|
Simon Lacoste-Julien INRIA - SIERRA project-team |
Since September 2011, I am a Research in Paris fellow working with Francis Bach in the SIERRA project team, part of INRIA and the Computer Science Department of École Normale Supérieure in Paris. Before that, I worked with Zoubin Ghahramani as a postdoc in the Machine Learning Group of the University of Cambridge. I did my PhD in Computer Science at the University of California, Berkeley under the supervision of Michael I. Jordan, and (basically) a B.Sc. Triple Honours in Mathematics, Physics and Computer Science at McGill University.
CV (Dec 2012) | Google Scholar citation profileBlock-Coordinate Frank-Wolfe Optimization for Structural SVMs, S. Lacoste-Julien*, M. Jaggi*, M. Schmidt, P. Pletscher, To appear at the International Conference on Machine Learning (ICML 2013), Atlanta, USA, June 2013. *Both authors contributed equally.
A Simpler Approach to Obtaining an O(1/t) Convergence Rate for the Projected Stochastic Subgradient Method, S. Lacoste-Julien, M. Schmidt, F. Bach, arXiv:1212.2002v2 [cs.LG], December 2012.
SiGMa: Simple Greedy Matching for Aligning Large Knowledge Bases, S. Lacoste-Julien, K. Palla, A. Davies, G. Kasneci, T. Graepel, Z. Ghahramani, arXiv:1207.4525v1 [cs.AI], July 2012.
On the Equivalence between Herding and Conditional Gradient Algorithms, F. Bach, S. Lacoste-Julien and G. Obozinski, International Conference on Machine Learning (ICML 2012), Edinburgh, UK, June 2012.
Approximate Gaussian Integration using Expectation Propagation, J.P. Cunningham, P. Hennig and S. Lacoste-Julien, arXiv:11111.6832v1 [stat.ML], November 2011.
A Kernel Approach to Tractable Bayesian Nonparametrics., F. Huszár and S. Lacoste-Julien, arXiv:1103.1761v3, [stat.ML], March 2011.
Approximate Inference for the Loss-Calibrated Bayesian, S. Lacoste-Julien, F. Huszár, and Z. Ghahramani, International Conference on Artificial Intelligence and Statistics (AISTATS11), Florida, April 2011. Discriminative Machine Learning with Structure, S. Lacoste-Julien, PhD Thesis, University of California, Berkeley, 2009.
DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification.
S. Lacoste-Julien,
F. Sha,
and M. Jordan,
Neural Information Processing Systems Conference (NIPS08),
Vancouver, British Columbia, December 2008.
Word Alignment via Quadratic Assignment.
S. Lacoste-Julien,
B. Taskar,
D. Klein,
and M. Jordan,
Human Language Technology conference - North American chapter of the Association for Computational Linguistics
(HLT-NAACL06),
New York, June 2006.
Structured Prediction, Dual Extragradient and
Bregman Projections. B. Taskar,
S. Lacoste-Julien,
and M. Jordan,
Journal of Machine Learning Research
(JMLR),
Special Topic on Machine Learning and Large Scale Optimization, 7, 1627-1653, 2006.
Structured Prediction via the Extragradient Method.
B. Taskar,
S. Lacoste-Julien,
and M. Jordan,
Neural Information Processing Systems Conference
(NIPS05),
Vancouver, British Columbia,
December 2005. [Longer version]
A Discriminative Matching Approach to Word
Alignment. B. Taskar,
S. Lacoste-Julien,
and D. Klein,
Empirical Methods in Natural Language Processing
(EMNLP05),
Vancouver, British Columbia,
October 2005.
Meta-Modelling
Hybrid Formalisms. S. Lacoste-Julien,
H. Vangheluwe, J. de Lara and
P. Mosterman, IEEE International
Symposium on
Computer Aided Control System Design, special section on multi-paradigm modelling.
Taiwan, September 2004. A UC Berkeley class project which has been cited a few times as a tutorial: An introduction to Max-Margin Markov Networks. S. Lacoste-Julien, 2003.