each term sdj• ≥ 0 is the penalty increment for increasing

the fertility from d− 1 to d:

max
0≤z≤1

∑
jk∈E

sjkzjk −
∑

j∈Vs,2≤d≤D

sdj•zdj• −
∑

k∈Vt,2≤d≤D

sd•kzd•k (3.2)

s.t.
∑
j∈Vs

zjk ≤ 1 +
∑

2≤d≤D

zd•k, ∀k ∈ V t;∑
k∈Vt

zjk ≤ 1 +
∑

2≤d≤D

zdj•, ∀j ∈ Vs.

We can show that this LP always has integral solutions by a reduction to a min-

cost flow problem. The construction is shown in Fig. 3.1(b). To ensure that the new
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Figure 3.3: An example fragment with a monotonic gold alignment. (a) The guess of the
baseline M model. (b) The guess of the M+Q quadratic model.

variables have the intended semantics, we need to make sure that sdj• ≤ sd′j• if d ≤ d′,

so that the lower cost zdj• is used before the higher cost zd′j• to increase fertility. This

restriction implies that the penalty must be monotonic and convex as a function of

the fertility.

To anticipate the results that we report in Sec. 3.4, adding fertility to the basic

matching model makes the target alignment of the backbone example feasible and, in

this case, the model correctly labels this fragment as shown in Fig. 3.2(b).

3.2.2 First-order interactions

An even more significant limitation of the model in Eq. (3.1) is that the edges inter-

act only indirectly through the competition induced by the constraints. Generative

alignment models like the HMM model (Vogel et al., 1996) and IBM models 4 and

above (Brown et al., 1990; Och and Ney, 2003) directly model correlations between
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alignments of consecutive words (at least on one side). For example, Fig. 3.3 shows

a bitext fragment whose gold alignment is strictly monotonic. This monotonicity is

quite common – 46% of the words in the hand-aligned data diagonally follow a previ-

ous alignment in this way. We can model the common local alignment configurations

by adding bonuses for pairs of edges. For example, strictly monotonic alignments

can be encouraged by boosting the scores of edges of the form 〈(j, k), (j + 1, k + 1)〉.

Another trend, common in English-French translation (7% on the hand-aligned data),

is the local inversion of nouns and adjectives, which typically involves a pair of edges

〈(j, k + 1), (j + 1, k)〉. Finally, a word in one language is often translated as a phrase

(consecutive sequence of words) in the other language. This pattern involves pairs of

edges with the same origin on one side: 〈(j, k), (j, k + 1)〉 or 〈(j, k), (j + 1, k)〉. All

three of these edge pair patterns are shown in Fig. 3.1(c). Note that the set of such

edge pairs Q = {jklm : |j − l| ≤ 1, |k − m| ≤ 1} is of linear size in the number of

edges.

Formally, we add to the model variables zjklm which indicate whether both edge

jk and lm are in the alignment. We also add a corresponding score sjklm, which we

assume to be non-negative, since the correlations we described are positive. (Negative

scores can also be used, but the resulting formulation we present below would be

slightly different.) To enforce the semantics zjklm = zjkzlm, we use a pair of constraints

zjklm ≤ zjk; zjklm ≤ zlm. Since sjklm is positive, at the optimum, zjklm = min(zjk, zlm).

If in addition zjk, zlm are integral (0 or 1), then zjklm = zjkzlm. Hence, solving the

following mixed integer program will find the optimal quadratic assignment for our
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model (called the QAP model hereafter):

max
z∈{0,1}

∑
jk∈E

sjkzjk +
∑

jklm∈Q

sjklmzjklm (3.3)

s.t.
∑
j∈Vs

zjk ≤ 1, ∀k ∈ V t;
∑
k∈Vt

zjk ≤ 1, ∀j ∈ Vs;

zjklm ≤ zjk, zjklm ≤ zlm, ∀jklm ∈ Q.

Note that we can also combine this extension with the fertility extension described

above.

To once again anticipate the results presented in Sec. 3.4, our baseline model of

Chapter 2 makes the prediction given in Fig. 3.3(a) because the two missing align-

ments are atypical translations of common words. With the addition of edge pair

features, the overall monotonicity pushes the alignment to that of Fig. 3.3(b).

3.3 Parameter estimation

To estimate the parameters of our model, we follow the large-margin formulation

ofSec. 2.3. Our input is a set of training instances {(xi,yi)}mi=1, where each instance

consists of a sentence pair xi and a target alignment yi. We would like to find parame-

ters w that predict correct alignments on the training data: yi = arg max
y′i∈Yi

w>f(xi,y
′
i)

for each i, where Yi is the space of matchings for the sentence pair xi with appropriate

fertility constraints depending on which which model we are using.

In standard classification problems, we typically measure the error of prediction,

`(yi,y
′
i), using the simple 0-1 loss. In structured problems, where we are jointly

predicting multiple variables, the loss is often more complex. While the F-measure

is a natural loss function for this task, we instead chose a sensible surrogate that

fits better in our framework: weighted Hamming distance, which counts the number
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of variables in which a candidate solution y′ differs from the target output y, with

different penalty for false positives (c+) and false negatives (c-):

`(y,y′) =
∑
jk

[
c+(1− yjk)y′jk + c-(1− y′jk)yjk

]
.

Following the notation of Sec. 2.3, we estimate the parameters w by minimizing

an SVM-like hinge upper bound on the total structured loss
∑

i ` (yi, hw(xi)):

min
||w||≤γ

∑
i

max
y′i∈Yi

[w>fi(y
′
i) + `i(y

′
i)]−w>fi(yi), (3.4)

where γ is a regularization parameter.

In this form, the estimation problem is a mixture of continuous optimization

over w and combinatorial optimization over yi. In order to transform it into a more

standard optimization problem, we need a way to efficiently handle the loss-augmented

inference, maxy′i∈Yi [w
>fi(y

′
i) + `i(y

′
i)]. This optimization problem has precisely the

same form as the prediction problem whose parameters we are trying to learn —

maxy′i∈Yi w
>fi(y

′
i) — but with an additional term corresponding to the loss function.

Our assumption that the loss function decomposes over the edges is crucial to solving

this problem. As in Sec. 2.3, the prediction problems (3.1) and (3.2) as well as the

relaxed form of (3.3) are LPs and hence we can express the loss-augmented inference

as an LP for each example i:

max
y′i∈Yi

w>fi(y
′
i) + `i(y

′
i) = di + max

zi∈Zi
(F>i w + ci)

>zi, (3.5)

for appropriately defined di, ci, Fi and Zi encoding the corresponding LP of Sec. 3.2.

For example for the first order interaction model (3.3), zi is a stacked vector of the

edge variables zi,jk for jk ∈ Ei and the pair of edges variables zi,jklm for jklm ∈ Qi;
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Zi is the convex polytope defined by the linear constraints of (3.3) (excluding the

integer constraints); Fi is a matrix whose first columns are the features f(xi,jk) for

each edge in example i and last columns are the features f(xi,jklm) for each pair of

edges in Qi; di =
∑

jk c
-yi,jk and ci is the vector of the loss terms c+ − (c- + c+)yi,jk,

padded with zeros for the jklm components. Plugging (3.5) back into the estimation

equation (3.4) and using the notation of Sec. 2.3 yields the saddle-point formulation:

min
||w||≤γ

max
z∈Z

∑
i

(
w>Fizi + c>i zi −w>fi(yi)

)
(3.6)

where we have omitted the constant term
∑

i di. This formulation is equivalent

to (3.4) for the basic and fertility models, and for the QAP model (3.3) if we add

an integer constraint in the definition of Zi. For the relaxed Zi without the integer

constraint, it corresponds to minimizing an upper bound on (3.4), as each LP gives

an upper bound on the corresponding integer program.

At this point, we could proceed to use the dual extragradient optimization method

of Sec. 2.4 which enables us to train our model on hundreds of thousands of sentences.

This is possible for both the basic model (3.1) and the fertility model (3.2) as their

LP can be represented as a min-cost network flow problem, enabling us to use the

efficient projection methods presented in Sec. 2.4.1.2. On the other hand, we don’t

know how to reduce the QAP formulation (3.3) to a flow formulation, hence a standard

QP solver would be needed for the (relaxed) form of the projection, or a quadratic

integer solver for the exact formulation. Modern off-the-shelf solvers such as MOSEK

or CPLEX can solve these efficiently for small problem sizes, even though the QAP

problem is NP-complete. For simplicity of comparison of different models though, we

opted to use the Quadratically Constrained Quadratic Program (QCQP) formulation

given in equation (2.15), obtained by dualizing the LPs in (3.6). This formulation is
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Figure 3.4: An example fragment with several multiple fertility sure alignments. (a) The
guess of the M+Q model with maximum fertility of one. (b) The guess of the M+Q+F
quadratic model with fertility two permitted. (c) The guess of the M+Q+F model with
lexical fertility features.

exact for the basic and fertility model, and corresponds to minimizing an upper bound

on the true hinge loss for the QAP model. Using the LP relaxation for the large-

margin QCQP formulation is an approximation, but as our experiments indicate, this

approximation is very effective. At testing time, though, we use the integer LP to

predict alignments3.

3.4 Experiments

We applied our algorithms to word-level alignment using the English-French Hansards

data described in Sec. 2.2.3. We also use the alignment error rate (AER) as our evalu-

ation metric. Fig. 3.4 illustrates the annotation for the dataset: proposed alignments

are shown against gold alignments, with open squares for sure alignments, rounded

3When training on 200 sentences, the QCQP we obtain contains roughly 700K variables and 300K
constraints and is solved in roughly 10 minutes on a 2.8 GHz Pentium 4 machine using MOSEK.
Aligning the whole training set with the flow formulation takes a few seconds, whereas using the
integer programming (for the QAP formulation) takes 1-2 minutes.
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open squares for possible alignments, and filled black squares for proposed alignments.

The input to our algorithm is a small number of labeled examples. In order to

make our results more comparable with Moore (2005), we split the original set into

200 training examples and 247 test examples. We also trained on only the first 100

to make our results more comparable with the experiments of Och and Ney (2003),

in which IBM model 4 was tuned using 100 sentences. In all our experiments, we

used a structured loss function that penalized false negatives 10 times more than

false positives, where the value of 10 was picked by using a validation set. The

regularization parameter γ was also chosen using the validation set. Our code is

available from http://www.cs.berkeley.edu/∼slacoste/research/qap/.

3.4.1 Features and results

We parameterized all scoring functions sjk, sdj•, sd•k and sjklm as weighted linear

combinations of feature sets. The features were computed from the large unlabeled

corpus of 1.1M automatically aligned sentences.

In the remainder of this section we describe the improvements to the model per-

formance as various features are added. One of the most useful features for the

basic matching model is, of course, the set of predictions of IBM model 4. However,

computing these features is very expensive and we would like to build a competitive

model that doesn’t require them. Instead, we made significant use of IBM model 2 as

a source of features. This model, although not very accurate as a predictive model,

is simple and cheap to construct and it is a useful source of features.

3.4.1.1 The Basic Matching Model: Edge Features

In the basic matching model of Sec. 2.2.3, called m here, one can only specify features

on pairs of word tokens, i.e. alignment edges. These features include word association,
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orthography, proximity, etc., and are documented in more details in Taskar et al.

(2005b). We also augment those features with the predictions of IBM Model 2 run

on the training and test sentences. We provided features for model 2 trained in each

direction, as well as the intersected predictions, on each edge. By including the IBM

Model 2 features, the performance of the model described in Taskar et al. (2005b)

on our test set (trained on 200 sentences) improves from 10.0 AER to 8.2 AER,

outperforming unsymmetrized IBM Model 4 (but not intersected model 4).

As an example of the kinds of errors the baseline m system makes, see Fig. 3.2

(where multiple fertility cannot be predicted), Fig. 3.3 (where a preference for mono-

tonicity cannot be modeled), and Fig. 3.4 (which shows several multi-fertile cases).

3.4.1.2 The Fertility Model: Node Features

To address errors like those shown in Fig. 3.2, we increased the maximum fertility

to two using the parameterized fertility model of Sec. 3.2.1. The model learns costs

on the second flow arc for each word via features not of edges but of single words.

The score of taking a second match for a word w was based on the following features:

a bias feature, the proportion of times w’s type was aligned to two or more words

by IBM model 2, and the bucketed frequency of the word type. This model was

called m+f. We also included a lexicalized feature for words which were common in

our training set: whether w was ever seen in a multiple fertility alignment (more on

this feature later). This enabled the system to learn that certain words, such as the

English not and French verbs like aurait commonly participate in multiple fertility

configurations.

Table 3.1 show the results using the fertility extension. Adding fertility lowered

AER from 8.5 to 8.1, though fertility was even more effective in conjunction with the

quadratic features below. The m+f setting was even able to correctly learn some

multiple fertility instances which were not seen in the training data, such as those
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shown in Fig. 3.2.

3.4.1.3 The First-Order Model: Quadratic Features

With or without the fertility model, the model makes mistakes such as those shown

in Fig. 3.3, where atypical translations of common words are not chosen despite their

local support from adjacent edges. In the quadratic model, we can associate features

with pairs of edges. We began with features which identify each specific pattern,

enabling trends of monotonicity (or inversion) to be captured. We also added to each

edge pair the fraction of times that pair’s pattern (monotonic, inverted, one to two)

occurred according each version of IBM model 2 (forward, backward, intersected).

Table 3.1 shows the results of adding the quadratic model. m+q reduces error

over m from 8.5 to 6.7 (and fixes the errors shown in Fig. 3.3). When both the fertility

and quadratic extensions were added, AER dropped further, to 6.2. This final model

is even able to capture the diamond pattern in Fig. 3.4; the adjacent cycle of align-

ments is reinforced by the quadratic features which boost adjacency. The example in

Fig. 3.4 shows another interesting phenomenon: the multi-fertile alignments for not

and député are learned even without lexical fertility features (Fig. 3.4b), because the

Dice coefficients of those words with their two alignees are both high. However the

surface association of aurait with have is much higher than with would. If, however,

lexical features are added, would is correctly aligned as well (Fig. 3.4c), since it is

observed in similar periphrastic constructions in the training set.

We have avoided using expensive-to-compute features like IBM model 4 predic-

tions up to this point. However, if these are available, our model can improve further.

By adding model 4 predictions to the edge features, we get a relative AER reduction

of 27%, from 6.5 to 4.5. By also including as features the posteriors of the model

of Liang et al. (2006), we achieve AER of 3.8, and 96.7/95.5 precision/recall.

It is comforting to note that in practice, the burden of running an integer linear
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Model Prec Rec AER

Generative
IBM 2 (E→F) 73.6 87.7 21.7
IBM 2 (F→E) 75.4 87.0 20.6
IBM 2 (intersected) 90.1 80.4 14.3
IBM 4 (E→F) 90.3 92.1 9.0
IBM 4 (F→E) 90.8 91.3 9.0
IBM 4 (intersected) 98.0 88.1 6.5

Discriminative (100 sentences)
Matching (M) 94.1 88.5 8.5
M + Fertility (F) 93.9 89.4 8.1
M + Quadratic (Q) 94.4 91.9 6.7
M + F + Q 94.8 92.5 6.2
M + F + Q + IBM4 96.4 94.4 4.5
M + F + Q + IBM4 + Liang 96.7 95.5 3.8

Discriminative (200 sentences)
Matching (M) 93.4 89.7 8.2
M + Fertility (F) 93.6 90.1 8.0
M + Quadratic (Q) 95.0 91.1 6.8
M + F + Q 95.2 92.4 6.1
M + F + Q + IBM4 96.0 95.0 4.4

Table 3.1: AER results on the Hansards task.

program at test time can be avoided. We experimented with using just the LP

relaxation and found that on the test set, only about 20% of sentences have fractional

solutions and only 0.2% of all edges are fractional. Simple rounding of each edge value

in the LP solution achieves the same AER as the integer LP solution, while using

about a third of the computation time on average.

3.5 Summary

We have shown that the discriminative approach to word alignment can be extended

to allow flexible fertility modeling and to capture first-order interactions between

alignments of consecutive words. These extensions significantly enhance the expres-
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sive power of the discriminative approach; in particular, they make it possible to

capture phenomena of monotonicity, local inversion and contiguous fertility trends—

phenomena that are highly informative for alignment. They do so while remaining

computationally efficient in practice both for prediction and for parameter estimation.

Our best model achieves a relative AER reduction of 25% over the basic match-

ing formulation, beating intersected IBM Model 4 without the use of any compute-

intensive features. Including Model 4 predictions as features, we achieve a further

relative AER reduction of 32% over intersected Model 4 alignments. By also includ-

ing predictions of another model, we drive AER down to 3.8. An important question

left for future work is whether the improvement in AER results in better translation

BLEU score. Allowing higher fertility and optimizing a recall biased cost function

provide a significant increase in recall relative to the intersected IBM model 4 (from

88.1% to 94.4%), with only a small degradation in precision. We view this as a

particularly promising aspect of our work, given that phrase-based machine transla-

tion systems such as Pharaoh (Koehn et al., 2003) perform better with higher recall

alignments.
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Chapter 4

DiscLDA: Discriminative

Dimensionality Reduction for

Classification

In the two previous chapters, we saw how the combinatorial structure of structured

prediction problems could be exploited to obtain efficient discriminative learning ap-

proaches with better predictive performance than the previous generative learning

models. In this chapter, we focus our attention to a different type of structure that

we would like to exploit with our discriminative learning toolbox: a latent-variable

representation of the inputs. The question we have in mind is how one can com-

bine the useful interpretability of a generative model on the inputs, while preserving

discriminative power for a classification task. This question can be approached from

several directions. In this thesis, we explore it from the point of view of discriminative

dimensionality reduction.
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4.1 Background

Dimensionality reduction is a common and often necessary step in many machine

learning applications and high-dimensional data analyses. There is a rich history

and literature on the subject, ranging from classical linear methods such as principal

component analysis (PCA) and Fisher discriminant analysis (FDA) to a variety of

nonlinear procedures such as kernelized versions of PCA and FDA as well as manifold

learning algorithms.

A recent trend in dimensionality reduction is to focus on probabilistic models.

These models, which include generative topological mapping, factor analysis, inde-

pendent component analysis and probabilistic latent semantic analysis (pLSA), are

generally specified in terms of an underlying independence assumption or low-rank as-

sumption. The models are generally fit with maximum likelihood, although Bayesian

methods are sometimes used. In particular, Latent Dirichlet Allocation (LDA) is a

Bayesian model in the spirit of pLSA that models each data point (e.g., a document)

as a collection of draws from a mixture model in which each mixture component

is known as a topic (Blei et al., 2003). The mixing proportions across topics are

document-specific, and the posterior distribution across these mixing proportions

provides a reduced representation of the document. This model has been used suc-

cessfully in a number of applied domains, including information retrieval, vision and

bioinformatics (Griffiths and Steyvers, 2004; Berg et al., 2004).

These dimensionality reduction methods are entirely unsupervised. Another branch

of research, known as sufficient dimension reduction (SDR), aims at making use of

supervisory data in dimension reduction (Chiaromonte and Cook, 2002; Fukumizu

et al., 2009). For example, we may have class labels or regression responses at our

disposal. The goal of SDR is then to identify a subspace or other low-dimensional

object that retains as much information as possible about the supervisory signal.
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Having reduced dimensionality in this way, one may wish to subsequently build a

classifier or regressor in the reduced representation. But there are other goals for

the dimension reduction as well, including visualization, domain understanding, and

domain transfer (i.e., predicting a different set of labels or responses).

In this chapter, we aim to combine these two lines of research and consider a

supervised form of LDA. In particular, we wish to incorporate side information such

as class labels into LDA, while retaining its favorable unsupervised dimensionality

reduction abilities. The goal is to develop parameter estimation procedures that

yield LDA topics that characterize the corpus and maximally exploit the predictive

power of the side information.

As a parametric generative model, parameters in LDA are typically estimated by

maximum likelihood estimation or Bayesian posterior inference. Such estimates are

not necessarily optimal for yielding representations for prediction and regression. In

this chapter, we use a discriminative learning criterion—conditional likelihood—to

train a variant of the LDA model. Moreover, we augment the LDA parameterization

by introducing class-label-dependent auxiliary parameters that can be tuned by the

discriminative criterion. By retaining the original LDA parameters and introducing

these auxiliary parameters, we are able to retain the interpretability advantages of

the likelihood-based training procedure and provide additional freedom for tracking

the side information.

The rest of the chapter is organized as follows. In Sec. 4.2, we introduce the dis-

criminatively trained LDA (DiscLDA) model and contrast it to other related variants

of LDA models. In Sec. 4.3, we describe our approach to parameter estimation for

the DiscLDA model. In Sec. 4.4, we report empirical results on applying DiscLDA to

model text documents. We discuss related work and some caveats about our model

in Sec. 4.5. Finally, we present our conclusions in Sec. 4.6.
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4.2 Model

We start by reviewing the LDA model (Blei et al., 2003) for topic modeling. We then

describe our extension to LDA that incorporates class-dependent auxiliary parame-

ters. These parameters are to be estimated based on supervised information provided

in the training data set.

4.2.1 LDA

The LDA model is a generative process where each document in the text corpus is

modeled as a set of draws from a mixture distribution over a set of hidden topics. A

topic is modeled as a probability distribution over words. A document d is modeled

as an exchangeable sequence of Nd words denoted by wd = (wd1, . . . , wdNd). The

generative process for this vector is illustrated in Fig. 4.1 and has three steps:

1. the document is first associated with a K-dimensional topic mixing vector θd

which is drawn from a Dirichlet distribution, θd ∼ Dir (α);

2. before generating each word wdn, we first first choose its topic zdn drawn from

the multinomial variable, zdn ∼ Multi (θd);

3. finally, the word wdn is drawn from the corresponding topic φzdn ; it is a V -

dimensional multinomial variable, wdn ∼ Multi
(
φzdn

)
, where V is the size of

the vocabulary.

Given a set of documents, {wd}Dd=1, the principal task is to estimate the parame-

ters {φk}Kk=1. This can be done by maximum likelihood, Φ∗ = arg maxΦ p({wd}; Φ),

where Φ ∈ <V×K is a matrix parameter whose columns {φk}Kk=1 are constrained

to be members of a probability simplex. It is also possible to place a prior proba-

bility distribution on the word probability vectors {φk}Kk=1—e.g., a Dirichlet prior,
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φk ∼ Dir(β)—and treat the parameter Φ as well as the hyperparameters α and β

via Bayesian methods. In both the maximum likelihood and Bayesian framework it

is necessary to integrate over θd to obtain the marginal likelihood, and this is ac-

complished either using variational inference or Gibbs sampling (Blei et al., 2003;

Griffiths and Steyvers, 2004).

4.2.2 DiscLDA

In the setting we wish to consider, each document is additionally associated with a

categorical variable or class label yd ∈ {1, 2, . . . , C} (encoding, for example, whether

a message was posted in the newsgroup alt.atheism vs. talk.religion.misc).

To model this labeling information, we introduce a simple extension to the standard

LDA model. Specifically, for each class label y, we introduce a linear transformation

T y : <L → <K+ , which transforms a L-dimensional Dirichlet variable θd to a mixture of

K-dimensional Dirichlet distributions: θtr,d = T yθd ∈ <K . The rest of the generating

process is then the same as in the standard LDA model, but using this transformed

Dirichlet variable θtr,d as the document prior for the topic indicator udn for word wdn:

udn | θd, yd,T yd ∼ Multi (T ydθd) (4.1)

wdn | udn,Φ ∼ Multi
(
φudn

)
It will become clear later in this section why we chose to change notation from zdn to

udn. Note that T y is constrained to have its columns sum to one to ensure the normal-

ization of the transformed variable T yθd and can thus be interpreted as a stochastic

matrix. Intuitively, every document in the text corpus is represented through θd as

a point in the topic simplex {θ |
∑

k θk = 1}, and we hope that the linear transfor-

mations {T y} will be able to reposition these points such that documents with the

different class labels are represented by points far from each other — see Fig. 4.4.
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Figure 4.1: LDA model. Figure 4.2: DiscLDA
model – this is for the in-
terpretation where T y is
applied to θ.

Figure 4.3: DiscLDA with
auxiliary variable z included.
Marginalizing u or z yields
the two different interpre-
tations for the application
of the linear transformation
T y. This fixes the notation
that we will use for the rest
of the chapter.

Note that these points can not be placed arbitrarily, as all documents—whether they

have the same class labels or they do not—share the parameter Φ ∈ <V×K . The

graphical model in Fig. 4.2 shows the new generative process. Compared to standard

LDA, we have added the nodes for the variable yd (and its prior distribution π), the

set of transformation matrices {T y} that we denote by T, and the corresponding

edges.

An alternative way to include the class information into LDA would be a model in

which there are class-dependent topic parameters φyk which determine the conditional

distribution of the words:

wdn | zdn, yd, {Φy} ∼ Multi
(
φydzdn

)
. (4.2)
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Figure 4.4: (Cartoon intuition) Each document can be represented on the topic mixture
simplex {θ |

∑
k θk = 1}, yielding points Φθ on the word simplex. Here, the two classes

are represented with circles and crosses. The hope is that the linear transformations {T y}
can reposition the points in such a way that the transformed representation θtr yields a
better separation between classes.

The problem with this approach is that the posterior p(yd|wd, {Φy}) is a highly non-

convex function of {Φy} which makes its optimization very challenging given the high

dimensionality of the parameter space in typical applications (e.g. 50k words times

100 topics). Our approach circumvents this difficulty by learning a class-dependent

low-dimensional transformation of some shared φk’s in a discriminative manner in-

stead. Indeed, transforming the topic mixture vector θ is actually equivalent to

transforming the Φ matrix. To see this, note that by marginalizing out the hidden
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topic vector u, we get the following distribution for the word wdn given θ:

wdn | θd, yd,T,Φ ∼ Multi (ΦT yθd) .

By the associativity of the matrix product, we see that we obtain an equivalent

probabilistic model by applying the linear transformation to Φ instead, and, in effect,

defining the class-dependent topic parameters as follows:

φyk =
∑
l

φlT
y
lk, (4.3)

and then use them in a standard LDA model. We then obtain an analog to (4.2) for

our DiscLDA model:

wdn | zdn, yd,T,Φ ∼ Multi
(
φydzdn

)
. (4.4)

We are now in place to explain the difference between the variables z and u. We

can give a generative interpretation to the transformation by augmenting the model

with a hidden topic vector variable z, as shown in Fig. 4.3, where

p(udn = k | zdn = l, yd,T) = T ydkl .

In this augmented model, T y can be interpreted as the probability transition matrix

from z-topics to u-topics. The z-topic indicator represents the prior (untransformed)

topic choice (which is marginally independent of y), whereas the u-topic indicator

represents the transformed topic choice (which depends on y). In this notation, z has

the same prior distribution as in the standard LDA, explaining our notational change

mentioned before. An advantage of this new representation is that all variables now

have conjugate priors, hence making Gibbs sampling straightforward to implement.

Marginalization of z or u gives rise to non-conjugate priors because of the linearly
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transformed Dirichlet variables. Moreover, to each marginalization corresponds one

of the interpretations of the transformation: by marginalizing out z, we get the inter-

pretation where T y is applied to θ, as in (4.1). On the other hand, marginalizing out

u yields the interpretation where T y is applied to the class-independent parameters Φ

as mentioned in equation (4.3), yielding the word distribution given in equation (4.4).

Note that those two models yield the same joint distribution over words, when all

latent variables are marginalized. Finally, by including a Dirichlet prior on the T y

parameters, we could now take a full generative Bayesian approach and integrate it

out or fix it to its MAP value using Gibbs sampling. We decided to focus on the

discriminative treatment in this work, however.

Another motivation for our approach is that it gives the model the ability to

distinguish topics which are shared across different classes versus topics which are

class-specific. For example, this separation can be accomplished by using the following

transformations (for binary classification):

T 1 =


IBc 0

0 0

0 IBs

 , T 2 =


0 0

IBc 0

0 IBs

 (4.5)

where IB stands for the identity matrix with B rows and columns. In this case, the

last Bs topics are shared by both classes, whereas the two first groups of Bc topics

are exclusive to one class or the other. We will explore this parametric structure later

in our experiments.

4.3 Inference and learning

The general idea behind our learning procedure is the following. Given a corpus of

documents and their labels, we estimate the parameters {T y} discriminatively by
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maximizing the conditional likelihood
∑

d log p(yd |wd,T,Φ) while holding Φ fixed.

To estimate the parameters Φ, we hold the transformation matrices fixed and maxi-

mize the posterior of the model, in much the same way as in standard LDA models.

Intuitively, the two different training objectives have two effects on the model: the

optimization of the posterior with respect to Φ captures the topic structure that is

shared in documents throughout a corpus, while the optimization of the conditional

likelihood with respect to {T y} finds a transformation of the topics that discriminates

between the different classes within the corpus.

However, the precise optimization algorithm depends on a few observations. First

of all, none of the above steps can be done exactly as inference in our model is

intractable (as in the LDA model). In addition, both the posterior over Φ and

the conditional likelihood over y are non-convex. This means that our results will

depend on the precise way we decide to explore the space. Finally, following the

convention used by Griffiths and Steyvers (2004) and Blei et al. (2003), we put a

uniform Dirichlet prior over θ and φk (i.e., α and β are scalar constants). This means

that the parameters in Φ are non-identifiable due to the invariance of the distribution

to permutation of the indices 1, . . . , K. Taking these facts into consideration, the

general idea of our optimization algorithm is the following. We first get a good initial

generative estimate of Φ by approximatively maximizing its posterior for some initial

plausible choice of {T y}. We then do local fine-tuning by doing gradient ascent

with respect to {T y} of the conditional likelihood on y, for a fixed Φ. We could

actually stop here (i.e., just optimize over {T y} and not update Φ), but we actually

get better results by iteratively updating Φ given this {T y} as well. However, just

maximizing the posterior on the high-dimensional Φ could move us to a far away

local minimum obtained by permuting indices. We thus restrict the update on Φ

to be local as well by conditioning on the previous value of Φ. The algorithm is

outlined in Table 4.1, and described in the next section. But the general idea of our
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1. Initialize T0 to a set of smoothed block diagonal matrices.

2. (a) Sample N RB Gibbs steps from p(u, z|y,w,T0) [use (4.25)].

(b) Use the last sample u(N) to set Φ to its posterior mean [see (4.27)]:

Φ0 = E
[
Φ|u(N),w

]
. (4.6)

3. Repeat until no improvement on the validation set:

(a) Repeat Ng steps:

T y′

t+1 = T y′

t + η
∑
d

∂

∂T y′
log p(yd|wd,Tt,Φt) for y′ = 1, . . . , C. (4.7)

[using equation (4.17) for ∂

∂T y
′ log p(yd|wd,Tt,Φt)].

(b) Sample N RB Gibbs steps from p(z|y,w,Tt,Φt) [use (4.22)].

(c) Sample 1 Gibbs step from p(u|z(N),y,w,Tt,Φt) [use (4.24)].

(d) Set Φt+1 = E
[
Φ|u(1),w

]
[see (4.27)].

4. Return (Tt,Φt) with the minimum validation prediction error.

Table 4.1: DiscLDA learning algorithm. The constant step-size η is chosen by minimizing
the prediction error on the validation set. The notes in brackets refer to the detailed
equations provided in Appendix 4.A.

approach is to use the generative criterion to move us to a specific part of the space,

and then discriminatively fine tune it, while keeping the Φ parameter consistent with

the change in {T y} through local updates.

4.3.1 Approximate inference for learning

Two main approaches for approximate inference have been used for probabilistic

topic models: variational inference (Blei et al., 2003; Teh et al., 2007) or Gibbs

sampling (Griffiths and Steyvers, 2004). In this work, we first decided to experiment
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with the sampling approach, even though it would be interesting to compare it with

a variational approach in subsequent work.

We use a Rao-Blackwellized version of Gibbs sampling similar to the one presented

in Griffiths and Steyvers (2004) to obtain samples of (z,u) with (Φ,θ) marginalized

out, for some initial T = T0. As in Griffiths and Steyvers (2004), we get a gener-

ative point estimate of Φ by setting it to its posterior mean given the last sample

u(N), where N is large enough to ensure proper mixing of the chain (step 2 of the

algorithm)1. We provide the detailed equations in Appendix 4.A.2. After this initial

estimate, all subsequent updates are made local by conditioning on Φ (see step 3

of the algorithm). Apart locality, another advantage of conditioning on Φ is that

it decouples the sampling for each document in independent updates, and makes it

possible to use Gibbs sampling to sample from p(z|y,w,Tt,Φt) (which has identical

updates to a collapsed Gibbs sampler for LDA with class-dependent parameters).

This is used in step 3b and 3c to obtain u(N) in a faster fashion than jointly sam-

pling (u, z) as in step 2a – which is quadratically slower than just sampling z2, as is

explained in Appendix (4.A.2).

The gradient of the conditional likelihood objective with respect to T y is estimated

using Monte Carlo EM, with samples from the Gibbs sampler conditioned on Φ. More

specifically, as we will describe more in details in Appendix 4.A, we use the matching

1The motivation for the posterior mean as a point estimate of Φ is that it represents the parameter
of the Bayesian predictive distribution for one word in a new test document given the training set
and the training topic assignment u(N). Ideally, the point estimate for Φ would be obtained by
averaging several samples from the posterior over u. Unfortunately, as columns of Φ are non-
identifiable under permutation, different samples could correspond to different permutations and so
cannot be combined. The standard approach is thus to use only one Gibbs sample, which is a (poor)
stochastic approximation of the MAP estimate of p(u, z|y,w,T).

2Note that Gibbs sampling of p(u|y,w,Tt,Φt) (z marginalized out) is not possible due to non-
conjugacy – θ can no longer be analytically integrated out due to the mixing of Dirichlet variables
as in equation (4.1). This computational restriction explains why we are sampling from the joint
posterior on (u, z) rather than just the marginal posterior on u – which would seem more natural
to estimate Φ.
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property of gradients in EM to write the gradient as:

∂

∂T y′
log p(yd|wd,T,Φ) = Eq

yd
t (zd)

[
∂

∂T y′
log p(wd, zd|yd,T,Φ)

]
−Ert(zd)

[
∂

∂T y′
log p(wd, zd|T,Φ)

]
, (4.8)

where qydt (zd) = p(zd|yd,wd,Tt,Φ), rt(zd) = p(zd|wd,Tt,Φ) and the derivatives

are evaluated at T = Tt. The terms inside the expectation can be computed ana-

lytically, and we can approximate the integrals using our Gibbs samples (see Ap-

pendix 4.A.1.2). However, it turns out in our experiments that sampling from

rt(zd) = p(zd|wd,Tt,Φ) is hard as the chain doesn’t mix well: zd often yields a

very peaked posterior p(yd|zd,wd,T,Φ) (for example, with maximum at y∗d ), and

thus in effect we get stuck with samples from p(zd|y∗d,wd,Tt,Φ) from whatever value

of y∗d at which we converged from our initial random initialization of zd. For this

reason, we analytically integrate out yd in the second expectation of equation (4.8)

by using an estimate of the posterior p(yd|wd,T,Φ).

4.3.2 Approximating the posterior over labels

To do prediction in our model or to approximate the gradient as we mentioned above,

we need to approximate the posterior p(yd|wd,T,Φ). We do this by using the bridge

sampling method of Meng and Wong (1996), a standard method in Bayesian statistics

to estimate ratio of normalizing constants. We provide background material for bridge

sampling in Appendix 4.B. We mention alternatives and provide the details for our

setup in Appendix 4.B.13. As an overview, we can express the likelihood ratios of

3Note that we had used the harmonic mean estimator instead (as in Griffiths and Steyvers (2004))
in the preliminary version of this work which appeared in Lacoste-Julien et al. (2009). For a fixed
T y, the harmonic mean estimator appeared to give stable predictions in our initial experiments. We
only realized later that it gives significantly noisy estimates when analyzed carefully in the context
of discriminatively learned T y.
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two classes y1, y0 as:
p(y1|wd,T,Φ)

p(y0|wd,T,Φ)
=
p(y1)

p(y0)

Z1

Z0

where Zc is the normalization constant for qc(zd)
.
= p(wd|zd, yc,T,Φ)p(zd) which is

proportional to the posterior on zd given yc. We use bridge sampling with a geometric

bridge between these two posteriors to estimate the likelihood ratio of each class to a

a fixed reference class (the last one in our experiments) - see equation (4.33). We can

obtain the final posterior on y by renormalizing these ratios. To compute the bridge

sampling estimate, we simply need samples of p(zd|y,wd,T,Φ) for each possible class

y, which can be obtained via Rao-Blackwellized Gibbs sampling (see (4.22)).

4.3.3 Dimensionality reduction

We can obtain a supervised dimensionality reduction method by using the average

transformed topic vector as the reduced representation of a test document. We esti-

mate it using

E [T yθd|wd,T,Φ] =
∑
y

p(y|wd,T,Φ) T y E [θd|y,wd,T,Φ] . (4.9)

The first term on the right-hand side of this equation can be approximated using

the bridge sampling estimator and the last term can be approximated from MCMC

samples of zd (in the outer expectation on the right of the following equation):

E [θd|y,wd,T,Φ] = E [ E [θd|zd] | y,wd,T,Φ] . (4.10)

See Appendix 4.A.3 for the details. The inner expectation is a simple posterior mean

for a Dirichlet distributed variable. This new representation can be used as a feature

vector for another classifier or for visualization purposes.
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4.4 Experimental results

We evaluated the DiscLDA model empirically on text modeling and classification

tasks. Our experiments aimed to demonstrate the benefits of discriminative training

of LDA for discovering a compact latent representation that contains both predictive

and shared components across different types of data. We evaluated the performance

of our model by contrasting it to standard LDA models that were not trained dis-

criminatively4.

4.4.1 Dataset description

For our experiments, we use the 20 Newsgroups dataset, which contains postings to

Usenet newsgroups. The postings are organized by content into 20 related categories

and are therefore well suited for topic modeling. We use the train-test split from the

standard Matlab file available from http://people.csail.mit.edu/jrennie/

20Newsgroups/ and removed a standard list of stop words5. We consider the classi-

fication task for the whole 20 Newsgroups as well as five smaller binary classification

tasks of challenging pairs of classes. The statistics of the datasets we consider is

given in Table 4.2. The vocabulary size is 62k for all our experiments. We also use a

random split of 20% of the training set as our validation set. Note that the standard

train-test split is more challenging than random splits as they span two different time

periods of postings.

4Our implementation is available from http://www.cs.berkeley.edu/∼slacoste/research/discLDA/.
5We used the list of 490 stop words available from the class

mallet-0.4/src/edu/umass/cs/mallet/base/pipe/TokenSequenceRemoveStopwords.java
from the MALLET package available at http://mallet.cs.umass.edu/.
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dataset split # of doc-
uments

# of

tokens

20 Newsgroups train 11,269 1,3M
test 7,500 860k

Binary classification tasks:
1 vs. 20: alt.atheism train 856 105k

vs. talk.religion.misc test 569 80k
16 vs. 20: soc.religion.christian train 975 115k

vs. talk.religion.misc test 649 100k
4 vs. 5: comp.sys.ibm.pc.hardware train 1,162 110k

vs. comp.sys.mac.hardware test 775 55k
4 vs. 3: comp.sys.ibm.pc.hardware train 1,159 115k

vs. comp.os.ms-windows.misc test 783 70k
10 vs. 11: rec.sport.baseball train 1,191 115k

vs. rec.sport.hockey test 796 80

Table 4.2: Properties of the 20 Newsgroups dataset and several binary pairs we chose.

4.4.2 Experiments with fixed T y

4.4.2.1 Text modeling

In this section, we first investigate how DiscLDA can exploit the labeling information—

the category—in discovering meaningful hidden structures that differ from those

found using unsupervised techniques, for the case where T y is fixed and chosen by

us. This enables us to explore the benefits of identifying shared topics and class-

specific topics, while avoiding the computational burden of discriminatively learning

T y, which we consider in Sec. 4.4.3.

We fit the dataset to both a standard 110-topic LDA model and a DiscLDA

model with restricted forms of the transformation matrices {T y}20
y=1. Specifically, the

transformation matrix T y for class label y is fixed and given by the following blocked
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matrix:

T y =



0 0
...

...

IBc 0
...

...

0 IBs


. (4.11)

This matrix has (C + 1) rows and two columns of block matrices. All but two block

matrices are zero matrices. At the first column and the row y, the block matrix is

an identity matrix with dimensionality of Bc×Bc. The last element of T y is another

identity matrix with dimensionality Bs. When applying the transformation to a topic

vector θ ∈ <Bc+Bs , we obtain a transformed topic vector θtr = T yθ whose nonzero

elements partition the components θtr into (C+1) disjoint sets: one set of Bc elements

for each class label that does not overlap with the others (the class-dependent topic

parameters), and a set of Bs components that is shared by all class labels (the shared

topic parameters). Intuitively, the shared components should use all class labels to

model common latent structures, while nonoverlapping components should model

specific characteristics of data from each class.

In a first experiment, we examined whether the DiscLDA model can exploit the

structure for T y given in (4.11). In this experiment, we first obtained an estimate of

the Φ matrix by setting it to its posterior mean conditioned on a topic assignment

vector u(N) obtained after N = 200 steps of Gibbs sampling6 – see equation (4.6) in

step 2 of the algorithm shown in Table 4.1. This is in a similar fashion as in Griffiths

and Steyvers (2004). Note that we cannot use multiple Gibbs samples to estimate

Φ, as columns are non-identifiable under permutation – different samples could cor-

6We studied the autocorrelation function (see e.g. Liu, 2001) for several quantities of interest
based on the samples of u (e.g. the log-likelihood log p(wd|u(i)), or the posterior mean for θd for
different d’s), and observed that the autocorrelation would decrease close to zero for a lag varying
between 10 to 50. N = 200 is thus a conservative number. We used the same burn-in for the LDA
model and for the bridge sampling estimate.
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respond to different permutations. We then estimated a new representation for test

documents by taking the conditional expectation of T yθ with y marginalized out as

explained in the dimensionality reduction Sec. 4.3.3. Note that the class label of the

test document is obviously not needed in the computation of its new representation.

We used bridge sampling with M = 2.5k samples after 200 steps of burn-in each time

we need an estimate of p(y|wd,T,Φ) – see equation (4.33). Finally, we computed a

2D-embedding of this K-dimensional representation of documents (K = CBc + Bs)

to investigate its properties. The first embedding we tried was to run standard mul-

tidimensional scaling (MDS), using the symmetrical KL divergence between pairs of

θtr topic vectors as a dissimilarity metric, but the results were hard to visualize. A

more interpretable embedding was obtained using the t-SNE stochastic neighborhood

embedding method presented by van der Maaten and Hinton (2008)7. Fig. 4.5 shows

a scatter plot of the 2D–embedding of the topic representation of the 20 Newsgroups

test documents, where the colors and the shape of the dots, each corresponding to

a document, encode different groupings and different classes within a group, respec-

tively. Clearly, the documents are well separated in this space. In contrast, the

embedding computed from standard LDA, shown in Fig. 4.6, does not show a clear

separation. In this experiment, we have set Bc = 5 and Bs = 10 for DiscLDA, yield-

ing K = 110 possible topics; hence we set K = 110 for the standard LDA model for

proper comparison. For all our experiments, we used β = 0.01 and α = 10/K.

It is also instructive to examine in detail the topic structures of the fitted DiscLDA

model. Given the specific setup of our transformation matrix T y, each component

of the topic vector u is either associated with a class label or shared across all class

labels. For each component, we can compute the most popular words associated from

the word-topic distribution Φ. In Table 4.3, we list these words and group them

7We used the “fast t-SNE” C implementation available from
http://ticc.uvt.nl/∼lvdrmaaten/Laurens van der Maaten/t-SNE.html with its default op-
tions.
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Figure 4.5: t-SNE 2D embedding of the E [T yθd|wd,T,Φ] representation of Newsgroups
documents, after fitting to the DiscLDA model (T y was fixed).
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Figure 4.6: t-SNE 2D embedding of the E [θd|wd,Φ] representation of Newsgroups doc-
uments, after fitting to the standard unsupervised LDA model.
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under each class labels and a special bucket “shared”. The sorted list of words for

each group G was obtained by computing the following quantity for each word v:

sG
v
.
= V
|G|
∑

k∈G Φvk, which represents roughly how more likely than uniform the word

is in this group G. We see that the words are indicative of their associated class labels.

Additionally, the words in the “shared” category are “neutral,” neither positively nor

negatively suggesting proper class labels where they are likely to appear. In fact, these

words confirm the intuition of the DiscLDA model: they reflect common English usage

underlying this corpus.

4.4.2.2 Document classification

It is also of interest to consider the classification problem more directly and ask

whether the features delivered by DiscLDA are more useful for classification than

those delivered by LDA. Of course, we can also use DiscLDA as a classification method

per se, by marginalizing over the latent variables and computing the probability of

the label y given the words in a test document. Our focus in this section, however, is

its featural representation. We thus use a different classification method (the SVM)

to compare the features obtained by DiscLDA to those obtained from LDA.

Continuing our first experiment, we returned to the fixed T y setting studied

in Sec. 4.4.2.1 and considered the features obtained by DiscLDA for the 20 News-

groups problem. Specifically, we constructed multiclass linear SVM classifiers using

the expected topic proportion vectors from unsupervised LDA and DiscLDA models

as features as described in Sec. 4.3.3. We deliberately chose not to use kernels for

the SVM classifiers, as we want to focus on whether a simple classification can be

done from the reduced representation. We used the SVMmulticlass implementation of

SVMstruct available from http://svmlight.joachims.org/svm struct.html. The

regularization parameter C for the SVM is chosen by grid search on the validation
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1 2 3 4 5 6 7
alt.

atheism
comp.

graphics
comp.os.ms-

windows.
misc

comp.sys.
ibm.pc.

hardware

comp.sys.
mac.

hardware

comp.
windows.x

misc.
forsale

god: 9 graphics: 9 windows: 18 drive: 13 apple: 10 window: 7 sale: 6
writes: 6 image: 8 file: 6 scsi: 12 mac: 10 file: 5 shipping: 5
islam: 4 file: 4 dos: 5 mb: 7 drive: 6 entry: 4 dos: 4
keith: 4 jpeg: 3 files: 5 card: 7 mb: 4 program: 4 offer: 4

religion: 4 op: 3 mouse: 4 disk: 6 scsi: 4 output: 4 condition: 4
atheism: 4 files: 3 win: 4 controller: 6 bit: 3 motif: 3 cover: 3
article: 3 images: 3 driver: 3 ide: 6 mhz: 3 code: 3 excellent: 3

morality: 3 color: 2 ms: 3 drives: 5 simms: 3 widget: 3 st: 3
moral: 3 compass: 2 program: 3 system: 5 problem: 3 server: 3 cd: 3
bible: 3 points: 2 card: 3 bus: 5 cd: 3 lib: 3 price: 2

8 9 10 11 12 13 14
rec.autos rec.

motorcycles
rec.sport.
baseball

rec.sport.
hockey

sci.crypt sci.
electronics

sci.med

car: 16 bike: 11 year: 6 team: 7 db: 11 ground: 4 msg: 4
cars: 7 dod: 7 game: 5 hockey: 5 key: 11 wire: 4 medical: 3

engine: 4 ride: 4 baseball: 5 game: 5 encryption: 5 power: 3 food: 3
writes: 3 bikes: 3 team: 5 play: 5 chip: 5 circuit: 3 pitt: 3
article: 2 helmet: 3 games: 4 players: 4 security: 4 wiring: 3 disease: 3
dealer: 2 motorcycle: 3 season: 3 nhl: 3 privacy: 4 current: 2 health: 3
speed: 2 riding: 3 cubs: 3 win: 3 clipper: 4 voltage: 2 article: 2
drive: 2 dog: 3 players: 3 season: 3 keys: 4 water: 2 patients: 2

driving: 2 bmw: 2 runs: 3 period: 3 anonymous: 3 amp: 2 gordon: 2
oil: 2 article: 2 league: 2 teams: 2 government: 3 output: 2 science: 2

15 16 17 18 19 20
sci.space soc.religion.

christian
talk.politics.

guns
talk.politics.

mideast
talk.politics.

misc
talk.religion.

misc
Shared topics

space: 13 god: 18 gun: 10 armenian: 6 government: 5 god: 7 writes: 9
nasa: 6 church: 6 file: 5 israel: 5 president: 4 jesus: 7 article: 7

launch: 5 jesus: 6 guns: 5 turkish: 6 mr: 4 christian: 4 don: 6
moon: 4 christians: 5 weapons: 4 armenians: 4 article: 4 bible: 4 people: 5
earth: 3 bible: 5 firearms: 4 jews: 4 stephanopoulos:

3
objective: 3 time: 4

orbit: 3 christian: 5 militia: 3 israeli: 4 writes: 3 sandvik: 3 apr: 4
lunar: 3 christ: 5 government: 3 people: 3 war: 3 morality: 3 good: 3
henry: 3 faith: 4 fire: 3 turkey: 2 health: 3 christ: 3 make: 3
shuttle: 2 truth: 4 weapon: 3 armenia: 2 cramer: 3 christians: 2 ve: 3
satellite: 2 hell: 4 control: 3 turks: 2 tax: 2 ra: 2 ca: 2

Table 4.3: Ten most popular words from each group of class-dependent topics or a bucket
of “shared” topics learned in the 20 Newsgroups experiment with fixed T y matrix. The
number after each word is sGv and represents roughly how more likely than uniform the
word v is in the group G (rounded in units of hundreds here to save space).
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LDA+SVM DiscLDA+SVM DiscLDA alone
27.0% 19.2% 19.2%

Table 4.4: Classification error rates on 20 Newsgroups dataset where DiscLDA uses a
fixed T y matrix chosen by us.

set8. The results are summarized in Table 4.4. Going from LDA to DiscLDA as

the dimensionality reduction method reduced the error rate from 27.0% to 19.2%,

indicating that the DiscLDA features have retained information useful for classi-

fication. For comparison, we also computed the MAP estimate of the class label

y∗ = arg max p(y|w,T,Φ) from DiscLDA and used this estimate directly as a classi-

fier. The DiscLDA classifier actually obtained a similar error rate as running SVM on

the DiscLDA features, though this was not always the case for the other experiments

we ran in the next section9.

4.4.3 Experiments with discriminatively trained T y

In this section, we consider the fully adaptive setting in which the transformation

matrix T y is learned in a discriminative fashion as described in the full algorithm

of Table 4.1. For simplicity of implementation (affected by scaling issues), we only ex-

perimented on binary classification tasks. We initialized the matrix T y to a smoothed

block diagonal matrix10 having the same pattern as in equation (4.5), but with C = 2

classes. We used Bs = 20 shared topics and Bc = 20 class-dependent topics per class.

We used N = 200 in steps 2 and 3 of the algorithm; and Ng = 10 for the number of

gradient steps done before Φ is updated in the loop of step 3. The constant step size

η was chosen by grid search (minimum validation error). The discriminative learning

8We search over a geometric grid from 10−3 to 109.
9As a reference point, smoothed naive Bayes gets 19.9% on this split.

10We worked in the log-domain parameterization ty to ensure that T y stays normalized. The
matrix T y shown in (4.5) lies at the boundary of this domain; we thus use the smoother initialization
ty0 = 3T y − 2.
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loop in step 3 was meant to be repeated until there was no improvement in accuracy

on the validation set – though in practice, the error curve didn’t have a clear trend

so we simply chose the point with minimal validation error. We used the same bridge

sampling parameters as in the previous section.

In this experiment, we considered the five binary classification problems listed

in Table 4.2. The choice of pair was motivated by their sharing of some thematic

content, such as for example distinguishing postings of the newsgroup alt.atheism

1 from postings of the newsgroup talk.religion.misc 20, contributing to their

difficulty (with the exception of rec.sport.baseball 10 vs. rec.sport.hockey 11

which is surprisingly easy).

We ran the same comparison of classification experiments on these datasets as

in the previous section, with the exception that DiscLDA here refers to the fully

discriminatively trained DiscLDA. The results are presented in Fig. 4.7. On almost

all tasks, the features of DiscLDA yielded lower classification error vs. LDA when

used as input to a SVM classifier. The exception is on tasks 10 vs. 11, for which the

LDA + SVM classifier already obtained good accuracy.

As in the previous section, we can also explore the structure in the text uncovered

by DiscLDA. It turns out that the discriminatively learned T y also possess a block-

diagonal structure (though a different one than from the starting point – the gradient

search did produce non-trivial changes to it). We can thus also identify “strongly”

class-specific topics and “strongly” shared topics, where the strength of this identity

is characterized by the sparsity of the sharing between the same rows of T y for the two

different classes. As a heuristic way to identify these types, we consider syk
.
=
∑

l T
y
kl

as the strength of the presence of topic k for class y (since both classes have the same

uniform Dirichlet prior). We then choose to label the topics k for which syk ≥ 0.9

for both classes as the “strongly” shared topics; and the topics k for which syk ≥ 0.9

for one class but syk ≤ 0.4 for the other as the “strongly” class-specific topic for
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Figure 4.7: Classification error for several binary classification tasks. Note that DiscLDA
here refers to the discriminatively trained version.

the former class. We present the ten most probable words for each of these groups

learned by DiscLDA for the different tasks in Table 4.5, in analogy to Table 4.3.

It is interesting to contrast the results for different tasks (even though the results

are obviously noisy). For example, words like “point” and “evidence”appear to be

class-specific for the talk.religion.misc 20 newsgroup when trying to distinguish

these posts from the more purely religious newsgroup soc.religion.christian 16.

On the other hand, these words (as well as “evidence” e.g.) appear to be in the

shared group when the class 20 is compared with alt.atheism 1 (and not in the top

words for the shared group of 16 vs. 20) – the class-specific group for 20 for the 1 vs.
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20 task has more christianity words such as “christians, evil, bible”, discriminative

words versus the alt.atheism newsgroup. These christianity words rather appear in

the shared bucket for the 16 vs. 20 task, unsurprisingly. These interpretations have

obviously to be taken with a grain of salt, as is typical in such exploratory analysis.

A more refined interpretation can be obtained by looking at the individual topics

(rather than the group as a whole) – which we present in Table 4.6 for the 4 vs. 5

task. In this case, we only show the three dominant topics per group. The strength

of a topic k for class c is heuristically computed as follows: take the average value

of E[
∑

l T
y
klθdl|yd,wd,T,Φ] over the training documents d’s with class yd = c – this

represents the expected proportion of this topic k due only to the class c and is used

as an indicator of class-dependent topic strength. To evaluate the strength of a topic

in a shared group, we use the average value of this quantity for the two classes. As an

example of observation we can make from Table 4.6, we see that a topic about mon-

itors only appear as a dominant class-specific topic for comp.sys.ibm.pc.hardware

4 in the task of distinguishing it from OS type posts in comp.os.ms-windows.misc

3; it doesn’t appear as a dominant class-specific topic for 4 in the 4 vs. 5 task, in

which both classes contain hardware related posts.

Finally, we present for reference the t-SNE 2D-embeddings of the DiscLDA topic

representation in comparison with LDA for these binary tasks in Fig. 4.8 and Fig. 4.9.

The improvement over LDA is also clear here.
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1 vs. 20: alt.atheism vs.
talk.religion.misc

16 vs. 20: soc.religion.christian vs.
talk.religion.misc

class 1 (21) class 20 (18) Shared (7) class 16 (8) 20 (18) Shared (9)
don: 609 jesus: 458 people: 1168 god: 770 writes: 470 good: 803

writes: 548 god: 418 writes: 1074 church: 538 god: 466 christian: 717
god: 461 christian: 229 good: 1051 time: 463 christ: 371 people: 716

article: 219 man: 186 article: 861 hell: 346 article: 360 god: 605
people: 211 evil: 178 don: 712 people: 331 don: 308 love: 583

apr: 190 christ: 150 life: 657 work: 243 people: 281 christians: 577
system: 189 christians: 140 god: 496 resurrection:

238
objective: 165 jesus: 540

keith: 171 bible: 139 fact: 493 body: 231 sandvik: 165 man: 526
religion: 163 people: 137 point: 466 things: 202 point: 155 religion: 484
moral: 162 koresh: 136 evidence: 435 marriage: 197 evidence: 147 writes: 461

4 vs. 5: comp.sys.ibm.pc.hardware vs.
comp.sys.mac.hardware

4 vs. 3: comp.sys.ibm.pc.hardware vs.
comp.os.ms-windows.misc

class 4 (18) class 5 (17) Shared (11) class 4 (7) class 3 (4) Shared (12)
dos: 302 apple: 525 drive: 970 bit: 837 windows: 2530 scsi: 669

system: 294 problem: 336 mb: 682 mb: 800 article: 871 good: 491
don: 242 mac: 328 bit: 450 writes: 724 win: 604 don: 460
bus: 230 writes: 312 disk: 449 article: 609 find: 591 drive: 430

problem: 215 don: 268 drives: 378 bus: 594 nt: 581 card: 384
time: 215 ve: 249 writes: 366 data: 362 change: 422 system: 366
cards: 206 se: 214 system: 304 isa: 353 os: 362 memory: 357
apr: 200 monitor: 214 ram: 302 monitor: 334 ms: 320 mail: 344

drive: 198 computer: 210 software: 286 chip: 331 editor: 281 program: 298
motherboard:

194
article: 197 article: 284 fast: 286 text: 280 hard: 298

10 vs. 11: rec.sport.baseball vs.
rec.sport.hockey

class 10 (20) class 11 (31) Shared (5)
year: 373 team: 377 article: 1586
game: 291 play: 358 writes: 1216

baseball: 226 game: 352 games: 917
writes: 208 hockey: 258 don: 848
time: 194 time: 221 team: 848
runs: 182 win: 198 good: 575
hit: 178 players: 176 ca: 571
apr: 175 writes: 175 season: 544

team: 158 ca: 167 mike: 455
players: 157 year: 164 didn: 408

Table 4.5: Ten most popular words from each group of “strongly” class-dependent topics
for different binary classification tasks on the 20 Newsgroups with the T y matrix learned
discriminatively. A “strongly” shared topic group is also identified for each task. The
number after each word represents roughly how more likely than uniform the word is in
the group.
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4 vs. 5 task
topics for comp.sys.ibm.pc.hardware 4 topics for comp.sys.mac.hardware 5
5.0 4.0 3.8 4.3 4.0 3.8

controller: 3455 irq: 2418 gateway: 1502 apple: 6681 sound: 1807 vram: 1744
bus: 3056 port: 2159 windows: 1349 fpu: 1757 system: 1762 chip: 1261
ide: 3018 mouse: 1497 drivers: 866 price: 1331 duo: 1762 apple: 1208
isa: 2221 pc: 1266 ati: 815 centris: 1145 problem: 1514 heard: 1127
pc: 2050 set: 1007 pro: 738 lc: 825 apple: 994 writes: 939

transfer: 1196 sx: 979 writes: 713 ve: 799 powerbook: 791 lciii: 913
speed: 1177 card: 950 utexas: 713 math: 666 stereo: 655 true: 832
data: 1044 serial: 748 dx: 713 coprocessor: 639 channel: 588 slot: 778
sec: 1044 ports: 748 cc: 688 writes: 586 play: 565 quadra: 671

dma: 1025 work: 662 ultra: 586 cd: 559 problems: 542 lc: 671

4 vs. 3 task
topics for comp.sys.ibm.pc.hardware 4 topics for comp.os.ms-windows.misc 3
4.0 3.8 2.5 4.2 2.5 2.3

bus: 4120 work: 1933 monitor: 2339 windows: 10119 article: 3449 text: 1119
isa: 2472 writes: 1933 question: 1595 win: 2413 find: 2362 problem: 1085

data: 1960 dos: 1750 thing: 1595 nt: 2231 change: 1650 software: 984
dma: 1292 boot: 1463 apr: 992 ms: 1278 editor: 1125 gateway: 950
eisa: 1225 sys: 1202 kind: 922 os: 1278 internet: 825 shareware: 916
os: 1181 article: 993 heard: 922 programs: 710 wrote: 750 hardware: 678

system: 1158 apr: 706 robert: 780 groups: 527 rob: 638 cursor: 678
vlb: 1158 config: 706 mine: 780 server: 507 changing: 600 recently: 645
meg: 958 wrote: 653 monitors: 780 create: 487 previous: 563 writes: 611
don: 824 adaptec: 601 vga: 638 megs: 385 csd: 563 applications:

611

Shared topics for 4 vs. 5 Shared topics for 4 vs. 3
4.1 3.5 3.3 5.5 3.4 3.2

simms: 2750 monitor: 2170 writes: 2719 card: 4220 port: 2268 scsi: 8024
ns: 1528 good: 1511 article: 2504 drivers: 2063 irq: 2192 drive: 5155

simm: 1032 uk: 1043 cd: 2269 driver: 2027 modem: 1601 hard: 3571
meg: 1012 ac: 894 time: 1839 video: 1719 serial: 1449 drives: 3063
mail: 955 nec: 724 access: 1311 screen: 1316 pc: 1334 controller: 3063
data: 841 quality: 639 problems: 117 cards: 889 mouse: 1239 floppy: 1868
chips: 688 article: 575 de: 998 ati: 889 board: 1182 supports: 986
pin: 554 buy: 532 rom: 978 diamond: 735 problems: 1087 standard: 762

writes: 497 box: 511 ms: 783 version: 688 work: 1067 problem: 598
cwru: 459 price: 490 toshiba: 626 local: 688 nec: 934 mfm: 598

Table 4.6: Comparison of individual topics learned discriminatively for two binary tasks.
Each column within a table lists the ten most popular words for an individual topic φyk.
The first two tables list “strongly” class-dependent topics. The last table contrasts the
“strongly” shared topics for each task. The number above each list of words represents
the strength of the topic, as described in the text.
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Figure 4.8: t-SNE 2D embedding of the DiscLDA (left) vs. LDA (right) representation
of documents for several binary tasks, where T y is learned discriminatively this time for
DiscLDA. From top to bottom: 1 vs. 20, 16 vs. 20 and 4 vs. 5.
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Figure 4.9: t-SNE 2D embedding of the DiscLDA (left) vs. LDA (right) representation of
documents for the remaining binary tasks (continuation of Fig. 4.8). From top to bottom:
4 vs. 3 and 10 vs. 11.
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4.5 Discussion

4.5.1 Related work

4.5.1.1 Author-topic model

By including a Dirichlet prior on the T y parameters, the DiscLDA model can be

related to the author-topic model of Rosen-Zvi et al. (2004), in the special case

in which there is only one author per document, as shown in Fig. 4.10 (using our

notation for making the link more explicit). In the author-topic model, the bag-

of-words representation of a document is augmented by a list of the authors of the

document. To generate a word in a document, one first picks at random the author

associated with this document. Given the author (y in our notation), a topic is chosen

according to corpus-wide author-specific topic-mixture proportions (which is a column

vector T y in our notation). The word is then generated from the corresponding topic

distribution as usual. According to this analogy, we see that our model not only

enables us to predict the author of a document (assuming a small set of possible

authors), but we also capture the content of documents (using θ) as well as the

corpus-wide class properties (using T ). The focus of the author-topic model was to

model the interests of authors, not the content of documents, explaining why there

was no need to add document-specific topic-mixture proportions. Because we want to

predict the class for a specific document, it is crucial in our case that we also model

the content of a document.

4.5.1.2 Supervised topic models

Recently, there has been growing interest in topic modeling with supervised infor-

mation. Blei and McAuliffe (2008) proposed a supervised LDA model where the

empirical topic vector z (sampled from θ) is used as a covariate for a regression on y
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— see also Flaherty et al. (2005). Their graphical model is shown in Fig. 4.12. The

generative process is the same as in LDA, but in addition, the output variable yd is

distributed as a Generalized Linear Model (GLM) with the empirical counts of zd as

input. Mimno and McCallum (2008) proposed the Dirichlet-multinomial regression

model which can handle various types of side information, including the case in which

this side information is an indicator variable of the class (y)11. We show a translation

of their graphical model to our notation in Fig. 4.13. Our work differs from theirs,

however, in that we train the transformation parameter by maximum conditional

likelihood instead of a generative criterion.

On the other hand, Zhu et al. (2009) proposed a max-margin variant of the su-

pervised LDA model of Blei and McAuliffe (2008) by using the Maximum Entropy

Discrimination framework of Jaakkola et al. (1999). This is the only other discrimi-

natively trained variation of topic models that we aware of, and probably the closest

in spirit to our work. Another relevant piece of work which combines a generative

and discriminative training criterion for a latent variable model for text classification

is the work from Larochelle and Bengio (2008). In their case, they build on the re-

cent progress on Restricted Boltzmann Machines to obtain a latent variable model of

documents which also yields an impressive prediction accuracy (and unlike ours, is

quite competitive to pure classifiers).

4.5.2 Caveats and future directions

Our experiments with DiscLDA presented encouraging results in its ability to ob-

tain a reduced representation of documents which could be interpretable while still

maintaining its predictive performance. On the other hand, we have several caveats

to make. First of all, even though moving from the harmonic mean estimator to

11In this case, their model is actually the same as Model 1 in Fei-fei and Perona (2005) with an
additional prior on the class-dependent parameters for the Dirichlet distribution on the topics.
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Figure 4.10: Author-topic model
with only one author yd per doc-
ument and using our notation.

Figure 4.11: DiscLDA model
again for comparison.

Figure 4.12: Supervised LDA
model.

Figure 4.13: A special case of
the Dirichlet-multinomial regres-
sion model.
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the bridge sampling one decreased the noise of the class-posterior estimates (which

are used ubiquitously in our algorithm: dimensionality reduction, estimating the

gradient, prediction, etc.), it stayed significant enough to leave the validation error

with wide fluctuations during the algorithm. It now appears to us that a variational

approach would probably be much more appropriate to the discriminative learning

framework, as the noise in the various stochastic part of the sampling approach is

compounded rather than averaged out. Moreover, due to time constraints, we haven’t

done a stability analysis of our results. A more in depth analysis would include dif-

ferent initalization points, deviation measures for different samples and other sources

of variation, etc. Given the recent work by Asuncion et al. (2009) which showed that

the performance of LDA crucially depends on the setting of its hyperparameters, we

also think that α and β should be also tuned, especially with a classification task in

mind.

One aspect of the DiscLDA probabilistic model that we haven’t presented in this

work is to consider a Bayesian average over Φ for prediction. In some exploratory

experiments, we actually observed a significant accuracy increase for a version of

the predictive DiscLDA model which classifies using
∑

i p(y|wd,T,Φ(i)) with several

point estimates Φ(i) = [Φ|u(i),w] rather than just using one sample as in step 2 of the

algorithm of Table 4.1. The problem is that we didn’t figure out how to interleave the

discriminative update on T y with those several point estimates, even though it would

seem like a good thing to do. Another subtlety comes from the non-identifiability

of Φ because of the symmetry of its prior: it would yield a moving target for the

T y updates, which would be affected by Φ jumping around different permutations of

indices. One way to solve this problem would be to use an asymmetric prior on Φ (or

on θ) – which we haven’t seen much explored yet in the topic modeling literature –

but we think is a promising venue. A meaningful prior that we have in mind would be

for example to use a geometrically decreasing series of the αl parameters: this would

100



Chapter 4. DiscLDA: Discriminative Dimensionality Reduction for Classification

induce an ordering of the topics in term of their importance in the corpus, and would

thus break the symmetry. The columns of Φ would then become identifiable and we

could combine multiple samples to estimate it, for example; or combine multiple Φ(i)

to estimate the new representation of a documents
∑

i
1
M

E
[
T yθd|wd,T,Φ(i)

]
, which

would be more stable. We leave this as an interesting avenue for future work.

4.6 Summary

We have presented DiscLDA, a variation on LDA in which the LDA parametrization is

augmented to include a transformation matrix and in which this matrix is learned via

a conditional likelihood criterion. This approach allows DiscLDA to retain the ability

of the LDA approach to find useful low-dimensional representations of documents,

but to also make use of discriminative side information (labels) in forming these

representations.

Although we have focused on LDA, we view our strategy as more broadly useful.

A virtue of the probabilistic modeling framework is that it can yield complex models

that are modular and can be trained effectively with unsupervised methods. Given

the high dimensionality of such models, it may be intractable to train all of the

parameters via a discriminative criterion such as conditional likelihood. In this case

it may be desirable to pursue a mixed strategy in which we retain the unsupervised

criterion for the full parameter space but augment the model with a carefully chosen

transformation so as to obtain an auxiliary low-dimensional optimization problem for

which conditional likelihood may be more effective.
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Appendix 4.A Derivations

4.A.1 Gradient equations

In this section, we show how to derive the relevant quantities for estimating the

gradient in equation (4.7) of the algorithm in Table 4.1.

4.A.1.1 Using an EM bound

We first present how to compute the derivative of the marginal likelihood of a function

using the expectation of the derivative of the complete likelihood. This property is

often overlooked in the presentation of the EM algorithm, so we rederive here for

convenience. We switch temporarily to generic notation for this presentation. Assume

you have a probability distribution p(x, z|θ) where z is a hidden variable. We want

to compute ∂
∂θ

log p(x|θ). Using Jensen’s inequality, we have:

L(θ) = log p(x|θ) ≥
∫
z

q(z) log

(
p(x, z|θ)
q(z)

)
.
= fq(θ)

for any fixed distribution q(z). Moreover,

L(θ)− fq(θ) = KL
(
q(z) || p(z|x, θ)

)
and so we have

L(θt) = fqt(θt)

for qt(z) = p(z|x, θt) (for a fixed θt). Since we have a differentiable lower bound of a

function which agrees at one point, we know that their tangent agrees at this point –

one way to see this is that the derivative of L(θ)− fq(θ) is zero at θt because it is a

minimum. Under suitable regularity conditions, we can push the derivative of fqt(θ)

with respect to θ inside the integral to obtain that ∂
∂θ
fqt(θ) = Eqt

[
∂
∂θ

log p(x, z|θ)
]
,
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Hence, we have in general the following gradient matching property:

∂

∂θ
log p(x|θ)

∣∣∣∣
θ=θt

= Eqt

[
∂

∂θ
log p(x, z|θ)

∣∣∣∣
θ=θt

]
(4.12)

for qt(z)
.
= p(z|x, θt).

4.A.1.2 Gradient derivation

In our case, we want to compute: ∂
∂T ykl

log p(y|w,T,Φ) =
∑

d
∂

∂T ykl
log p(yd|wd,T,Φ),

as conditioning on Φ separates the components nicely over documents. The log-

posterior over labels can be written as:

log p(yd|wd,T,Φ) = log p(yd) + log p(wd|yd,T,Φ)− log p(wd|T,Φ)

and so

∂

∂T ykl
log p(yd|wd,T,Φ) =

∂

∂T ykl
log p(wd|yd,T,Φ)− ∂

∂T ykl
log p(wd|T,Φ) (4.13)

as the prior p(yd) doesn’t depend on T. We can use the gradient matching property

from equation (4.12) to compute each of the terms of the RHS of (4.13) using an

expectation over a posterior over zd. For example:

∂

∂T ykl
log p(wd|T,Φ)

∣∣∣∣
T=Tt

= Erdt (zd)

[
∂

∂T ykl
log p(wd, zd|T,Φ)

∣∣∣∣
T=Tt

]
(4.14)

for rdt (zd)
.
= p(zd|wd,Tt,Φ).

We can obtain the first term of the RHS of equation (4.13) similarly using qydt (zd)
.
=

p(zd|yd,wd,Tt,Φ), and so we obtain a document-level version of the gradient match-

ing equation (4.8). We can approximate those integrals using Gibbs samples from

the posteriors qydt (zd) and rdt (zd). However, as we mentioned in Sec. 4.3.1, the chain
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for rdt (zd) doesn’t mix well, hence we instead integrate out yd analytically in the

expectation of (4.14) using the tower property of conditional expectations:

E [g(zd) |wd,Tt,Φ)] = E
[
E [g(zd) | yd,wd,Tt,Φ)]

∣∣wd,Tt,Φ
]
,

where we defined g(zd) = ∂
∂T ykl

log p(wd, zd|T,Φ). Equation (4.14) thus becomes:

∂

∂T ykl
log p(wd|T,Φ)

∣∣∣∣
T=Tt

=
∑
y′

p(y′|wd,Tt,Φ) E
qy
′
t (zd)

[
∂

∂T ykl
log p(wd, zd|T,Φ)

∣∣∣∣
T=Tt

]
.

(4.15)

We use bridge sampling to estimate p(y′|wd,Tt,Φ) and Monte-Carlo integration with

Gibbs samples from qy
′

t (zd) to estimate the expectations in (4.15).

We now derive the expressions for the required derivatives. From

p(wd, zd|T,Φ) = p(zd)
∑
y′

p(y′) p(wd|y′, zd,T,Φ),

and since ∂
∂T ykl

p(wd|y′, zd,T,Φ) = 0 for y′ 6= y, we get

∂

∂T ykl
log p(wd, zd|T,Φ) =

p(zd) p(y)

p(wd, zd|T,Φ)

∂

∂T ykl
exp (log p(wd|y, zd,T,Φ))

=
p(zd) p(y) p(wd|y, zd,T,Φ)

p(wd, zd|T,Φ)

∂

∂T ykl
log p(wd|y, zd,T,Φ)

= p(y|zd,wd,T,Φ)
∂

∂T ykl
log p(wd|y, zd,T,Φ).

The conditional of y given zd is easily obtained:

p(y|zd,wd,T,Φ) ∝ πy
∏
n

Φy
wdnzdn

, (4.16)

where we have defined the label-dependent topic parameters – as we did in equa-
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tion (4.3) – as

Φy
vl

.
=
∑
k

ΦvkT
y
kl.

With this notation, we have

∂

∂T ykl
log p(wd|yd, zd,T,Φ) =

∑
n

Φwdnk

Φy
wdnl

δ(l, zdn) δ(y, yd).

where δ(k, l) is 1 when k = l and 0 otherwise.

Combining these equations together and using a Monte-Carlo estimate for the ap-

proximations of the expectations, we get the following final estimate for the gradient:

∂

∂T ykl
log p(yd|wd,T,Φ) ≈ (4.17)∑

y′

1

M

∑
i

[
δ(y′, yd) δ(y, yd)− p̂(y′|wd,T,Φ) p(y|z(i)y′

d ,wd,T,Φ)
]

(∑
n

Φwdnk

Φyd
wdnl

δ(l, z
(i)y′

dn )

)
,

where z
(i)y′

d is sampled for i = 1, . . . ,M from p(zd|y′,wd,T,Φ) for y′ = 1, . . . , C;

p̂(y′|wd,T,Φ) is estimated using bridge sampling – see equation (4.33)12; and finally

p(y|z(i)y′

d ,wd,T,Φ) is given in equation (4.16).

Finally, we reparameterize T ykl with tykl in the log-domain using a soft-max trans-

formation so that it stays automatically normalized:

T ykl
.
=

exp(tykl)∑
r exp(tyrl)

.

12We could reuse the same z(i)y′

d samples in the bridge sampling estimate to reduce the variance,
though this was not done in our implementation. On the other hand, note that the formulation (4.17)
reused the same z(i)y′

d samples to estimate the two terms of equation (4.8)
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The derivative for this new parameterization is given simply via the chain rule as:

∂

∂tykl
= T ykl(1− T

y
kl)

∂

∂T ykl
.

4.A.2 Gibbs sampling equations

We start by introducing the notation for this section. α(·) means the summation over

its index, i.e. α(·)
.
=
∑L

l=1 αl. The discrete (multinomial of size 1) variables take

values in {1, . . . ,maxrange} unless an extra index is added to them (and the context

tells whether an extra index was added; sometimes the name of the letter used as an

index is unfortunately meaningful). E.g. zdn ∈ {1, . . . , L} but zdnk ∈ {0, 1}; and zd

is a vector of discrete variables. a[x] (with the brackets in the exponent instead of

parenthesis) is the rising factorial:

a[n] .= a(a+ 1) · · · (a+ n− 1).

We provide the equations in this section for the DiscLDA formulation in Fig. 4.3 with

general Dirichlet priors with hyperparameters {αl}Ll=1 and {βvk}Vv=1 for k = 1, . . . , K

even though we use symmetric priors in the experimental section. Finally, we omit

the hyperparameters in the conditionals, even though they are implicitly understood.

To get the Rao-Blackwellized updates, we need the marginals of our generative

model. Marginalizing θd out, we get:

p(zd) =

∏L
l=1 α

[
n

(d)
l

]
l

α
[Nd]
(·)

where n
(d)
l

.
=

Nd∑
n=1

zdnl. (4.18)
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Marginalizing Φ out, we get:

p(w|u) =
K∏
k=1

∏V
v=1 β

[
m

(v)
k

]
vk

β

[
m

(·)
k

]
(·)k

 where m
(v)
k

.
=

D∑
d=1

Nd∑
n=1

udnkwdnv. (4.19)

The count n
(d)
l thus represents how often the topic l was chosen in the document

d. On the other hand, the count m
(v)
k is corpus wide and counts the number of time

word v was assigned to topic k in the whole corpus.

Marginalizing udn out, we get the effect of the transformation T yd as a class-

dependent mixture of the word distribution for topic zdn:

p(wdn|zdn, yd,Φ) =
K∑
k=1

ΦwdnkT
yd
kzdn

.
= Φyd

wdnzdn
. (4.20)

Marginalizing zdn out (but keeping θd), we get another view of the effect of the

transformation (on the topic mixture this time instead of the word distribution):

p(udn|θd, yd,T) =
L∑
l=1

T ydudnlθdl. (4.21)

It is not possible to marginalize θd out to get p(udn|yd,T) in closed form though as

θd doesn’t have a conjugate prior to the distribution on udn. As in LDA, p(udn|yd,T)

can be expressed in terms of hypergeometric functions (see Carlson, 1977, e.g.), but

the expression obtained is not simple to deal with.

Marginalizing introduces dependencies on the siblings of the variables; so we in-

troduce another piece of notation: a bar on an index means that we consider all the

variables with a different value for this index (we are taking the set complement). We

now provide the equations needed to implement the RB Gibbs updates used in this

chapter. To sample from p(z|y,w,T,Φ) (which decouples in independent updates
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for each document d), we need:

p(zdn = l|yd, zdn̄,wd,T,Φ) ∝ Φyd
wdnl

(αl + n
(d)
n̄,l ) (4.22)

where

n
(d)
n̄,l

.
=

Nd∑
i=1
i 6=n

zdil. (4.23)

To sample from p(u|z,y,w,T,Φ), we need:

p(udn = k|zdn, yd, wdn,T,Φ) ∝ ΦwdnkT
yd
k zdn

. (4.24)

Finally, to sample from p(u, z|y,w,T) with Φ marginalized out, we need:

p(udn = k, zdn = l|ud̄n, zd̄n, yd,w,T) ∝
(βwdnk +m

(wdn)

d̄n,k
)

(β(·)k +m
(·)
d̄n,k

)
T ydkl (αl + n

(d)
n̄,l ) (4.25)

which doesn’t factorize as independent updates over d, and where we have defined:

m
(v)

d̄n,k

.
=

D∑
i=1

Ni∑
j=1

(i,j)6=(d,n)

uijkδ(v, wij). (4.26)

Note that computing the joint scales quadratically in terms of topic size. This makes

sampling in this case K times slower than Gibbs sampling in LDA. A faster alternative

would be to sample udn and zdn one after each other rather than jointly. Unfortunately,

because the T y matrices are usually close to be sparse, the chain wouldn’t mix well

as given zdn, udn would become almost deterministic. It is thus crucial to sample

them jointly in order to allow exploration. Moreover, because the updates depend

on the whole corpus through w, one needs to cache (udn, zdn) for all tokens, an

expensive operation. This is an obstacle to scale to a large number of topics without
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some modifications to the approximation (e.g., we could use the Metropolis-Hasting

algorithm with a suitable proposal distribution rather than Gibbs sampling).

The posterior over topic parameters (which factorizes over k) is:

p(φk|u,w) = Dir
(
{βvk +m

(v)
k }

V
v=1

)
, (4.27)

so the posterior mean is simply the normalized Dirichlet parameters.

The posterior over topic proportions (which factorizes over d) is:

p(θd|zd) = Dir
(
{αl + n

(d)
l }

L
l=1

)
. (4.28)

4.A.3 Dimensionality reduction equation

Using equation (4.10), we can expand equation (4.9) as:

(
E [T yθd|wd,T,Φ]

)
k
≈
∑
y

p̂(y|wd,T,Φ)
∑
l

T ykl
αl + n̂

(d)
l (y)

α(·) +Nd

, (4.29)

where p̂(y|wd,T,Φ) is estimated as before using bridge sampling, and

n̂
(d)
l (y)

.
=

1

M

∑
i,n

δ(l, z
(i)y
dn )

for z
(i)y
d sampled for i = 1, . . . ,M from p(zd|y,wd,T,Φ).

Appendix 4.B Bridge sampling

Bridge sampling (Meng and Wong, 1996) can be seen as an extension of importance

sampling to estimate the ratio between two normalization factors. We review the

approach in this section and apply it to our setting to estimate the posterior over

109



Chapter 4. DiscLDA: Discriminative Dimensionality Reduction for Classification

labels p(y|wd,T,Φ). We note that our presentation is slightly different than the one

in the literature.

We will first motivate the approach as an improvement over importance sampling.

Suppose one is interested in computing the integral E1[h]
.
=
∫
h(z)p1(z)dz13 for some

density p1 = q1/Z1, where Z1 is its normalization constant. Importance sampling

approximates the integral using samples from a different proposal density p0 = q0/Z0:

E1[h] =

∫
q1
q0
hp0

Z1

Z0

=
E0

[
q1h
q0

]
E0

[
q1
q0

] ≈ 1
M

∑M
i=1w(z(i))h(z(i))

1
M

∑M
i=1w(z(i))

, (4.30)

where we have defined the importance weights w(z(i))
.
= q1(z(i))

q0(z(i))
and we used the

standard Monte Carlo approximation for the expectation E0 with M samples from

the proposal p0 i.e. z(i) ∼ p0(z). The same samples were used for the numerator and

denominator to reduce the sampling error of the estimate. This formula is valid for

any proposal density p0 which has a wider support than the original density, that

is, Ω0 ⊇ Ω1 where Ωc
.
= {z : pc(z) > 0} for c ∈ {0, 1}. Note that the only two

requirements to be able to evaluate the approximation are 1) to be able to evaluate

the unnormalized distributions q0, q1 and 2) to be able to sample from the proposal p0

– hence we don’t need to know the normalized p0, p1, which is a powerful advantage

of the method.

Importance sampling is normally used within two scenarios. In the first one, we

are not able to sample from p1 and instead decide to sample from a suitably close

proposal distribution q0. In the second scenario, we are able to sample from p1, but the

13 The index for E will indicate which distribution the expectation is taken with respect to (p1

or p0 e.g.). For more generality, we could replace dz in the integral with µ(dz) and assume that
all densities are taken with respect to the base measure µ. For simplicity, we will only consider the
Lebesgue measure in this presentation, though the derivations carry through with other measures
(e.g. a mix of counting and Lebesgue measure as is needed for the LDA model which has discrete
and continuous variables).
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naive Monte Carlo estimate of E1[h] converges poorly because the major contributions

of h are far from where the major mass of p1 is. Importance sampling allows us to

focus on the important regions of the integral by using a proposal q0 better calibrated

to h, e.g., close to q1h, and thus yielding a more efficient estimator. See chapters 2-4

of Liu (2001) for a more extended discussion of importance sampling in the context

of Markov chain simulation algorithms.

In order to link this approach to evaluating the ratio of normalization constants,

recall that the denominator in (4.30) is using the identity:

Z1

Z0

= E0

[
q1

q0

]
≈ 1

M

M∑
i=1

w(z(i)), (4.31)

which provides an approximation to the ratio Z1/Z0. A problem arises when q0 is

quite far to q1 and in particular, if it has thinner tails than q1. In this case, some low

probability z’s under q0 will have high weights q1(z)
q0(z)

and the variance of the estimator

will be high — and could actually be infinite in certain examples as in the harmonic

mean estimator for the marginal likelihood (Newton and Raftery, 1994). A way to

solve the problem is to use a bridge distribution qb between q0 and q1:

E0

[
qb
q0

]
E1

[
qb
q1

] =
Zb/Z0

Zb/Z1

=
Z1

Z0

,

which is valid for any bridge distribution qb which is normalizable and such that

Ωb ⊆ Ω0 ∩ Ω1. Using Monte Carlo approximations for both the numerator and

denominator, we get:

Z1

Z0

≈
1
M0

∑M0

i=1
qb
q0

(z
(i)
0 )

1
M1

∑M1

i=1
qb
q1

(z
(i)
1 )

(4.32)

where the z
(i)
c ’s are Mc iid samples from the distribution qc for c ∈ {0, 1}. This is
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called the bridge sampling estimate of Z1/Z0 using the bridge distribution qb. qb acts

as a ’bridge’ between q0 and q1 by reducing the distribution discrepancy for qb/q0 and

qb/q1 vs. q1/q0. More specifically, one can choose qb to have thinner tails than both q1

and q0, hence avoiding the possibility of extremely high weights with low probability

(see Fig. 4.14 for an example).

Meng and Wong (1996) show that the choice of bridge distribution qb which min-

imizes the asymptotic relative mean-square error of the bridge sampling estimate of

Z1/Z0 (assuming M0 = M1) is the harmonic mean of p0 and p1: qb = (Z0

q0
+ Z1

q1
)−1. Un-

fortunately, the ratio Z1/Z0 needs to be known to compute this optimal distribution.

They thus propose an iterative scheme (based on a fixed point equation) which yields

an estimator which doesn’t require the ratio Z1/Z0 but still has the same asymptotic

relative mean square error as the harmonic mean bridge. We refer the readers to their

paper for more details. In our limited experiments with DiscLDA (see Sec. 4.B.1), we

found that the iterative scheme didn’t improve much on the simpler geometric bridge

qb =
√
q0q1, which has much lower computational complexity.

Link with importance sampling Note that using the bridge qb = q1 makes the

denominator in (4.32) disappear and yields back the importance sampling estimate

for the ratio Z1/Z0 as given in (4.31).

Likelihood ratio application We can use bridge sampling to compute the ratio of

marginal likelihoods. Consider qc(z)
.
= p(x, z|yc); then Zc = p(x|yc) and thus Z1/Z0

is the likelihood ratio between class y1 and class y0.

Other links Bridge sampling can be used to estimate a marginal likelihood Z1
.
=∫

z
p(x, z) directly by letting q1(z)

.
= p(x, z) and by using a proposal distribution

q0 which is already normalized (and so Z0 = 1) – e.g., one could use a Gaussian
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Figure 4.14: Examples of bridge distribution. Here q1 and q0 are unit variance normal
distributions with mean −5 and 5 respectively. In the top plot, we display the geometric
bridge distribution qb =

√
q0q1, which is simply an unnormalized standard normal distri-

bution in this case (rescaled to have the same maximum as q0 for clarity). In the bottom
plot, we depict the harmonic mean bridge distribution qb = ( 1

p0
+ 1

p1
)−1 for comparison.

The other lines represent the value of the log of the weight function (units are given on
the left axis) which will be used by the importance sampler vs. the bridge sampler. Notice
that the highest weights for log q1

q0
are twice as high as the ones for either log qb

q0
or log qb

q1
in the case of the geometric bridge. This suggests that bridge sampling with a geometric
bridge should have lower variance than importance sampling. For the (asymptotically
optimal) harmonic bridge, the weights are upper bounded by 1, and thus we expect its
convergence properties to be even better.
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approximation of q1 as the proposal. Different choices of proposal distributions and

bridges give well-known estimators for the marginal likelihood. For example, using

qb = p0 (the known proposal distribution) yields Z1 = (E1

[
p0
q1

]
)−1, the reciprocal

sampling estimate (RIS) of the marginal likelihood (Gelfand and Dey, 1994). Using

the prior as the proposal p0(z) = p(z) in the RIS yields the harmonic mean estimator

p(x) = E1

[
1

p(z|x)

]
)−1 of Newton and Raftery (1994) mentioned earlier. Note that we

mentioned earlier that a good property of the bridge qb is to have thinner tails than

p0 and p1; but in the case of the harmonic mean estimator, qb is the prior, which

normally has heavier tail than the posterior p1, hence explaining the poor behavior

of this estimator.

Finally, one can extend the idea of bridge sampling to using multiple bridges:

Z1

Z0
= Z1

Zb1

Zb1
Zb2
· · · ZbT

Z0
. Taking an infinite continuous limit yields path sampling (see

Gelman and Meng, 1998). A seemingly related but fundamentally different approach

is annealed importance sampling (AIS, Neal, 2001) which can be viewed as importance

sampling on a higher-dimensional state space where auxiliary variables are introduced

in order to make the proposal distribution closer to the target distribution.

4.B.1 Application to DiscLDA

We now describe how to apply the bridge sampling framework to estimate the poste-

rior over labels p(y|wd,T,Φ) for the DiscLDA model. As mentioned in Sec. 4.3.2, we

estimate the ratio of posteriors for two different classes y0 and y1 by estimating the ra-

tio Z1/Z0 where Zc is the normalization constant for qc(zd)
.
= p(wd|zd, yc,T,Φ)p(zd).

Plugging the geometric bridge qb =
√
q0q1 in the bridge sampling estimate (4.32) with

M0 = M1 = M and using our notation of Sec. 4.A.1.2 yields:

Z1

Z0

≈
∑M

i=1 h10(z
(i)0
d )∑M

i=1 h01(z
(i)1
d )

(4.33)
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where

hab(zd)
.
=

√∏
n

Φya
wdnzdn

Φyb
wdnzdn

and z
(i)c
d is sampled iid for i = 1, . . . ,M from p(zd|yc,wd,T,Φ). Note that in practice,

we use Gibbs sampling to obtain z
(i)c
d and so the samples are actually correlated.

We only use them to evaluate expectations, and so the correlation doesn’t change

the correctness of the result (it only reduces the effective sample size). As shown

by MacEacherna and Berliner (1994), there is actually no statistical gain to use a lag

in the Gibbs samples to evaluate an expectation, and so we did use all the samples

with no lag in our implementation of equation (4.33)14.

Wallach et al. (2009) mentions several alternative to estimate the marginal like-

lihood for the LDA model (which is similar in our case to p(wd|zd, yc,T,Φ)). The

marginal likelihood can be used to estimate our label posterior p(y|wd,T,Φ) by esti-

mating the marginal likelihood p(wd|zd, yc,T,Φ) for each yc, including the prior p(yc)

and renormalizing.

Using the harmonic mean (HM) estimator for the marginal likelihood yields an

estimator for the label posterior of similar computational complexity as our bridge

sampling (BS) estimate, but much worse accuracy in exploratory experiments that

we did on synthetic documents of small length for which we can compute the true

probability exactly. Moreover, the variance for HM was significantly higher than

the one from the BS estimator on real documents. Wallach et al. (2009) mentioned

that the AIS estimator for the marginal likelihood had one of the best accuracy. We

tried their Matlab code for AIS in our exploratory experiments and obtained similar

accuracy as the BS estimator but at a much higher computational cost. Namely,

14The only rationale to use a lag is when processing each sample is more computationally expansive
than getting more samples, so one needs to focus on high quality samples. On the other hand,
see MacEachern and Peruggia (2000) for an interesting counter-example where a non-systematic
subsampling of the output of a Gibbs sampler could yield to a more efficient estimator.
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with their default setting of 1, 000 temperature steps, it takes about 20 hours to

do inference on the test set of the “1 vs. 20” binary classification task described

in Table 4.2 (80k tokens), using the model of Sec. 4.4.3 (K = 60 topics). In contrast,

our C implementation for bridge sampling with M = 2.5k takes about 2 minutes on

this dataset.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, we have extended the range of applicability of discriminative learning

methods to exploit different types of structure. In Chapter 2, we have developed a

scalable max-margin learning algorithm which could be applied to a wide range of

structured output problems, including some with a combinatorial structure, for which

a maximum-likelihood approach would be intractable in contrast. We applied this

framework in Chapter 3 to the word alignment problem and showed how the discrim-

inative approach enabled us to use a rich set of features, including the predictions of

other models. In particular, we could leverage features such as fertility and first-order

interactions which to date have been exploited only in generative approaches. With

those improvements, we obtained a word aligner with state-of-the-art performance.

In Chapter 4, we proposed an approach to exploit the latent variable structure of

documents in the context of text classification. We presented DiscLDA, a discrimi-

native variant of LDA in which a transformation matrix on the LDA parameters is

learned via maximization of the conditional likelihood. Our experiments showed that
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we could obtain a useful novel reduced representation of documents which maintained

predictive power, while having an interesting interpretability through the learned dis-

criminative topics.

5.2 Future Directions

Following on the themes developed in this thesis, we identify the following areas of

future work:

• Theoretical understanding of generative vs. discriminative learning. One moti-

vation for this thesis was that discriminative learning seems to perform better

in practice for pure supervised classification. On the other hand, whether this

is the case in general, and what would be the underlying theoretical principles

are still not clearly understood. On the topic of supervised topic models, there

have now been several proposals for discriminative versions of topic models as

well as generative versions. A more systematic comparison could shed some

light on this question.

• Machine translation. We obtained impressive results in terms of word alignment

quality, but an important question for natural language processing is to include

these in a machine translation pipeline and see whether the translation accuracy

improves as well.

• Semi-supervised learning. DiscLDA being embedded in a graphical model, it

could be interesting to apply it in the semi-supervised learning setting to lever-

age the information from a large unlabeled collection of documents in addition

to our small set of labeled documents.

• Variational approach to DiscLDA. We have used a sampling approach for Dis-
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cLDA given its simplicity and its wide use in the probabilistic topic modeling

literature. On the other hand, the level of noise in our results made it apparent

that a variational approach would probably be more suitable for discriminative

learning, by exchanging the sampling noise with a (hopefully) small determin-

istic bias of the method.

• Supervised Topic Models. There are now several proposals for supervised topic

models: some are trained generatively, such as in the supervised LDA model

of Blei and McAuliffe (2008) or in the Dirichlet-multinomial model of Mimno

and McCallum (2008); others are trained discriminatively, such as the MedLDA

model of Zhu et al. (2009) or our DiscLDA model. A systematic experimental

comparison would be useful to obtain some insight into the relative advantages

and disadvantages of these various approaches.
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